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Reactive oxygen species (ROS) are attractive weapons in both antibiotic-mediated killing
and host-mediated killing. However, the involvement of ROS in antibiotic-mediated killing
and complexities in host environments challenge the paradigm. In the case of bacterial
pathogens, the examples of some certain pathogens thriving under ROS conditions
prompt us to focus on the adaption mechanism that pathogens evolve to cope with
ROS. Based on these, we here summarized the mechanisms of ROS-mediated killing
of either antibiotics or the host, the examples of bacterial adaption that successful
pathogens evolved to defend or thrive under ROS conditions, and the potential side
effects of ROS in pathogen clearance. A brief section for new antibacterial strategies
centered around ROS was also addressed.

Keywords: reactive oxygen species, secondary damage, metabolism remodeling, virulence, antibiotic resistance,
antibiotic tolerance

INTRODUCTION

Reactive oxygen species (ROS), including hydrogen peroxide (H2O2), hydroxyl radical (OH-),
singlet oxygen (1O2), and superoxide anion (·O2

−), are produced by the pathogen itself
(endogenous) as a byproduct of aerobic respiration; they can also be encountered in the host
environment (exogenous). ROS have been called “double-edged swords of life” (Mittler, 2017)
in pathogen clearance. First, since ROS can directly damage DNA, lipids, and proteins, they
are thought to be the weapon used by both antibiotics and the host immune system. However,
controversies challenge the paradigm. Second, successful pathogens exploit ROS for their own
adaption. This minireview aims to summarize the mechanisms of ROS-mediated killing by either
antibiotics or the host, examples of pathogens that cope with the ROS conditions, the potential side
effects of ROS in pathogen clearance, and novel antibacterial strategies centered around ROS.
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ENDOGENOUS ROS, AS SECONDARY
DAMAGE, FORMED IN RESPONSE TO
ANTIBIOTIC EXPOSURE

In general, antibiotics are thought to kill microbes through
interaction with specific intracellular targets (Kohanski et al.,
2010b). However, in 2007, Collins group proposed a novel
mechanism of quinolones-induced killing by the generation of
endogenous hydroxyl radicals (Dwyer et al., 2007). Since then,
ROS have been shown to play a central role in lethality of
numerous classes of bactericidal antibiotics, regardless of their
specific targets (Kohanski et al., 2007). However, the role of
ROS in antibiotic lethality became controversial and has been
challenged (Keren et al., 2013; Imlay, 2015), since antibiotics
can kill in the absence of ROS. The paradox contained in these
statements can be solved by the idea that killing can derive
from the primary damage of antibiotic or from a secondary,
lethal stress response mediated by ROS (Zhao and Drlica, 2014;
Zhao et al., 2015; Luan et al., 2018). If primary damage with
specific targets is severe enough, it can result in death directly.
Otherwise, primary damage stimulates a pathway that leads
to ROS accumulation as secondary damage. New evidence for
this hypothesis was provided in Escherichia coli. Hong et al.
(2019) described a novel experimental system in which the
role of secondary ROS damage could be tested in isolation.
In this case, even after complete removal of quinolones, ROS
accumulation and cell death continued to occur, indicating that
when secondary ROS damage exceeds a critical threshold, it
becomes a self-amplifying process and the terminal stage when
bacteria responds to antibiotics.

However, how primary damage leads to ROS accumulation
remained unclear. Since target-specific damage occurs in
antibiotic killing, pathways leading to ROS accumulation most
probably have drug-specific context as well. While different
studies suggest that primary drug-target damage may activate
processes such as envelopes stress response and programmed
cell death, leading to ROS accumulation (Lobritz et al., 2015;
Van Acker and Coenye, 2017; Stokes et al., 2019), most evidence
is provided for aminoglycosides. Misfolded proteins induced by
gentamicin first insert into the membrane in E. coli and lead
the activation of the response regulator ArcA through CpxA,
the envelope stress response sensor. ArcA then activates the
tricarboxylic acid (TCA) cycle enzymes, leading to dysfunction of
TCA cycle and the hyperactivation of respiration (Kohanski et al.,
2008). Similar dysfunction of TCA cycle can also be observed
in quinolones and β-lactams treatments, suggesting that such
metabolic flux could be a shared mechanism pushing the cell
into a state that provokes oxidative stress in antibiotic treatments
(Kohanski et al., 2008; Belenky et al., 2015). While β-lactams
may directly activate envelope stress response by affecting
membrane integrity, specific triggers for quinolones remain to be
worked out. Several studies found that programmed cell death
mediated by YihE kinase and MazF toxin was linked to a ROS
cascade in quinolone treatment (Drlica et al., 2008; Dorsey-
Oresto et al., 2013). Recently, additional evidence suggested that
quinolones disrupted the nucleotide pool, leading to the increase

of ATP demand (Yang et al., 2019). The increasing ATP demand
elevates TCA cycle activity and cellular respiration and enhances
antibiotic lethality.

