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Chicken liver is a highly perishable meat product with a relatively short shelf-life and that can 
get easily contaminated with pathogenic microorganisms. This study was conducted to 
evaluate the behavior of spoilage microbiota and of inoculated Salmonella enterica on chicken 
liver. The feasibility of Fourier-transform infrared spectroscopy (FTIR) to assess chicken liver 
microbiological quality through the development of a machine learning workflow was also 
explored. Chicken liver samples [non-inoculated and inoculated with a four-strain cocktail of 
ca. 103 colony-forming units (CFU)/g Salmonella] were stored aerobically under isothermal 
(0, 4, and 8°C) and dynamic temperature conditions. The samples were subjected to 
microbiological analysis with concomitant FTIR measurements. The developed FTIR spectral 
analysis workflow for the quantitative estimation of the different spoilage microbial groups 
consisted of robust data normalization, feature selection based on extra-trees algorithm and 
support vector machine (SVM) regression analysis. The performance of the developed models 
was evaluated in terms of the root mean square error (RMSE), the square of the correlation 
coefficient (R2), and the bias (Bf) and accuracy (Af) factors. Spoilage was mainly driven by 
Pseudomonas spp., followed closely by Brochothrix thermosphacta, while lactic acid bacteria 
(LAB), Enterobacteriaceae, and yeast/molds remained at lower levels. Salmonella managed 
to survive at 0°C and dynamic conditions and increased by ca. 1.4 and 1.9 log CFU/g at 4 
and 8°C, respectively, at the end of storage. The proposed models exhibited Af and Bf between 
observed and predicted counts within the range of 1.071 to 1.145 and 0.995 to 1.029, 
respectively, while the R2 and RMSE values ranged from 0.708 to 0.828 and 0.664 to 0.949 
log CFU/g, respectively, depending on the microorganism and chicken liver samples. Overall, 
the results highlighted the ability of Salmonella not only to survive but also to grow at refrigeration 
temperatures and demonstrated the significant potential of FTIR technology in tandem with 
the proposed spectral analysis workflow for the estimation of total viable count, Pseudomonas 
spp., B. thermosphacta, LAB, Enterobacteriaceae, and Salmonella on chicken liver.
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INTRODUCTION

Meat is considered as the most nutritious and energy-rich 
food product that can provide the human body with all the 
essential amino acids and micronutrients needed for growth 
and development (Wood, 2017; Ahmad et  al., 2018). Chicken 
meat has been evidenced to be  of greater benefit for human 
health than red meat because of comparably higher contents 
of proteins as well as lower contents of fat and cholesterol 
(Probst, 2009; Pereira and Vicente, 2013; Wood, 2017). Among 
the edible components of chicken, giblets and especially livers 
are widely consumed in many countries throughout the world 
due to their low cost/price, high nutritional value, and short 
preparation time (Álvarez-Astorga et  al., 2002; Shenoda et  al., 
2019). Chicken liver is an excellent source of important nutrients 
such as proteins, vitamins (e.g., A, B1, B3, B5, and B6), essential 
amino acids, and minerals (e.g., Fe, Cu, Mn, and Zn), which 
are sometimes at levels higher compared to muscle tissue 
(Jokanović et al., 2014; Seong et al., 2015). The rich nutritional 
composition along with the neutral pH and high water activity 
render the chicken liver highly perishable due to microbial 
growth (Nychas et  al., 2008; Odeyemi et  al., 2020).

Bacterial contaminants can be  introduced at multiple stages 
along the food chain, including production, slaughter, processing, 
handling, storage, and preparation, leading thus to significant 
economic losses (Silva, 2013; Rouger et al., 2017b). The genera 
of Pseudomonas, Brochothrix, lactic acid bacteria, and 
Enterobacteriaceae are considered as potential spoilers of chicken 
meat during storage at low temperatures (Doulgeraki et  al., 
2012; Rouger et  al., 2017b). Chicken microbiota may also 
harbor pathogenic species, with Salmonella being the most 
important zoonotic agent responsible for human gastroenteritis 
due to poultry meat consumption [EFSA (European Food 
Safety Authority) and ECDC (European Centre for Disease 
Prevention and Control),  (2017); EFSA Panel on Biological 
Hazards et al., 2019]. Several reports of salmonellosis outbreaks 
associated with chicken liver consumption have been released 
worldwide, including the USA (Lanier et  al., 2018) and EU 
[EFSA (European Food Safety Authority) and ECDC (European 
Centre for Disease Prevention and Control),  (2017)]. At the 
EU level (2014–2016), Salmonella strains were responsible for 
more than 753 strong-evidence foodborne outbreaks, with 46 
outbreaks attributed to broiler meat and products thereof 
(EFSA Panel on Biological Hazards et  al., 2019). Moreover, 
Salmonella prevalence on chicken giblets has been reported 
to be  over 53.4% in Greece (Zdragas et  al., 2012), 59.4% in 
the mid-Atlantic region of the United States (Jung et al., 2019), 
and 4.8% in Argentina (Procura et  al., 2019). Given the 
increased production of chicken meat in the last decade, 
ensuring the microbial safety and quality of chicken liver is 
of primary importance (Augère-Granier, 2019).

So far, the freshness, spoilage, or safety of meat and poultry 
products has been relying on sensory, microbiological, and 
chemical analyses on the finished product (European 
Commission, 2005). Sensory methods require highly trained 
personnel, which is costly and not convenient for routine 
analyses. On the other hand, chemical as well as microbiological 

analyses (conventional or molecular) are time-consuming, 
laborious, and destructive to the test products, with some of 
them requiring high-tech tools and providing retrospective 
results (Nychas et  al., 2008). Thus, their potential to be  used 
for on-, in-, or at-line monitoring in the food industry is 
limited (Nychas et  al., 2016). Exploration of various analytical 
tools for rapid, non-invasive, and non-destructive quantitative 
assessment of safety and quality characteristics presents a 
scientific challenge given the importance of microbiological 
spoilage and safety on the deterioration of chicken liver freshness.

