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Bacillus amyloliquefaciens has been widely used in the agriculture, food, and medicine
industries. Isolate PP19 was obtained from the litchi fruit carposphere and showed
biocontrol efficacy against litchi downy blight (LDB) whether applied preharvest or
postharvest. To further understand the underlying regulatory mechanisms, the genome
of PP19 was sequenced and analyzed. The genome comprised a 3,847,565 bp circular
chromosome containing 3990 protein-coding genes and 121 RNA genes. It has the
smallest genome among 36 sequenced strains of B. amyloliquefaciens except for RD7-
7. In whole genome phylogenetic analysis, PP19 was clustered into a group with
known industrial applications, indicating that it may also produce high-yield metabolites
that have yet to be identified. A large chromosome structural variation and large
numbers of single nucleotide polymorphisms (SNPs) between PP19 (industrial strain)
and UMAF6639 (plant-associated strain) were detected through comparative analysis,
which may shed light on their functional differences. Preharvest treatment with PP19
enhanced resistance to LDB, by decreasing the plant H2O2 content and increasing the
SOD activity. This is the first report of an industrial strain of B. amyloliquefaciens showing
a plant-associated function and with major potential for the biocontrol of LDB.

Keywords: Bacillus amyloliquefaciens PP19, litchi downy blight, genome sequencing, comparative genomic
analysis, preharvest treatment, biocontrol efficacy

INTRODUCTION

Litchi (Litchi chinensis) belongs to Sapindaceae and is native to South China. Currently, it is mainly
distributed in China, India, Thailand, Vietnam, South Africa, Australia, and other tropical and
subtropical regions (Tindall, 1994). Litchi is known in China as the “King of fruit,” with its taste
and its high nutritional value; the pulp is rich in nutrients such as sugars, organic acids, dietary
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fibers, proteins, amino acids, polyphenols, and minerals (Jiang
et al., 2006). During postharvest storage of litchi, the fruit can
easily turn brown and rot due to litchi anthracnose, sour rot, and
downy blight. Among these diseases, litchi downy blight (LDB)
caused by Peronophythora litchii is the most serious (Wang et al.,
2013). LDB alone may destroy 20–30% of litchi fruit every year
(Zheng et al., 2019).

At present, the disease is mainly controlled by chemical
methods. Due to the shortcomings of chemical control, such
as issues arising from fungicide residues, biological control
has become a desirable alternative. Pterostilbene, a phenolic
compound found in plants, was found to inhibit the germination
of Peronophythora litchii sporangia and affect the growth of
its mycelia by deforming and shrinking the mycelia and
sporangia, and damaging the cell wall, plasma membrane and
organelles (Xu et al., 2018). Similarly, isoliquiritin, which is
one of the flavonoid compounds found in licorice (Glycyrrhiza
uralensis), can also damage the cell membrane of P. litchii
(Luo et al., 2016). Zeamines, produced by Dickeya zeae,
can damage the endomembrane of P. litchii, and zeamine-
treated postharvest litchi fruit showed lower levels of P. litchii
infection (Liao et al., 2015). Volatile organic compounds
(VOCs) from Streptomyces fimicarius BWL-H1 can damage
the endomembrane system and cell wall of P. litchii (Xing
et al., 2018). Postharvest treatment of litchi fruit with Bacillus
amyloliquefaciens LY-1 resulted in a lower pericarp browning
index and percentage of fruit decay and higher fruit quality
(Wu et al., 2017).

Bacillus amyloliquefaciens is used for commercial production
of BamH I restriction enzyme (Wilson and Young, 1975),
the antibiotic barnase (Hartley and Rogerson, 1972) and other
antibiotics (Yu et al., 2002), alpha amylase (Tanaka and Hoshino,
2003), and proteinase subtilisin (Peng et al., 2004). It can
successfully colonize the epidermis of fruit and vegetables,
compete with pathogens for nutrition, secrete antibacterial
substances to inhibit the growth of pathogens, and induce
plant defense systems to resist pathogen invasion for successful
biological control (Hong et al., 2013). Increasing research has
shown that B. amyloliquefaciens could be used in the biological
control of postharvest diseases. B. amyloliquefaciens NCPSJ7
reduced the disease incidence of grape gray mold caused
by Botrytis cinerea (Zhou et al., 2020). Iturin A produced
by B. amyloliquefaciens BUZ-14 showed strong in vitro and
in planta antifungal activity against B. cinerea, Monilinia
fructicola, Monilinia laxa, Penicillium digitatum, Penicillium
expansum and Penicillium italicum, which are major pathogens
of postharvest fruit (Calvo et al., 2019). Several other strains of
B. amyloliquefaciens are known to decrease postharvest diseases,
such as 9001 against apple ring rot (Li et al., 2013), BA3 against
pear gray mold (Qu et al., 2016), BGP20 against vegetable soft
rot (Zhao et al., 2013), BUZ-14 against postharvest diseases of
orange, apple, grape, and stone fruit (Calvo et al., 2017), CPA-
8 against postharvest diseases of sweet cherry fruit (Gotor-Vila
et al., 2017; Vilanova et al., 2018), and DH-4 against citrus green
mold (Chen et al., 2018).