EXOGENOUS ROS-INDUCED KILLING
DEPENDS ON A VARIETY OF INNATE
MECHANISMS

Exogenous ROS, as an antimicrobial weapon wielded by
phagocytes, are generated from NADPH oxidase (NOX2)
in response to microbe recognition (Panday et al., 2015).
However, it has been surprisingly difficult to figure out exactly
how phagocytic ROS production suppresses microbial growth
(Imlay, 2019). Some indirect evidence support the notion that
phagocytic ROS directly kill pathogens. Chronic granulomatous
disease (CGD) is a genetic disorder in which patients lack
functional NOX2 protein and therefore are associated with
impaired respiratory burst (Nguyen et al., 2017). Indeed, a
severe neutrophil killing defect was reported in CGD patients
(Dinauer, 2005; Klebanoff, 2005). The host susceptibility to
various pathogens including Salmonella enterica, Staphylococcus
aureus, and Burkholderia cepacia in CGD patients highlights
the importance of the respiratory burst to infectious diseases.
However, whether host-derived ROS could directly kill pathogens
is still a matter of debate, since several studies argued that
intracellular ROS level in phagosomes was insufficient to kill
pathogens (Slauch, 2011; Li and Imlay, 2018; Imlay, 2019).

Alternatively, ROS generated by NOX, as a signal, promote
pathogen elimination via activating a variety of innate and
adaptive mechanisms in the host cell. For example, ROS
are commonly believed to be required in autophagy. NOX-
derived ROS are indispensable for the recruitment of the
autophagy protein light chain 3 (LC3), promoting antibacterial
autophagy (Huang et al., 2009; de Luca et al., 2014). In
addition, during infection, neutrophils and phagocytes can
activate an additional antimicrobial mechanism, referred to
as neutrophil extracellular traps (NETs) (Stoiber et al., 2015).
NETs, formed by chromatin and associated proteins, trap and
kill various extracellular pathogens. NET formation requires
the production of ROS (Papayannopoulos et al., 2010) and is
impaired in NOX2-deficient neutrophils (Stoiber et al., 2015).
Another study suggested that fosfomycin, a broad-spectrum
antibacterial agent, could enhance NET-mediated killing of
S. aureus via NOX2-dependent ROS accumulation in mouse
model (Shen et al., 2016).

In addition to the NOX complex, the mitochondrion is
another cellular source of ROS in immune cells (Abuaita et al.,
2018). Upon macrophage activation, mitochondrial conditions
favor reverse electron transport in the electron transport chain
and thus generate ROS (Garaude et al., 2016; Pinegin et al.,
2018). Mice deficient in proteins responsible for generation
of mitoROS are highly susceptible to infections caused by
Salmonella typhimurium and Listeria monocytogenes (Sonoda
et al., 2007; West et al., 2011). During methicillin-resistant
S. aureus (MRSA) infection, mitoROS were generated and
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delivered directly to the phagosome by mitochondrial-derived
vesicles (MDVs) in a Toll-like receptor signaling-dependent
manner (Abuaita et al., 2018). Of note, like NOX-mediated
ROS, which can modulate IL-1β expression (Warnatsch et al.,
2017), mitoROS can also modulate the antimicrobial functions
of innate immune cells by regulating production of multiple
cytokines both in vitro and in vivo (Mills et al., 2016;
Herb et al., 2019).

BACTERIAL RESPONSE TO OXIDATIVE
STRESS: ANTIOXIDANT AND
METABOLIC DEFENSES

The systems in bacteria that regulate the expression of
antioxidant defense networks have been extensively reviewed
(Ezraty et al., 2017; Reniere, 2018). The ROS response is
under the control of the master regulators. Transcription
factors such as OxyR (i.e., in S. enterica, Francisella tularensis,
and Porphyromonas gingivalis), PerR (i.e., in S. aureus and
Bacillus subtilis), OhrR (i.e., in B. subtilis and Mycobacterium
smegmatis), and SoxRS (i.e., in E. coli and S. aureus) can
be activated by direct oxidation of their sensor proteins
and then adjusting the bacterial response appropriately
(Chiang and Schellhorn, 2012). Although the particulars vary
among different species, in general, these regulons regulate
genes required for antioxidant defense, including superoxide
dismutase, catalase, thioredoxins, heme biosynthesis machinery,
glutathione reductases, ferric uptake regulator (Fur), ferritin,
and bacterioferritin (Imlay, 2008; Chiang and Schellhorn, 2012;
Reniere, 2018). In addition, iron homeostasis is also critical to
mitigate redox damage induced by Fenton reaction. Therefore,
in pathogenic bacteria (i.e., E. coli, S. aureus, and Salmonella),
the iron-sensing transcriptional repressors, such as Fur and
DtxR (diphtheria toxin repressor), can also be utilized to sustain
redox homeostasis by controlling the expression of genes
encoding iron acquisition systems and iron-dependent enzymes
(Troxell and Hassan, 2013).