Nowadays, many different sensors, such as near-infrared 
spectroscopy, Fourier-transform infrared spectroscopy (FTIR), 
Raman spectroscopy, hyperspectral and multispectral imaging, 
have been employed to evaluate freshness, microbial quality, 
and adulteration of foods (Panagou et  al., 2011; Alexandrakis 
et  al., 2012; Argyri et  al., 2014; He and Sun, 2015; Tsakanikas 
et  al., 2015; Rateni et  al., 2017; Ropodi et  al., 2018; Keshavarzi 
et  al., 2020). FTIR spectroscopy, a biochemical fingerprinting 
technique, in conjunction with chemometrics, machine learning, 
or computational intelligence methods, has shown significant 
potential in providing information related to food safety and 
quality of meat and poultry (Ellis et  al., 2004; Ammor et  al., 
2009; Papadopoulou et  al., 2011; Argyri et  al., 2013; Ropodi 
et  al., 2016; Pavli et  al., 2018; Rahman et  al., 2018). However, 
a repeated challenge that researchers often have to face is the 
choice of the machine learning approach in order to handle 
the complex, multivariate nature of the FTIR sensor output. 
This usually incorporates the analysis of various regression 
algorithms for reduction of FTIR data dimensionality to ultimately 
obtain accurate and reliable predictions (Torrione et  al., 2014; 
Ropodi et  al., 2016; Tsakanikas et  al., 2016, 2020).

Limited research data on the microbiological quality of 
chicken liver are available nowadays, while studies on the 
potential of Salmonella to survive and/or proliferate on chicken 
liver during extended refrigerated storage are even rarer. 
Hasapidou and Savvaidis (2011) evaluated the effect of oregano 
essential oil and ethylenediaminetetraacetic acid chelator on 
the quality characteristics of chicken liver stored under 
refrigerated (4°C) modified atmosphere conditions. Papazoglou 
et  al. (2012) investigated the effect of thyme oil on the quality 
of vacuum-packaged chicken liver stored under refrigeration 
(4°C). Recently, Jung et  al. (2019) quantified the levels of 
Salmonella onto and into raw chicken liver following extended 
refrigerated (4°C) or frozen (−20°C) storage. Moreover, despite 
the extended implementation of FTIR spectroscopy to various 
plant and animal food commodities, to our knowledge, there 
is limited, if any, information available on chicken liver. On 
this respect, the present work was attempted (1) to record 
spoilage microbiota on chicken liver stored aerobically at 
isothermal and dynamic temperature conditions alone and in 
the presence of inoculated Salmonella (2) to monitor the 
behavior of Salmonella on chicken liver under the same storage 
conditions, and (3) to quantitatively assess spoilage on chicken 
liver based on FTIR spectral data and microbiological counts 
from non-inoculated and inoculated-with-Salmonella samples 
through the development of a spectral analysis and prediction 
model building workflow that will be  specific to chicken liver.
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MATERIALS AND METHODS

Sample Preparation and Experimental 
Design
Fresh chicken giblets were obtained from a local industry on 
the day of production and transported (within 30  min) under 
refrigeration to the laboratory. The chicken livers (ca. 50 ± 2 g) 
were then aseptically removed from the giblets and packed 
aerobically in duplicate in styrofoam trays that were subsequently 
wrapped manually with air-permeable polyethylene plastic film 
(non-inoculated samples). In parallel, chicken livers (ca. 
50  ±  2  g) were inoculated with Salmonella enterica subsp. 
enterica serovar Enteritidis (four-strain cocktail) and packed 
under the same conditions. The packed livers were stored under 
controlled isothermal conditions (0, 4, and 8°C) and dynamic 
temperature conditions (0, 4, and 8°C every 8  h) for up to 
10  days in a high-precision (±0.1°C) cooled incubator (IC 
150-R, Agrolab, Capri, Italy). The latter conditions were selected 
on the basis to simulate the chicken livers’ temperature 
fluctuations in chill chain. In total, two chronically independent 
experiments (different product batches) were performed for 
every treatment (non-inoculated and inoculated samples) and 
storage temperature, with duplicate samples analyzed 
microbiologically at each time interval (n  =  4).

Inoculation of Chicken Liver With 
Salmonella
A four-strain cocktail of Salmonella enterica subsp. enterica 
serovar Enteritidis (FMCC B56 PT4, FMCC B-57 PT7, B64, 
and ATCC 13076) was used for the inoculation of chicken 
livers. The strains were kindly provided by Prof. Nychas G-J.E, 
Lab of Microbiology and Biotechnology, Agricultural University 
of Athens, Athens, Greece. The Salmonella strains were maintained 
at −80°C, were revived at 10  ml brain heart infusion (BHI, 
LAB M, LAB049) broth after overnight incubation at 37°C, 
and were subcultured in 10  ml fresh BHI broth (18  h, 37°C). 
Cells of the individual cultures were then harvested by 
centrifugation (5,000  ×  g, 10  min, 4°C) and washed twice in 
10  ml Ringer’s solution (¼ strength, LAB M). The washed cells 
of each strain were resuspended in 10  ml Ringer’s solution 
and were combined in equal volumes to generate a four-strain 
cocktail. The chicken liver samples were separately inoculated 
with 50  μl of appropriate dilution of the pathogen cocktail and 
were then held for approximately 10 min at ambient temperature 
(21  ±  2°C) to allow the inocula to attach to the surface. The 
livers were then inverted with sterile tweezers, and the process 
was repeated on the opposite side to yield a final population 
of the pathogen of ca. 103 colony-forming units (CFU)/g.

Microbiological Analyses
The chicken liver samples (20  g) were separately weighted 
aseptically in a sterile stomacher bag containing ¼ strength 
Ringer’s solution (40  ml) and stomached for 60  s at room 
temperature (Stomacher 400 Circulator, Seward Limited, Norfolk, 
United  Kingdom). Appropriate serial dilutions of the resulting 
homogenate were spread (0.1 ml) or poured (1 ml) on different 

selective and non-selective agar plates for the enumeration of 
the following bacterial groups: total viable count (TVC) on 
Tryptic soy agar (REF 4021502, Biolife) incubated at 30°C for 
2–3  days, lactic acid bacteria (LAB) on de Man-Rogosa-Sharp 
medium (LAB233, LABM) overlaid with the same medium 
and incubated at 30°C for 3–5 days, Brochothrix thermosphacta 
on streptomycin thallous acetate actidione agar (REF 4020792 
with the addition of antibiotic REF 4240052, Biolife) incubated 
at 25°C for 2 days, yeasts/molds on rose bengal chloramphenicol 
agar (BK151HA, Biokar) incubated at 25°C for 2–5  days, 
Enterobacteriaceae on violet red bile glucose agar (CM 0485, 
Oxoid) overlaid with the same medium and incubated at 37°C 
for 24 h, Pseudomonas spp. on Pseudomonas agar base (LAB108 
supplemented with selective supplement cetrimide fucidin 
cephaloridine, Modified C.F.C X108, LABM) incubated at 25°C 
for 2  days, and Salmonella on xylose lysine deoxycholate 
(LAB032, LABM) incubated at 37°C for 16–18  h. The plates 
for each agar medium were examined visually for typical 
morphological characteristics of colonies. Additionally, the 
selectivity of growth media was checked by Gram staining 
and microscopic examination of smears prepared from randomly 
selected colonies obtained from all media.