The genomes of several B. amyloliquefaciens strains have
been sequenced, which allows for comparative genomic analysis

and association of particular genes with particular functional
uses. Based on marker gene and whole-genome sequence
comparisons, B. amyloliquefaciens has been subdivided into two
groups, called “industrial” and “plant-associated” (Borriss et al.,
2011; Magno-Pérez-Bryan et al., 2015). The industrial group is
commonly used as industrial producers of primary metabolites,
including enzymes, purine nucleosides, riboflavin, among others
(Zakataeva et al., 2007; Sheremet et al., 2011; Meng et al., 2019),
while the plant-associated group is considered plant-associated
due to the ability to promote plant growth and exhibit biocontrol
activity against pathogens (Fan et al., 2012; Molinatto et al., 2016;
Xie et al., 2020).

Bacillus amyloliquefaciens PP19 was isolated from the
carposphere of litchi fruit pericarp and showed antifungal
activity against Peronophythora litchii SC18, and LDB biocontrol
with either preharvest or postharvest treatments (unpublished
data). The VOCs produced by PP19, especially the compounds
benzothiazole (BTH) and α-farnesene (AF), can inhibit the
growth of P. litchii and reduce the severity of LDB (Zheng et al.,
2019). The purpose of this study was to further investigate PP19,
by sequencing its genome and characterizing its genes to shed
light on its functional abilities.

MATERIALS AND METHODS

Bacterial Culture and DNA Extraction
Bacillus amyloliquefaciens PP19 cells were cultivated
at 28◦C in 500 ml flasks, containing 100 ml of LB
media for 24 h, and subsequently harvested through
centrifugation at 10,000 × g for 5 min at 4◦C. Genomic
DNA was extracted immediately following Hoffman
and Winston (1987). The purity and integrity of
DNA were assessed by agarose gel electrophoresis and
then quantified by QubitTM Fluorometer (Invitrogen,
CA, United States).

Genome Sequencing, Assembly, and
Annotation
Genome sequencing and assembly were performed at Novogene
Bioinformatics Technology Co., Ltd. (Beijing, China), on
the Nanopore PromethION. All reads were assessed by
NanoPlot with the threshold value Q > 7, and then the
clean data were assembled with Unicycler (Wick et al.,
2017). The coding genes of PP19 were predicted using
GeneMarkS (Version 4.17) (Besemer et al., 2001). Interspersed
nuclear elements and tandem repeats (TRs) were identified
by RepeatMasker (Version open-4.0.5) (Saha et al., 2008) and
TRF (Tandem Repeats Finder, Version 4.07b) (Benson, 1999),
respectively. Transfer RNA (tRNA), ribosomal RNA (rRNA),
and small RNA (sRNA) genes were detected by tRNAscan-SE
(Version 1.3.1) (Lowe and Eddy, 1997), rRNAmmer (Version
1.2) (Lagesen et al., 2007), and CMsearch (Version 1.1rc4)
(Cui et al., 2016) with default parameters, respectively. The
prediction of genomic islands (GIs) and prophages was done
with IslandPath-DIOMB (Version 0.2) (Hsiao et al., 2003)
and phiSpy (Version 2.3) (Zhou et al., 2011), respectively.
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The clustered regularly interspaced short palindromic repeat
(CRISPR) sequences were predicted by the CRISPR digger
(Ge et al., 2016). For functional annotation, the predicted
protein sequences were compared against the Gene Ontology
(GO) database (Ashburner et al., 2000), Kyoto Encyclopedia
of Genes and Genomes (KEGG) (Kanehisa et al., 2006),
Clusters of Orthologous Groups of Proteins (COG) database
(Galperin et al., 2015), Non-Redundant Protein Database
(NR) (Li et al., 2002), Transporter Classification Database
(TCDB) (Saier et al., 2016), Swiss-Prot (Bairoch and Apweiler,
2000), and Carbohydrate-Active enZYmes Database (CAZy)
(Cantarel et al., 2009).