Apart from antioxidant defense systems, metabolism
remodeling also plays a pivotal role in mitigating oxidative
damage (Figure 1). Metabolic adaptions can reduce oxidative
burden by retarding respiration. For example, the glyoxylate
shunt (GS) is an anaplerotic reaction of the TCA cycle
developed in numerous species, which bypasses two NADH-
generating steps (Lemire et al., 2017; Dolan and Welch,
2018). In B. cepacia, GS genes were upregulated in cells
surviving aminoglycoside treatment (Van Acker et al.,
2013). Similarly, in Mycobacterium tuberculosis (MTB), GS
enzyme isocitrate lyase deficient mutants were significantly
more susceptible than wild-type strain toward isoniazid,
rifampicin, and streptomycin (Nandakumar et al., 2014).
Consistent with these observations, the Collins group
found that glyoxylate could serve as a direct biochemical
inducer of aminoglycoside tolerance via reducing cellular
respiration. Meanwhile, TCA cycle intermediates, such
as fumarate, significantly potentiate tobramycin lethality
(Meylan et al., 2017).

Replenishment of antioxidants can also be achieved by
metabolic modulation. Pentose phosphate (PP) pathway
is an important target to mitigate ROS damage, since
NADPH is the cofactor for antioxidant systems. In
E. coli, by increased abundance of glucose-6-phosphate
dehydrogenase, the metabolic flux can be rerouted toward
the PP pathway, leading to increased ROS tolerance
(Christodoulou et al., 2018).

Ketoacids including α-ketoglutarate (KG) and pyruvate can
undergo non-enzymatic decarboxylation in the presence of ROS,
generate non-toxic byproducts, and thus alleviate the ROS
damage. Bacteria like E. coli and Pseudomonas fluorescens tend to
pool ketoacids both inside the cell and in the extracellular matrix
under ROS conditions. For example, the increased generation of
KG can be achieved by the modulation of TCA cycle enzymes
like isocitrate dehydrogenase when using citrate, glucose, and
malate as carbon sources (Alhasawi et al., 2016). It can also
be achieved by the deamination of glutamate when glutamate
or histidine is supplied as the carbon source (Lemire et al.,
2010, 2017). When exposed to H2O2, P. fluorescens can go
through a metabolic reconfiguration with enhanced activity
of substrate-level phosphorylation as well as impaired activity
of the TCA cycle, leading to evident pyruvate synthesis with
glucose or glycerol as the carbon source (Bignucolo et al., 2013;
Alhasawi et al., 2016).

INDUCTION OF BACTERIAL VIRULENCE
UNDER ROS CONDITIONS

In addition to antioxidant defenses, activations of the oxidative
defense regulators are also required for full virulence in
pathogens. For example, OxyR contributes to the virulence of
E. coli and Pseudomonas aeruginosa (Lau et al., 2005; Wei et al.,
2012; Fang et al., 2016). Similarly, SoxRS has been shown to act
as a positive regulator in Salmonella pathogenicity island (SPI)-
2 mediated virulence in S. enterica (Wang P. et al., 2020). In
S. aureus, after oxidation of the sensor protein by ROS, the redox-
signaling regulator AirSR positively regulates the biosynthesis of
staphyloxanthin (STX), an important virulence factor of S. aureus
(Hall et al., 2017). MntR, a member of the DtxR family, is
required for S. aureus pathogenesis via maintaining manganese
homeostasis (Grunenwald et al., 2019).