Uninoculated chicken liver samples (three liver samples/
batch) were also analyzed at the beginning of storage using 
enrichment method for the detection of Salmonella that could 
naturally appear on chicken liver (ISO 6579-1:2017).

pH Measurements
The pH value was monitored using a digital pH meter (HI 
2211 pH-ORP Meter, HANNA Instruments, United States) after 
the end of microbiological analyses by immersing the glass 
electrode into the homogenate.

FTIR Spectroscopy
FTIR analysis was performed on the surface of chicken liver 
samples at 25°C with a ZnSe 45° attenuated total reflectance 
flat plate crystal on a Perkin Elmer Frontier FTIR spectrometer 
equipped with DLaTGS detector with a KBr window. The 
spectrometer was equipped with software PerkinElmer Spectrum 
v10.4.2 to collect spectra over the wavelength range of 4,000 
to 650 cm−1. Scans per measurement were four, with a resolution 
of 4  cm−1. Prior to the measurement of the tested samples, 
reference (background) spectra were acquired using the cleaned 
blank (no added liver sample) crystal. The tested samples were 
transferred to the crystal plate and then pressed with a gripper 
to ensure the best possible contact with the surface of the crystal. 
After each measurement, the crystal’s surface was cleaned, initially 
with detergent and distilled water and then with ethanol, and 
dried using lint-free tissue. For each treatment (non-inoculated 
and inoculated samples stored at isothermal and dynamic storage 
conditions) and time interval, three FTIR spectra were acquired 
for each of the two biological replicates of the experiment 
(n  =  12). A total of 878 FTIR spectra were collected and used 
for further analyses (n  =  442 for non-inoculated samples and 
n  =  436 for inoculated-with-Salmonella samples). The FTIR 
spectra that were ultimately used in further analyses were in 

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Dourou et al. FTIR Assessed Chicken Liver Quality

Frontiers in Microbiology | www.frontiersin.org 4 February 2021 | Volume 11 | Article 623788

the approximate wavelength range of 1,800 to 900  cm−1 as this 
spectral region has been shown to provide useful metabolic 
fingerprints with regard to meat spoilage (Papadopoulou et al., 2011; 
Argyri et  al., 2013; Fengou et  al., 2019).

Mathematical Modeling of the Spectral 
Data
Three data sets from chicken liver samples stored at isothermal 
and dynamic temperature conditions, i.e., non-inoculated, 
inoculated with Salmonella, and their combination (i.e., 
non-inoculated and inoculated samples), were analyzed. For 
each of these data sets, the processing pipeline of acquired 
FTIR data consisted of a feature selection step (i.e., specific 
wavelengths/wavenumbers) on the bases of extra-trees regression 
ensemble (Geurts et  al., 2006) followed by a support vector 
regression (SVR) of the different spoilage-related microbial 
groups (Smola and Scholkopf, 2004; Tsakanikas et  al., 2016). 
Initially, prior to feature selection, the acquired FTIR spectra 
(S) were subjected to standard normal variate normalization 
under its robust version (Guo et  al., 1999) according to:
 

S
S S

Si
isnv median

mad
=

− ( )
( )

where Si and Si
snv is the ith spectrum and the corresponding 

normalized spectrum, respectively, and mad is the median 
absolute deviation, a robust measure of the variability of a 
univariate sample of quantitative data s1, s2, …, sn (Hoaglin 
et  al., 2000) computed as:
 

mad median median= − ( )( )S Si

The specific normalization scheme was selected on the basis 
that gives more reasonable (i.e., without artifacts) and enhanced 
quality data, eliminating the inherent multiplicative noise while 
reducing the correlated information along spectra (Tsakanikas 
et  al., 2018). Then, prior to regression and to avoid overfitting 
of the dataset, due to the small number of samples compared 
to the large number of input variables, a feature selection step 
was introduced by applying the extremely randomized trees 
(extra-trees) algorithm (Geurts et  al., 2006). The extra-trees 
algorithm is a tree-based ensemble method for reducing the 
dimensionality of spectral data which is characterized by high 
accuracy and computational efficiency. In this context, the 
variable set was reduced by preserving the critical features 
that best represent the samples (in terms of predicting the 
inherent microbial load) and excluding all the expendable ones 
(Tsakanikas et  al., 2018). Following the feature selection, SVR 
(Smola and Scholkopf, 2004) was applied to the reduced dataset 
for the estimation/prediction of the microbial populations from 
the corresponding spectroscopic data. SVM/R is a robust 
supervised tool for both classification and regression (Vapnik 
et al., 1997) and has been used in various food quality applications 
(Du et  al., 2007; Argyri et  al., 2013, 2014; Schmutzler et  al., 
2015; Estelles-Lopez et  al., 2017; Ropodi et  al., 2018; 
Yu et  al., 2019; Fengou et  al., 2020; Tsakanikas et  al., 2020). 
Briefly, in SVMs, the original data x are mapped from the 

input space onto a high-dimensional feature space via a non-linear 
mapping function (kernel function) in order to construct an 
optimal hyperplane that minimizes the total square distance 
to all data points. In this study, the radial kernel (radial basis 
function) was used for fitting FTIR data. Grid search for the 
optimal cost (C) and gamma (γ) parameters, coupled with 
10-fold cross-validation, was employed for model development 
and parameter optimization (Pedregosa et  al., 2011).

In order to generate the predictive models, the pretreated 
dataset was randomly partitioned (using a random generator) 
over 50 iterations into a training (calibration) dataset, which 
contained 70% of the samples, and a test dataset composed of 
the remaining samples for external validation. The training dataset 
was used for calibration, i.e., model building, while the test 
(validation) dataset was used to externally evaluate the performance 
of such model. Samples stored at both isothermal and dynamic 
temperature conditions were equally represented in training and 
testing datasets in order to generate a realistic prediction model 
based on real-life conditions. Data pre-treatment, featuring 
selection, model development, and validation were implemented 
using Python 3.6 and scikit-learn library (Pedregosa et al., 2011).