Phylogenetic Analyses and Comparative
Genome Analysis
Complete amino acid gene sets of 36 B. amyloliquefaciens
strains were downloaded from the NCBI database.1 The whole
genomes were aligned, and a genome-based phylogenetic
tree was constructed using CVTree3 (Zuo and Hao, 2015).
MUMmerV3.22 (Kurtz et al., 2004), and used for identification
of homologous regions and for collinearity analysis with
default parameters. LASTZ (Large-Scale Genome Alignment
Tool) (Harris, 2007) was used for detecting InDels (insertions-
deletions) and SV (chromosomal structural variation).

Evaluation of Biocontrol Efficacy of
Preharvest Treatment of Litchi Fruit With
PP19
The pathogen P. litchii SC18 and the biocontrol agent
B. amyloliquefaciens PP19 were cultured following Zheng et al.
(2019). During summer 2019 in Danzhou city, Hainan province,
litchi fruit of cv. “Feizixiao” at approximately 60% ripening was
sprayed with PP19 at 5 × 107 CFU/mL or 1/10 strength LB
broth on the litchi trees until runoff. After 7 days, the fruit was
harvested, and brought back to the laboratory, 30 litchi fruits
were placed in each plastic container (32 × 22 × 10 cm), in
which the bottom was covered with filter paper moistened with
15 mL sterile water. After 24 h, fruits were sprayed with 30–60 mL
of P. litchii SC18 at 5 × 104 sporangia/mL per container, and
maintained in a greenhouse at 25◦C with a day/night cycle of
12/12 h. The disease index was calculated following Zheng et al.
(2019).

Enzyme Activity Detection in the
Pericarp
Fruit of litchi cv. “Feizixiao” was sampled in 2019. Nine fruits
per treatment were sampled at each time point (0, 48, 84, 96,
108, and 120 hpi). Subsequently, the pericarps were collected
and immediately packed with tin foil, frozen in liquid nitrogen,
and stored at −80◦C until the assays. The content of H2O2
and the activities of catalase (CAT, EC 1.11.1.6), superoxide
dismutase (SOD, EC 1.15.1.1), and peroxidase (POD, EC 1.11.1.7)
were determined with corresponding detection kits (Nanjing
Jiancheng Biological Engineering Institute, Nanjing, China).

1https://www.ncbi.nlm.nih.gov/genome/

RESULTS

Genome Sequencing of
B. amyloliquefaciens PP19
The Nanopore PromethION produced 342,009 reads with
average read length of 13,054 bp. The 4.46 billion base pairs
of reads, were assembled using Unicycler to generate a circular
chromosome 3,847,565 bp in length with 46.27% GC content
with no plasmids and 1160-fold genome coverage (Figure 1B
and Supplementary Table 1). GeneMarkS was used to predict
3,990 protein coding sequences (CDSs), accounting for 89.85%
of the genome, with an average length of 866 bp per gene
(Supplementary Table 1). The results of genome component
analyses showed that there were 226 interspersed repeats, 193
TRs, 86 tRNA genes, 27 rRNA genes, 8 sRNA genes, 8 GIs, and 6
prophages with no CRISPR sequences (Supplementary Table 2).

Functional annotation was based on diamond alignment of the
protein sequences of predicted genes with several commonly used
databases. In the COG analysis, 2,864 proteins were classified
into 25 categories. Except for the prediction for the general
function category (304 genes), the amino acid transport and
metabolism (303 genes), and the transcription (279 genes)
categories showed the highest percentages among 25 categories
(Supplementary Figure 1).