In host conditions, virulence modulation can be achieved
by ROS indirectly. During ROS generation, phagocytes
simultaneously produce glutathione (GSH) to sustain
intracellular redox homeostasis. Certain intracellular pathogens
have even evolved to exploit the host GSH for adaptions. In
Burkholderia pseudomallei, virulence is completely dependent
on the expression of a type VI secretion system (T6SS). During
the exit from phagosome, B. pseudomallei senses host GSH via
sensor protein VirA, which then activates the expression of the
T6SS (Wong et al., 2015). In L. monocytogenes, the extracellular
host GSH can trigger the production of bacterial GSH. Both host
GSH and bacterial GSH bind to the master virulence regulator
PrfA and function as an allosteric activator (Reniere et al., 2015;
Portman et al., 2017).
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FIGURE 1 | Metabolic remodeling designed to reduce oxidative damage. In antibiotic treatments, dysfunction of TCA cycle and hyperactivation of cell respiration
lead to ROS accumulation in bacteria. Defense against ROS can be achieved by metabolic remodeling. Reduced endogenous ROS formation can be achieved by
upregulation of the glyoxylate shunt, which bypasses two NADH-generating steps. Replenishment of antioxidants can be achieved by rerouting metabolism toward
the pentose phosphate pathway and enhancing production of cofactor NADPH. Also, ketoacids, including pyruvate and α-ketoglutarate, can mitigate oxidative
damage via non-enzymatic decarboxylation in the presence of numerous carbon sources. G6P, glucose 6-phosphate; G6DPH, glucose-6-phosphate
dehydrogenase.

THRIVE UNDER ROS CONDITIONS BY
METABOLIC REMODELING

While pathogens can be eliminated by ROS, it is quite clear
that certain pathogens exploit ROS to coordinate metabolism to
thrive. For example, S. typhimurium evidently makes use of host-
derived ROS during intestinal inflammation. ROS generated by
phagocytes convert thiosulfate to tetrathionate, which in turn

can be used as a respiratory electron sink by S. typhimurium,
allowing it to outcompete the native microbiota (Winter et al.,
2010; Bäumler and Sperandio, 2016). Another example comes
from E. coli. In the intestinal lumen, oxygen from the epithelium
collides with sulfide generated by luminal bacteria, potentially
generating H2O2 through direct reaction. Also, lactic-acid
bacteria excrete H2O2 as a direct metabolic product. Under
such circumstances, cytochrome c peroxidase (Ccp) regulated

Frontiers in Microbiology | www.frontiersin.org 4 February 2021 | Volume 11 | Article 622534

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-622534 May 11, 2021 Time: 11:30 # 5

Li et al. ROS in Pathogen Clearance

FIGURE 2 | Promoting antibiotic resistance and tolerance as potential side effects of ROS. (A) ROS promote resistance by directly damaging DNA and leading to
mutagenesis. (B) ROS act as a signal for gene transformation, by promoting the transformation of antibiotic resistance genes (ARGs) and eDNA in certain species.
(C) Host-derived ROS promote antibiotic tolerance by targeting TCA cycle and retarding cellular respiration in S. aureus. (D) Host-derived ROS promote antibiotic
tolerance by increased production of MDR efflux pump via activation of redox regulon SoxRS.

by OxyR allows E. coli to employ H2O2 as a terminal oxidant
for respiration (Khademian and Imlay, 2017). Helicobacter pylori
is well known as a ROS-inducing gastric pathogen. It utilizes
chemotaxis to seek sites optimal for efficient colonization. Recent
studies showed that ROS could be sensed in H. pylori by the
chemoreceptor TlpD. Host oxidants hypochlorous acid (HOCl)
could act as a chemoattractant by reversibly oxidizing TlpD that
inactivates the chemotransduction signaling complex (Perkins
et al., 2019). While H2O2 could act as a chemorepellent which
initiates chemotaxis through TlpD to promote gastric gland
colonization (Collins et al., 2018).

BACTERIAL RESISTANCE AND
TOLERANCE AS SIDE EFFECTS OF ROS

Recently, the radical-based theory in pathogen clearance has been
questioned for the protective role of ROS against antimicrobial
killing (Burger and Drlica, 2009; Mosel et al., 2013). ROS can
directly damage DNA, leading to genetic mutations. Indeed,
ROS produced by non-lethal antibiotics induce mutations in
specific antibiotic targets and promote the development of
multi-drug resistance (Kohanski et al., 2010a; Takahashi et al.,
2017). If ROS is a shared mechanism in antibiotic lethality,

then it is to be expected that protection against ROS can
be one of the shared traits for bacterial resistance against
antibiotics as well. Indeed, bactericidal antibiotic mediates de
novo acquisition of resistance, which then provides protection
against ROS accumulation upon exposure to a different type
of antibiotics (Hoeksema et al., 2018). In addition, it was
recently demonstrated that non-lethal exposure to H2O2 boosted
evolvability of bacterial populations by enhancing survival under
oxidative stress (Rodriguez-Rojas et al., 2020).