Model Validation
The performance of the regression models was quantified by the 
calculation of the root mean square error (RMSE), the square 
of the correlation coefficient (R2), the bias (Bf) and accuracy (Af) 
factors (Ross, 1996), and the accuracy of prediction (Mohareb 
et  al., 2016; Estelles-Lopez et  al., 2017). The RMSE quantifies 
the average deviation between predicted and observed values (i.e., 
the smaller the value of the RMSE, the closer the predicted values 
are to the observed values). The Af provides a measure of how 
close predictions are to observations. An Af = 1 indicates a perfect 
agreement between observed and predicted values. The Bf gives 
a measure of systematic under- or over-prediction by the model. 
A Bf  =  1 indicates a perfect agreement between predictions and 
observations, while a Bf  <  1 indicates that a growth model is 
fail-safe (i.e., predicted values are smaller than observed values, 
giving a margin of safety). The accuracy of prediction provides 
a measure of the percentage of samples correctly predicted (i.e., 
difference between predicted and observed value is <1) out of 
the total number of the samples within the dataset.

Statistical Analysis
Differences in microbial populations between non-inoculated and 
inoculated-with-Salmonella samples (2 batches, n  =  2 per batch) 
were tested with ANOVA. Significance was established at p < 0.05. 
Data analysis was carried out with SPSS (IBM SPSS Statistics 
for Windows, Version 26.0. Armonk, NY: IBM Corp.).

RESULTS AND DISCUSSION

Population Dynamics on Non-inoculated 
Chicken Liver
The evolution of the spoilage microbiota (mean  ±  standard 
deviation, n  =  4) on non-inoculated chicken liver stored 
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aerobically at isothermal (0, 4, and 8°C) and dynamic temperature 
conditions (0, 4, and 8°C every 8  h) is presented in Figure  1. 
The initial (day 0) level of TVC on chicken liver was 5.6  ±  0.6 
log CFU/g, which is in accordance with previous studies 
(Hasapidou and Savvaidis, 2011; Papazoglou et  al., 2012; Jung 
et al., 2019). Various initial bacterial loads (2.0–6.3 log CFU/g) 
have been reported for other animal livers (Shelef, 1975; Gill 
and DeLacy, 1982; Hanna et  al., 1982; Woolthuis et  al., 1984; 
Rivas et  al., 1992; Hernández-Herrero et  al., 1999; Devatkal 
et  al., 2004; Fernández-López et  al., 2006; Silva et  al., 2020). 
The elevated microbiological load observed in fresh liver could 
be  attributed to cross-contamination during slaughter and 
fabrication (Silva, 2013; Rouger et  al., 2017b).

The microbial association of chicken liver consisted mainly 
of Pseudomonas spp. (3.8  ±  0.7 log CFU/g), B. thermosphacta 
(3.5  ±  0.5 log CFU/g), LAB (3.5  ±  0.7 log CFU/g), 
Enterobacteriaceae (3.1  ±  0.5 log CFU/g), and yeasts/molds 
(3.2  ±  0.6 log CFU/g). The aerobic storage of chicken livers 
generally allowed the growth of microorganisms at high levels, 
with Pseudomonas spp. being the dominant spoilage 
microorganism, followed closely by B. thermosphacta, while 
LAB, Enterobacteriaceae, and yeasts/molds remained at lower 
levels at both isothermal and dynamic temperature conditions 
(Figure 1). The microbial profile described above is in accordance 
with other studies on aerobically stored chilled chicken liver 
and other poultry products (Balamatsia et  al., 2007; 
Papazoglou et al., 2012; Rouger et al., 2017a; Lytou et al., 2018). 
The dominance of Pseudomonas spp. on aerobically stored red 

meat (Nychas et  al., 2008; Ercolini et  al., 2011; Pennacchia 
et  al., 2011; Doulgeraki and Nychas, 2013) and poultry (Mellor 
et  al., 2011; Sahar and Dufour, 2014; Vasconcelos et  al., 2014; 
Lytou et  al., 2018; Rahman et  al., 2018; Saenz-García et  al., 
2020) is well documented. B. thermosphacta, a Gram-positive 
fermentative organism, has been recognized as the dominant 
spoilage species along with LAB on modified-atmosphere- and 
vacuum-stored meats (Kakouri and Nychas, 1994; Nychas et al., 
2008; Doulgeraki et  al., 2010; Ercolini et  al., 2011; Pennacchia 
et  al., 2011; Gribble and Brightwell, 2013). However, due to 
its ubiquitous nature and in agreement with the results of this 
study, it may also play an important role in shortening the 
shelf-life of aerobically stored chicken meat (Mikš-Krajnik et al., 
2016; Lytou et  al., 2018). The rest of the facultative anaerobic 
bacteria, LAB and Enterobacteriaceae, grew to similar levels in 
the final stages of storage at 4 and 8°C, while at 0°C LAB 
outgrew Enterobacteriaceae. Similar growth patterns have been 
observed by Vasconcelos et  al. (2014) in poultry breast fillets 
stored at 3 and 7°C. In contrast, Papazoglou et  al. (2012) 
reported lower levels for Enterobacteriaceae compared to LAB 
after storage of chicken livers at 4°C, while Rivas et  al. (1992) 
reported lower levels for LAB on lamb liver stored at 0 and 
3°C. The yeasts/mold levels appeared to be  lower than the rest 
of the bacterial populations, in accordance with previous studies 
reporting yeasts and molds to be a minor part of the microbial 
association of poultry products, thus contributing less to poultry 
spoilage (Dillon and Board, 1991; Ismail et al., 2000; Balamatsia 
et  al., 2007). As expected, the dynamics of these populations 

FIGURE 1 | Evolution of indigenous spoilage microbiota (mean ± standard deviation, n = 4) on chicken liver during aerobic storage at different isothermal (0, 4, and 
8°C) and dynamic temperature conditions (0, 4, and 8°C every 8 h). Total viable count ( ), Pseudomonas spp. ( ), Brochothrix thermosphacta ( ), lactic acid 
bacteria ( ), Enterobacteriaceae ( ), and yeast/molds ( ).