GO analysis divided 2,684 proteins into three categories:
biological processes, molecular functions, and cellular
components. The metabolic process and cellular process,
catalytic activity and binding, cell part and cell showed the
highest gene abundance in the three categories, respectively
(Supplementary Figure 2). In the KEGG pathway analysis,
the metabolic pathway accounted for the highest proportion
(Supplementary Figure 3). CAZy is a database of carbohydrate
enzymes, including related enzyme families that catalyze the
degradation, modification, and biosynthesis of carbohydrates. It
contains five main categories: glycoside hydrolase (GH), glycosyl
transferase (GT), polysaccharide lyase (PL), carbohydrate
esterase (CE), and auxiliary activity (AA). There were 58, 52,
3, 15, 1, and 41 genes classified as GH, GT, PL, CE, AA, and
CBM (carbohydrate-binding module) categories, respectively
(Supplementary Figure 4). TCDB analysis indicated that the
genes annotated as porters (169 genes, including uniporters,
symporters, antiporters) and P-P-bond-hydrolysis-driven
transporters (153 genes) accounted for 71.88% of all predicted
transporters (448 genes) (Supplementary Figure 5).

Phylogenetic and Comparative Genomic
Analyses
Thirty-six B. amyloliquefaciens genome sequences were used
in phylogenetic analysis. The characteristics of these genomes
were enumerated (Supplementary Table 3), however, no
obvious differences between plant-associated and industrially
relevant strains were found in terms of genome size, number
of genes, proteins, rRNAs, or tRNAs, while plant-associated
strains showed a higher level of GC content (Supplementary
Table 3). Aside from strain RD7-7, PP19 showed the smallest
genome size, smaller by 3.85 to 4.24 Mb, but this did not
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FIGURE 1 | Phylogenetic analysis and circular chromosome of strain PP19. (A) Phylogenetic tree of PP19 based on the whole genome sequences of 37
B. amyloliquefaciens strains with Bacillus subtilis used as an outgroup. (B) The circular genome map revealing the genetic basis of PP19. From outside to inside, the
map shows the (1) position of the genome, (2) coding genes on the + and – strand, (3) COG annotation, (4) GO annotation, (5) non-coding RNA, and (6) GC content.
The inner red indicates that the GC content in this region is lower than the genome-wide average GC content, while the outer green indicates the opposite. The
higher the peak is, the greater the difference with the average GC content (7) GC skew value (G–C/G + C). When the value is positive, the CDS is more likely to be
transcribed from the positive chain; otherwise, the CDS is more likely to be transcribed from the negative chain.

result in a decreased number of predicted genes or proteins
(Supplementary Tables 1, 3).

The phylogenetic tree showed that PP19 clustered with the
economically important strains named here as the Industrial
Group (Figure 1A). However, PP19 was confirmed to have a
biocontrol effect against LDB (unpublished data). To the best of
our knowledge, this is the first report that a strain grouping with
economically important industrial-use strains could be used in
biocontrol of a plant disease. Comparative genomic analysis was
applied to reveal the differences in the genome between PP19 and
DSM7 (industrial strain characterized by its enormous potential
to produce extracellular enzymes of industrials importance
including amylases and proteases) and between PP19 and
UMAF6639 (plant-associated strain). There were 174 indels
detected between PP19 and DSM7, while 133 indels between
PP19 and UMAF6639. A large number of SNPs was detected
between PP19 and UMAF6639 (195,510), while only 43,045
were found between PP19 and DSM7 (Supplementary Table 4).
Several long fragment deletions and insertions were detected
between PP19 and DSM7, resulting in minor chromosome SV
between them (Figure 2A). Chromosome SV analysis between
PP19 and UMAF6639 indicated that almost half of their genomes
were not matched (Figure 2B). Synteny and collinearity were
examined between PP19 and DSM7 and between PP19 and
UMAF6639. The results demonstrated that nearly all regions of
sequence similarity fell along the diagonals of the forward strand,

except for several gene sites, indicating a generally similar gene
and sequence order between PP19 and DSM7 (Figures 2C,D).
In a comparison of PP19 and UMAF6639 genomic sequences,
several translocation sites were detected (Figures 2E,F).

Preharvest Treatment With PP19
Suppressed LDB and Enhanced the
Activity of Defense-Related Enzymes
Genome analysis further revealed the major traits of strain PP19
involved in the biocontrol activity against LDB. There were
12 gene clusters related to secondary metabolite biosynthesis
in PP19 (Supplementary Table 5), including one lantipeptide,
two non-ribosomal peptides (NRPS), one type III polyketide
synthetase (PKS) and one other type of PKS, two terpenes, one
TransAT-PKS, three TransAT-PKS-NRPS, and one other cluster
(Supplementary Table 5). Therefore, it can be inferred that PP19
could suppress the growth of P. litchii by producing diverse
secondary metabolites, and we observed in vitro antagonism
(not published).