ROS also act as a signal for gene transformation. H2O2
is a metabolic product of certain oral streptococci such as
Streptococcus gordonii under aerobic conditions. In H2O2-
producing streptococci, the release of extracellular DNA (eDNA)
is entirely dependent on H2O2. Also, numerous H2O2-non-
producing species like Streptococcus mutans and Streptococcus
pyogenes release eDNA in a H2O2-dependent manner (Itzek et al.,
2011), suggesting that ROS serve as an important environmental
signal in oral biofilm (Redanz et al., 2018). Intriguingly,
a recent study shows that non-antibiotic pharmaceuticals
including non-steroidal anti-inflammatory drugs (NSAIDs) and
the lipid-lowering drug also induce significant ROS accumulation
in Acinetobacter baylyi, which is closely related to the
enhanced transformation of antibiotic resistance genes (ARGs)
(Wang Y. et al., 2020).
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ROS are key weapons in host cells, while recent evidence
suggests that host ROS induce antibiotic tolerance during
infection. ROS generated by macrophages target TCA enzymes
aconitase and succinate dehydrogenase and coerce S. aureus into
a metabolic state with reduced respiration, which is incompatible
with the killing mechanism of most bactericidal antibiotics (Rowe
et al., 2019). The persister is an extreme case of tolerance for
the high levels of multi-drug tolerance (Brauner et al., 2016).
Host ROS can also modulate persister formation in E. coli.
The activation of redox regulators SoxRS results in increasing
expression of the AcrAB-TolC multidrug-resistant (MDR) pump,
which in turn lowers the fluoroquinolones concentration and
promotes antibiotic tolerance (Wu et al., 2012).

Together, these examples indicate that ROS may potentiate
the emergence of bacterial resistance and tolerance (Figure 2).
Although there is currently no clinical evidence proving this
hypothesis, contradictory evidence favoring these potential side
effects have been indicated in several studies. Early study
suggested that S. aureus internalized in leucocytes isolated
from patients with CGD (with impaired respiratory burst) were
more susceptible to rifampicin, when compared with wild-type
leucocytes (Jacobs and Wilson, 1983). Also, elevated levels of
oxidation products are related to MTB infection in pulmonary
tuberculosis (PTB) patients (Amaral et al., 2016). While there is
scarce demonstration that the use of antioxidants can increase
pathogen burden, a study showed that the antioxidant resveratrol
reduced Serratia marcescens burden in mice (Lu et al., 2008).
Surprisingly, the use of antioxidant N-acetyl cysteine (NAC)
as an adjuvant to directly observed treatment short course
significantly caused early sputum negativity in PTB patients
(Mahakalkar et al., 2017).

NOVEL ANTIMICROBIAL STRATEGIES
CENTERED AROUND ROS

The efficacy of antibiotics has been endangered by the rapid
emergence of resistant pathogens. Therefore, new approaches to
fight against pathogens, including antimicrobial photodynamic
therapy (aPDT) and cold atmospheric plasma (CAP), have been
suggested as efficient alternative approaches. Although their
antibacterial efficacy also centered around ROS, the modes of
action for these new techniques are distinct from conventional
antibiotics, as ROS-mediated damage in such therapies is the
primary stress-induced damage (Wilson and Patterson, 2008;
Vatansever et al., 2013). For example, aPDT uses photosensitizers

(PS) to generate ROS upon irradiation by visible light at specific
wavelength, and CAPs are partly ionized gases producing a
reactive mix by interacting with oxygen, generating a cocktail of
ROS (Brany et al., 2020). Due to direct redox-active properties,
aPDT and CAP can cause multi-target oxidative damage to
pathogens (Melo et al., 2013; Hu et al., 2018) as well as direct
oxidation of polysaccharides in biofilm (Beirão et al., 2014; Jiao
et al., 2019). Due to their multi-target mode of action and large
quantities of ROS production which overwhelm the antioxidant
defenses in pathogens, the additional advantage of these new
techniques is the lack of development of resistance mechanisms
(Tavares et al., 2010; Kvam et al., 2012). As novel ROS-
inducing strategies, aPDT and CAP showed excellent potential to
tackle difficult-to-eradicate infections as alternative treatments in
wound healing, dental cure, and food decontamination (Wilson
and Patterson, 2008; Rao et al., 2020).

CONCLUDING REMARKS

ROS are attractive weapons to kill pathogenic microbial cells.
However, ROS, as a double-edged sword, should be regulated
with care since under non-lethal ROS, certain pathogens have
evolved delicate mechanisms to utilize ROS for their adaption
to thrive. Also, numerous pathogens can use ROS as a stepstone
for the evolution of antibiotic tolerance and resistance. Efforts
to target bacterial adaptive pathways, as well as the use of
novel ROS-inducing antibacterial strategies, will be promising
approaches for antibacterial therapy.
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