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Dourou et al. FTIR Assessed Chicken Liver Quality

Frontiers in Microbiology | www.frontiersin.org 6 February 2021 | Volume 11 | Article 623788

FIGURE 2 | Changes on pH values (mean ± standard deviation, n = 4) of non-inoculated chicken liver during aerobic storage at different isothermal (  0,  4, 
and  8°C) and dynamic temperature conditions (  0, 4, and 8°C every 8 h).

and their contribution to the final microbiota and, consequently, 
the spoilage process were temperature dependent, with the 
growth rate of the different microbial groups being progressively 
higher with increasing storage temperature (Nychas et al., 2008; 
Vasconcelos et  al., 2014; Galarz et  al., 2016).

It has to be noted that, during storage, chicken liver samples 
presented substantial inter-batch variability with regards to the 
levels of the different microbial groups (i.e., lower microbial 
counts in the first compared to the second batch) at all storage 
temperatures and most of the sampling points (data not shown). 
This variability could be  attributed to factors such as the 
intrinsic characteristics of the liver tissue and the hygienic 
practices during slaughter and handling which seem to affect 
the structure of the indigenous microbial community and its 
evolution during storage (Huis In’t Veld, 1996; Nychas et  al., 
2008; Tougan et  al., 2013; Luong et  al., 2020; Odeyemi et  al., 
2020). As a result, microbiological spoilage on chicken liver 
(i.e., TVC > 7 log CFU/g; Nychas and Tassou, 1997; Mikš-Krajnik 
et  al., 2016; Rouger et  al., 2017b) was attained at 192 and 
72 h of storage at 0°C for the first and second batch, respectively, 
at 120 and 72  h at 4°C and at 68 and 32  h at 8°C (data not 
shown). By taking this variability into account (i.e., averaging 
of TVC populations from both batches), chicken liver spoilage 
was evident at 144, 72, and 44  h of storage at 0, 4, and 8°C, 
respectively, and at 90  h of storage at dynamic temperatures 
(Figure  1). Similar results have been observed in the study 
by Hasapidou and Savvaidis (2011) who reported a shelf-life 
of 3  days for refrigerated (4°C) chicken liver.

Visible deterioration of chicken liver samples, i.e., surface 
browning and appearance of visible colonies, in most cases 
agreed with microbiological spoilage (TVC  >  7 log CFU/g), 
while the onset of off odors was evident at later time intervals. 
Our observation is in agreement with the findings of Rivas 
et  al. (1992) and Gill and DeLacy (1982) for lamb and 
sheep liver, respectively. The malodorous volatiles in high-
protein meats are associated with microbial degradation of 
nitrogenous compounds, such as amino acids, and are usually 

the first indication of spoilage. Pseudomonads, which are 
in most cases responsible for the aerobic spoilage of meat, 
show a preference in utilizing simple carbohydrates (i.e., 
glucose) prior to free amino acids (Nychas et  al., 2008). In 
the case of liver, which is characterized by high contents 
of glucose throughout storage, the preference of spoilage 
organisms for glucose allowed the formation of visible colonies 
on the surface of liver before the off odors’ accumulation 
(Gill and DeLacy, 1982; Rivas et  al., 1992).

The pH of fresh chicken liver (day 0) was 6.50  ±  0.10, 
which is in agreement with previous studies (Hasapidou and 
Savvaidis, 2011; Papazoglou et  al., 2012; Figure  2). Similar 
pH values (ranging from 6.15 to 6.84) have been reported for 
fresh beef, pork, lamb, buffalo, ostrich, and pork livers (Hanna 
et  al., 1982; Hernández-Herrero et  al., 1999; Devatkal et  al., 
2004; Fernández-López et  al., 2006; Custódio et  al., 2016). The 
pH of chicken liver fluctuated during storage but remained 
relatively constant throughout (minor reductions ranging from 
0.15 to 0.28  units for the different storage temperatures). This 
result is in line with previous studies in aerobically stored 
animal livers (Gill and DeLacy, 1982; Hanna et  al., 1982; 
Woolthuis et  al., 1984; Papazoglou et  al., 2012).

Population Dynamics on Chicken Liver 
Inoculated With Salmonella
The changes of the indigenous spoilage microbiota and Salmonella 
(mean ± standard deviation, n = 4) on chicken liver inoculated 
with the pathogen during aerobic storage at isothermal (0, 4, 
and 8°C) and dynamic temperature conditions (0, 4, and 8°C 
every 8  h) are presented in Figure  3. The dynamics of the 
spoilage bacterial populations were influenced by the storage 
temperature but not (p > 0.05) by the presence of the pathogen 
per se compared to the respective populations in non-inoculated 
liver (Figure  1 and Figure  3).

Similarly, the population dynamics of Salmonella was 
significantly influenced by the storage temperature. Specifically, 
Salmonella remained at inoculation levels (2.9  ±  0.2 log 
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CFU/g) during storage at 0°C (240 h), while at 4°C it presented 
a substantial increase after 96  h, reaching final populations 
of 4.5  ±  0.2 log CFU/g at 192  h. At 8°C, the pathogen 
increased after 44  h, reaching 5.0  ±  0.2 log CFU/g at the 
end of the storage period (128 h). However, Salmonella’s onset 
of growth at 4 and at 8°C coincided chronically with the 
microbiological spoilage (TVC  >  7 log CFU/g) of chicken 
liver (Figure  3). At dynamic temperature conditions, the 
Salmonella levels remained practically unaffected during aerobic 
storage for 186  h (Figure  3). Salmonellae growth, most of 
the times, is prevented at chilled temperatures (Airoldi and 
Zottola, 1988; Rhoades et  al., 2013; Lerasle et  al., 2014). In 
the study by Oscar (2011), the researcher reported the survival 
of Salmonella Typhimurium at temperatures between 4 and 
8°C on chicken skin. In addition, in the recent study by 
Jung et  al. (2019), Salmonella inoculated either into or onto 
chicken liver was shown to decrease by ca. 1 log CFU/g 
after 2  days of storage at 4°C. However, in agreement with 
the results of the current study, salmonellae have been shown 
not only to survive but even grow on fresh meats, including 
minced chicken and chicken parts, stored at refrigerated 
temperatures (<10°C; Baker et al., 1986; D’Aoust, 1991; Smadi 
et  al., 2012). Specifically, the growth of S. Typhimurium and 
S. Enteritidis has been displayed on minced meat and on 
chicken surfaces stored at 2°C within 1–6  days (Catsaras 
and Grebot, 1985; Baker et  al., 1986). Kim et  al. (2011) 
likewise reported the growth of S. Typhimurium at 5°C in 

kimbap, a Korean ready-to-eat food, while Kinsella et al. (2007) 
observed the survival and increased growth of a S. Typhimurium 
strain on beef after 72  h at 4°C. A possible explanation for 
the various growth patterns of Salmonella at low temperatures 
could be  the different strains studied, the different types of 
raw material, and the variations on the levels and types of 
competing indigenous microbiota that could affect the survival 
or growth of Salmonella (Oscar, 2007; Silva et  al., 2016).