To validate its use in controlling LDB at the preharvest stage
and the possible underlying mechanism, PP19 was tested on
preharvest litchi fruit with clean LB solution as a control. After
7 days, the treated fruit was harvested and inoculated with spores
of P. litchii SC18. The disease severity was recorded from 60 to
96 hours post-inoculation (hpi) at 12 h intervals, and the results
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FIGURE 2 | Chromosome structural variation (SV) and synteny analysis between PP19 and DSM7, PP19 and UMAF6619. (A) SV analysis between PP19 and
DSM7, (B) SV analysis between PP19 and UMAF6619, (C,E) synteny analysis between PP19 and DSM7, PP19 and UMAF6619 (parallel collinear graph), (D,F)
synteny analysis between PP19 and DSM7, PP19 and UMAF6619 (two dimensional collinear graph). Collinear, collinear region; Translocation, translocation region;
Inversion, inversion region; Tran + Inver, translocation and inversion region; Insertion, region where the inserted fragment is greater than or equal to 50 bp; Deletion,
region where the deleted fragment is greater than or equal to 50 bp; ComplexInDel, region that is unmatched but located in the same region; Forward_chain, the
forward chain of the genome sequence; Reverse_chain, the reverse chain of the genome sequence; Forward_CDS, CDS translating on the forward chain of genome
sequence; Reverse_CDS, CDS translating on the reverse chain of genome sequence; Subjoin_Forward_CDS, supplementary CDS translating on the forward chain
of genome sequence; Subjoin_Reverse_CDS, supplementary CDS translating on the reverse chain of genome sequence; when the matching sequence of the
deleted gene or inserted gene reaches 100% consistency, the matching sequence is considered a supplementary CDS.

showed a significantly lower disease index at 60, 72, 84, 96 hpi
in fruit pretreated with PP19; however, the difference decreased
with increasing time (Figures 3A,B).

To explore the effects of PP19 on plant resistance to LDB,
the plant H2O2 contents and four related enzyme activities were

assessed from the litchi pericarp. The H2O2 content in the litchi
pericarp treated with PP19 was lower than that of the control after
P. litchii inoculation. With increasing time, the H2O2 content of
PP19-treated litchi pericarps showed a small increase, peaking
at 108 hpi with a 2.1-fold increase, and then decreasing at
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FIGURE 3 | Suppression of LDB and enhancement of defense-related enzyme activity by preharvest treatment with PP19. (A) Visual comparison between PP19
preharvest treatment and control groups at 72 hpi. (B) LDB disease index for fruit treated with PP19 solution at preharvest and those treated with the control LB
media. (C–F) Comparison of the H2O2 contents and SOD, CAT and POD activities detected after P. litchii inoculation in the PP19 preharvest treatment and control
groups.

120 hpi. For the control, accelerated accumulation of H2O2 was
detected before 84 hpi, followed by a slow increase (Figure 3C).
The activity of SOD trended to decrease with increasing time
in both the control and PP19-treated litchi pericarps, and the
SOD activity in the PP19 treatment was higher than that in the
control (Figure 3D). There was a slight increase in CAT activity
before 84 and 96 hpi in the PP19 treatment and control groups,
respectively, and the CAT activity decreased after peaking. The
CAT activity in the PP19 treatment was higher than that in the
control before 84 hpi but lower after 96 hpi (Figure 3E). The
POD activity increased with increasing time in both the PP19
treatment and control groups, except at 120 hpi in the PP19
treatment, and the POD activity in the PP19 treatment was lower
than that in the control, except at 108 hpi (Figure 3F).

DISCUSSION

The industrial group of B. amyloliquefaciens is often used
industrially, as these strains are usually isolated from particular
environments or generated by traditional mutation selection.
Strains XH7 and TA208 were obtained by conventional
mutagenesis, and these showed high yields of purine nucleosides,
guanosine and ribavirin (Yang et al., 2011; Zhang et al., 2011).
Strain LL3 was isolated from fermented food (Korean bibimbap)
and could synthesize medicinally used poly-γ-glutamic acid
(Geng et al., 2011), while RD7-7 isolated from rice doenjang
(Korean fermented soybean paste) showed antimicrobial activity
against Bacillus cereus (Eom and Choi, 2016). Strain HK1 was
isolated from used agricultural mulch film, and exhibited a
greater biodegradation of agricultural plastic film (Zhang et al.,
2018). Strain YP6 was isolated from the rhizosphere of Lolium
perenne from a phosphorus mine, and the alkaline phosphatase

produced by YP6 showed high potential for biodegradation of
organophosphorus pesticides (Meng et al., 2019). In this study,
we sequenced the whole genome of B. amyloliquefaciens strain
PP19 which was isolated from the carposphere of litchi fruit
pericarp. Surprisingly, PP19 showed biocontrol activity against
LDB but its genome was more similar to industrially relevant
strains rather than plant-associated strains based on whole
genome sequence comparisons.