The initial pH (day 0) of inoculated-with-Salmonella chicken 
liver was 6.48 ± 0.08 (Figure 4). The storage of samples resulted 
in minor decreases in pH (ranging from 0.09 to 0.27, depending 
on the temperature) that were comparable to those in 
non-inoculated samples.

FTIR Spectral Interpretation
FTIR analyses were performed at each time point during 
storage of non-inoculated and inoculated-with-Salmonella 
chicken liver at different isothermal (0, 4, and 8°C) and 
dynamic (0, 4, and 8°C every 8  h) temperature conditions. 
Representative FTIR profiles, corresponding to non-inoculated 
and inoculated-with-Salmonella chicken liver samples at the 
beginning (fresh) and end (spoiled) of aerobic storage at 
different isothermal temperatures, are presented in Figure  5. 
Based on Figure  5, a major peak at 1,637  cm−1 was apparent 
in the chicken liver samples due to the presence of moisture 
(O–H stretch), with a contribution of amide I band of proteins 
(80% C=O stretch, 10% C–N stretch, and 10% C–N bend), 

FIGURE 3 | Evolution of Salmonella and indigenous spoilage microbiota (mean ± standard deviation, n = 4) on chicken liver during aerobic storage at different 
isothermal (0, 4, and 8°C) and dynamic temperature conditions (0, 4 and 8°C every 8 h). Total viable count ( ), Pseudomonas spp. ( ), Brochothrix 
thermosphacta ( ), lactic acid bacteria ( ), Enterobacteriaceae ( ), yeast/molds ( ), and Salmonella ( ).
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A

B

FIGURE 5 | Representative Fourier-transform infrared spectra, in the wavenumber range of 1,800 to 900 cm−1, corresponding to (A) non-inoculated and 
(B) inoculated-with-Salmonella chicken liver samples at the beginning ( , 0 h) and at the end of aerobic storage at 0°C ( , 240 h), 4°C 
( , 192 h), and 8°C ( , 128 h).

whereas a second peak was observed at 1,549  cm−1 due to 
the absorbance of amide II band of proteins (40% C–N stretch, 
60% N–H bend; Socrates, 2001; Ellis et al., 2002). Other minor 

peaks were observed at 1,473  cm−1 ascribed to lipids (CH3 
asymmetric deformation, CH3 asymmetric bending, C–H 
deformation of CH2, CH2 scissoring vibration, C–H bending), 

FIGURE 4 | Changes on pH values (mean ± standard deviation, n = 4) of chicken liver inoculated with Salmonella during aerobic storage at different isothermal (  
0,  4, and  8°C) and dynamic temperature conditions (  0, 4, and 8°C every 8 h).
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with an underlying contribution of amines (asymmetric CH3 
deformation vibration), at 1,453  cm−1 ascribed to fat (CH2 
bending), at 1,402  cm−1 ascribed to amino acid side chains, 
lipids, and carbohydrates (C–H bend or C–O stretch in 
carboxylates) or nitro group (NO2 symmetric stretch), at 
1,307  cm−1 attributed to amide III (30% C–N stretch, 30% 
N–H bend, 10% C=O–N bend, 20% others), at 1,243  cm−1 
corresponding to lipids and nucleic acids (asymmetric PO2- 
stretch), with the contribution of amide III P=O stretch (30% 
C–N stretch, 30% N–H bend, 10% C=O–N bend, 20% others) 
and amines from free amino acids (C–N stretch), at 1,117 cm−1 
ascribed to riboses (C–O stretch) and amines (NH2 rocking/
twisting), at 1,081  cm−1 corresponding to nucleic acids and 
phospholipids (PO2 symmetric stretch)/C–O stretch, and finally 
at 1,044  cm−1 corresponding to lipids and polysaccharides 
(C–O, C–O–P stretch) (Socrates, 2001; Ellis et  al., 2002, 2004; 
Böcker et  al., 2007; Ammor et  al., 2009).

The spectra presented generally similar patterns, with no 
profound feature peaks to reflect uniquely the difference in 
quality between fresh and spoiled chicken liver samples. 
However, features within this wavenumber area, commonly 
ascribed to amides and amines, are linked to microbiological 
and/or autolytic proteolysis of muscle meat proteins occurring 
during storage (Nychas and Tassou, 1997; Ellis et  al., 2002; 
Alexandrakis et  al., 2012; Vasconcelos et  al., 2014; Fengou 
et  al., 2019). At this point, it has to be  noted that liver 
samples (fresh and spoiled) exhibited a substantial inter- and 
intra-batch variability in the approximate wavenumber range 
from 1,140 to 1,000 cm−1 (Figure 6), an area that is associated 
mostly with amines from free amino acids and strongly 
correlated to chicken spoilage (Ellis et al., 2002). Such variability 
could originate from differences in the intrinsic characteristics 
of the liver tissue as well as in the bacterial community 
structure and the associated biochemical changes on the surface 
of the chicken liver. Consequently, a machine learning approach 
was employed to analyze the spectra and quantify chicken 
liver spoilage along with FTIR data.

Estimation of Chicken Liver Spoilage 
Using FTIR Data
FTIR spectroscopy in tandem with machine learning 
methodologies has been widely used in the literature for a 
rapid microbial quality assessment of foods (He and Sun, 
2015). A major challenge in the field of machine learning 
that engineers have to overcome is the high dimensionality 
of spectral data which may negatively affect the performance 
of the models (Cai et  al., 2018). In this study, to overcome 
this problem, we  introduced an ensemble of feature selection 
based on extra-trees algorithm to select a subset of relevant 
and non-redundant features (Geurts et  al., 2006). With this 
approach, features that had no and/or low correlation with 
the output variables, i.e., microbial populations, were reduced 
from 900 (wavelength 1,800–900  cm−1) to less than 110 (data 
not shown). With dimensionality reduction of FTIR data, the 
robustness and performance of the developed models would 
increase through the elimination of bias other than 
microbiological factors (e.g., bias attributed to inherent chicken 
liver samples and/or batch variability) and prevention of data 
overfitting (Tsakanikas et  al., 2018).