We speculated that there were differences in genome structure
and gene function between plant-associated and industrially
relevant strains. Plant-associated strains showed a higher GC
content, while no significant differences in genome size and gene
number were observed between them (Supplementary Table 3).
Comparative genomic analysis confirmed major chromosome
SV between PP19 (industrial strain) and UMAF6639 (plant-
associated strain) (Figure 2), which may result in functional
differences. Comparative genome analyses of 37 genomes
of B. amyloliquefaciens revealed differences which might be
reflected in gene function. Unique genes common to the plant-
associated clades are mainly found into the following COG
categories: metabolism of amino acid transport and metabolism
(E), carbohydrate transport and metabolism (G), synthesis of
secondary metabolites (Q), and general function prediction
(R) (Magno-Pérez-Bryan et al., 2015). COG analysis of the
PP19 genome showed a similar classification (Supplementary
Figure 1), which may indicate functional similarity between this
and other plant-associated strains and partly explain the plant-
associated function.

A previous study indicated that postharvest treatment
with PP19 showed significant biocontrol against fruit LDB
(unpublished data), and pre-exposure of postharvest litchi fruit
to the VOCs produced by PP19 significantly reduced the
severity of LDB (Zheng et al., 2019). Here, we assessed the
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biocontrol efficacy of preharvest treatment with PP19 to further
evaluate its field application prospects, and the result confirmed
PP19 showed a great potential for postharvest preservation
(Figures 3A,B). H2O2, a representative reactive oxygen species
that can be overproduced when induced by various abiotic and
biotic stresses, is highly reactive and can cause damage to plants
(Mhamdi and Van Breusegem, 2018). SOD, CAT, and POD
are important enzymatic antioxidants for scavenging of reactive
oxygen species (Gill and Tuteja, 2010). PP19 pretreatment with
litchi resulted in a greater ability to scavenge H2O2 (Figure 3C),
mainly due to the higher activity of SOD instead of CAT and
POD (Figures 3D–F), as the SOD always showed a higher activity
than control. The activity of CAT showed a little fluctuation in
both control and PP19 treatment, so it may play a little part in
LDB resistance. The activity of POD increased substantially in
both control and PP19 treatment, which may play an important
role in LDB resistance while not in difference between control
and PP19 treatment.

Industrial strains tend to produce higher levels of a metabolite:
XH7 (purine nucleoside guanosine) (Yang et al., 2011), TA208
(guanosine and ribavirin) (Zhang et al., 2011), LL3 (poly-
γ-glutamic acid) (Geng et al., 2011), and MT45 (surfactin)
(Zhi et al., 2017). In addition, a large number of genes
were classified into amino acid transport and metabolism
(E), coenzyme transport and metabolism (H) and secondary
metabolite biosynthesis, and transport and catabolism (Q)
categories. We speculate that PP19 should also produce a high
yield of certain metabolites contributing to its antagonism of
P. litchii, which can enhance the antioxidant related enzymes
activities, and that will be a focus of future research.

CONCLUSION

In conclusion, preharvest treatment with PP19 suppressed LDB,
showing great potential for the exploitation and utilization of
this strain. We sequenced the genome of B. amyloliquefaciens
PP19, and whole genome phylogenetic analysis placed it with
industrially relevant strains. This is the first report of a
industrially relevant strain being used for plant disease control.
Substantial chromosomal SV between PP19 and UMAF6639
was detected through comparative analysis, which may be
one of the reasons for the functional differences between
plant-associated and industrial strains. COG analysis indicated
functional similarity between PP19 and plant-associated strains.
From the above, it is speculated that a certain high-yield
metabolite with inhibitory action against Peronophythora litchii

was produced by PP19, and this metabolite should be further
identified and studied.
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