Following dimensionality reduction, SVM radial regression 
models (Smola and Scholkopf, 2004) were developed for the 
correlation of spectral data with the population of selected 
microbial groups, namely, total viable counts, Pseudomonas 
spp., B. thermosphacta, LAB, Enterobacteriaceae, and Salmonella, 
on the surface of chicken liver samples. It should be  noted 
that, in an effort to develop robust and realistic models, different 
sources of variability were incorporated in the analysis beyond 
the biological aspect (i.e., different batches). These included 
the biochemical fingerprint of Salmonella (Grewal et  al., 2015) 
potentially present on chicken liver (i.e., datasets from inoculated-
with-Salmonella liver alone or in combination with data from 
non-inoculated samples, in this study) as well as the various 
storage temperatures encountered in the cold chain [i.e., well-
controlled refrigeration (0 and 4°C) to slightly abusive (8°C) 
and dynamic temperature conditions, in this study] and the 

FIGURE 6 | Fourier-transform infrared spectra, in the wavenumber range 1,200–900 cm−1, corresponding to fresh (0 h) chicken liver samples from the different 
batches used in the current study. Vertical lines delimit the wavenumber range (1,140–1,000 cm−1) in which significant inter- and intra-batch variability is observed.
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FIGURE 7 | Scatterplot of the microbial populations measured via microbiological analysis and estimated by the support vector machine regression model (external 
validation) based on Fourier-transform infrared spectra from non-inoculated liver. (A) TVC (B) Pseudomonas spp. (C) Brochothrix thermosphacta (D) lactic acid 
bacteria, and (E) Enterobacteriaceae (solid line: the ideal y = x line; dashed lines: ±1 log unit area). Data points from 50 iterations are presented.

resulting swifts in the structure of bacterial communities  
and microbial metabolites produced (Nychas et  al., 2008; 
Doulgeraki et  al., 2012; Tsakanikas et  al., 2018, 2020).

The relation between the measured (via microbiological 
analysis) and the estimated (by the model) microbial populations 
on chicken liver is illustrated in Figures  7–9. The predictive 
reliability and accuracy of the developed models for the different 
bacterial groups in the three datasets, i.e., from non-inoculated, 
inoculated with Salmonella, and their combination, were 
evaluated by calculating different statistical metrics (Tables 1–3). 
In the case of non-inoculated liver samples, the plot of the 
observed and predicted counts presented positive association 
and good distribution around the line of equity without any 
particular trend, with more than 80% of predictions (ranging 
from 80.49 to 82.52%, depending on the estimated microbial 
group) within the ±1 log unit area of the actually observed 

ones (Figure  7, Table  1). The bias factor Bf was generally 
very close to unity (ranging from 0.995 to 1.022, depending 
on the microbial group), indicating no structural deviation of 
the models, i.e., systematic overprediction (Bf  >  1) or 
underprediction (Bf  <  1; Table  1; Koutsoumanis et  al., 2006; 
Oscar, 2009). Actually, Bf values within the range of 0.9–1.05 
are considered as adequate in model development (Ross, 1999; 
Ross et  al., 2000). In addition, the value of accuracy factor 
Af indicated that the average deviation between predictions 
and observations was 8.4% (either below or above the line 
of equity) for Pseudomonas spp. and Enterobacteriaceae, 8.5% 
for B. thermosphacta, 8.6% for LAB, and 8.7% for TVC (Table 1). 
It has been suggested that Af values with an increase 0.15 
(15%) are considered as satisfactory in models employing only 
one variable, which is the case of this study (Ross et  al., 
2000). The calculated R2 and RMSE metrics were found to 
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be similar for all the microbial groups predicted, ranging from 
0.768 to 0.791 and 0.698 to 0.733 log CFU/g, respectively, 
indicating a good model performance.

The relation between observed and predicted values appeared 
slightly inferior in the case of inoculated-with-Salmonella 
samples compared to the non-inoculated samples (Figure  8). 
However, based on related plots in Figure  8, predictions vs. 
observations again presented a relatively good distribution 
around the line of equity, with more than 73% of the data 
included within the ±1 log unit area. Briefly, accuracy (%) 
varied from 73.08 to 85.67% in descending order for microbial 
populations of LAB, B. thermosphacta, Enterobacteriaceae, TVC, 
Pseudomonas spp., and Salmonella (Figure  8, Table  2). With 
regards to Bf, analogous results were obtained, with values 
ranging from 0.995 to 1.017 for the different bacterial groups, 

signifying an optimum correlation between observed and 
predicted values (Ross et  al., 2000; Argyri et  al., 2010). On 
the other hand, Af was close to 1, indicating that predictions 
were close to observations, and ranged from 7.1% for LAB 
to 9.5% for Pseudomonas spp. and Enterobacteriaceae, 9.6% 
for B. thermosphacta, and 10.2% for Salmonella. The calculated 
R2 and RMSE values for the different microbial groups predicted 
ranged from 0.708 to 0.828 and 0.664 to 0.863 log CFU/g, 
respectively, with a slightly better performance observed in 
the case of LAB. Models derived from inoculated samples had 
a comparable performance with models derived from 
non-inoculated ones.

Finally, spectral and microbiological data from the 
combination of non-inoculated and inoculated-with-Salmonella 
samples were employed into the analysis. In this case, the 
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FIGURE 8 | Scatterplot of the microbial populations measured via microbiological analysis and estimated by the support vector machine regression model (external 
validation) based on Fourier-transform infrared spectra from liver inoculated with Salmonella. (A) TVC (B) Pseudomonas spp. (C) Brochothrix thermosphacta 
(D) lactic acid bacteria (E) Enterobacteriaceae, and (F) Salmonella (solid line: the ideal y = x line; dashed lines: ±1log unit area). Data points from 50 iterations are 
presented.
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input dataset consisted of a random mixture of non-inoculated 
and inoculated-with-Salmonella samples in order to evaluate 
the potential of the developed pipeline in achieving a good 
prediction accuracy regardless of the presence or absence of 
the pathogen. Plots of observed vs. predicted microbial counts 
presented a reasonably good distribution around the equity 
line, close to that observed for non-inoculated data (Figure 9). 
As can be visualized from Figure 9 and Table 3, approximately 
84.33, 80.84, 77.88, 76.55, and 71.76% of the predicted microbial 
counts for Enterobacteriaceae, TVC, LAB, B. thermosphacta, 
and Pseudomonas spp., respectively, were within the ±1 log 
unit area. The Bf was close to 1 (ranging from 0.999 to 
1.029) for all bacterial groups, while Af was 1.083 for TVC, 
1.126 for Pseudomonas spp., 1.132 for B. thermosphacta, 1.145 
for Enterobacteriaceae, and 1.141 for LAB. The calculated R2 

and RMSE values ranged from 0.737 to 0.797 and 0.696 to 
0.949 log CFU/g, respectively, suggesting a satisfactory 
relationship between spectra and the specific spoilage 
organisms studied.

Available research data on the potential of FTIR spectroscopy 
to determine the microbiological spoilage on the surface of 
chicken products are relatively limited. Ellis et  al. (2002) 
employed a partial least squares (PLS) regression model to 
accurately estimate (RMSE of 0.27 log CFU/g) TVC populations 
on chicken breasts during storage at room temperature. PLS 
regression was also carried out by Vasconcelos et  al. (2014) 
to determine specific microorganisms on chicken breast  
such as Pseudomonas spp., LAB, Enterobacteriaceae, and 
B. thermosphacta from related FTIR spectra, obtaining R2 of 
0.789, 0.832, 0.857, and 0.810, respectively. Slightly less accurate 
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FIGURE 9 | Scatterplot of the microbial populations measured via microbiological analysis and estimated by the support vector machine regression model (external 
validation) based on combined Fourier-transform infrared spectra (i.e., from non-inoculated and inoculated with Salmonella liver). (A) TVC, (B) Pseudomonas spp., 
(C) Brochothrix thermosphacta, (D) lactic acid bacteria, and (E) Enterobacteriaceae (solid line: the ideal y = x line; dashed lines: ±1 log unit area). Data points from 
50 iterations are presented.
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results were observed by Rahman et  al. (2018), who developed 
a PLS model to predict total plate count (TPC) and 
Enterobacteriaceae on chicken breast surfaces during aerobic 
refrigerated storage, generating a good performance with R2 
being 0.66 for TPC and 0.52 for Enterobacteriaceae, respectively. 
However, to our knowledge, this is the first study reporting 
the considerable potential of FTIR spectroscopy in rapid and 
non-destructive quantitative assessment of microbiological 
spoilage on chicken liver.

CONCLUSION

Chicken liver constitutes a highly perishable food commodity 
due to the relatively high contents of readily available nutrients 
and water activity that support microbial growth. In this 
context, the growth of indigenous spoilage microbiota and 
the behavior of inoculated Salmonella on chicken liver stored 

aerobically under refrigeration (isothermal and dynamically 
changing temperatures) were initially investigated. Spoilage 
was mainly attributed to the presence of Pseudomonas spp. 
as well as of B. thermosphacta, followed by LAB and 
Enterobacteriaceae, while the contribution of yeasts/molds was 
limited. Microbiological spoilage was affected by the storage 
temperature as well as the inherent and microbiological 
variability observed on chicken liver (fresh and/or spoiled). 
Chicken liver supported the survival of inoculated Salmonella 
at 0°C and, most importantly, its growth at 4 and 8°C, 
indicating the need for the application of sanitation and safe 
food handling procedures.

Furthermore, the ability of FTIR spectroscopy to estimate 
the populations of TVC, Pseudomonas spp., B. thermosphacta, 
Enterobacteriaceae, LAB, and Salmonella on chicken liver was 
explored. The proposed pipeline incorporated the inherent 
(batch) variability of chicken liver samples, the variability of 
storage temperature (isothermal and dynamically changing 

TABLE 1 | Performance metrics of the support vector machine models for the prediction of the different microbial populations of chicken liver (non-inoculated) stored 
under aerobic conditions at isothermal and dynamically changing conditions.

Metrics Total viable counts Pseudomonas spp. Brochothrix thermosphacta Lactic acid bacteria Enterobacteriaceae

Mean ± SDa Mean ± SD Mean ± SD Mean ± SD Mean ± SD

(upper, lower CI) (upper, lower CI) (upper, lower CI) (upper, lower CI) (upper, lower CI)

R2 0.769 ± 0.022 0.791 ± 0.017 0.776 ± 0.024 0.768 ± 0.027 0.778 ± 0.020
(0.763, 0.775) (0.786, 0.795) (0.769, 0.783) (0.760, 0.775) (0.772, 0.783)

RMSE 0.729 ± 0.035 0.698 ± 0.022 0.721 ± 0.035 0.733 ± 0.035 0.716 ± 0.030
(0.719, 0.738) (0.692, 0.704) (0.711, 0.730) (0.723, 0.743) (0.708, 0.724)

Af 1.087 ± 0.005 1.084 ± 0.004 1.085 ± 0.004 1.086 ± 0.005 1.084 ± 0.004
(1.085, 1.088) (1.083, 1.086) (1.084, 1.086) (1.085, 1.087) (1.083, 1.085)

Bf 1.003 ± 0.006 1.022 ± 0.008 1.011 ± 0.006 1.011 ± 0.008 0.995 ± 0.006
(1.001, 1.004) (1.020, 1.024) (1.009, 1.013) (1.009, 1.014) (0.994, 0.997)

Accuracy (%) 80.653 ± 3.043 82.517 ± 1.950 80.490 ± 2.747 80.571 ± 2.804 81.088 ± 2.847
(79.810, 81.496) (81.977, 83.057) (79.728, 81.251) (79.794, 8 1.349) (80.299, 81.877)

aTotal of 50 iterations.
CI, 95% confidence interval; R2, coefficient of determination; RMSE, root mean square error (log CFU/g); Af, accuracy factor; Bf, bias factor.

TABLE 2 | Performance metrics of the support vector machine models for the prediction of the different microbial populations of chicken liver inoculated with 
Salmonella stored under aerobic conditions at isothermal and dynamically changing conditions.

Metrics Total viable counts Pseudomonas spp. Brochothrix thermosphacta Lactic acid bacteria Enterobacteriaceae Salmonella

Mean ± SDa Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD

(upper, lower CI) (upper, lower CI) (upper, lower CI) (upper, lower CI) (upper, lower CI) (upper, lower CI)

R2 0.728 ± 0.027 0.730 ± 0.031 0.725 ± 0.028 0.828 ± 0.020 0.719 ± 0.036 0.708 ± 0.027
(0.721, 0.735) (0.722, 0.739) (0.717, 0.733) (0.822, 0.833) (0.709, 0.729) (0.701, 0.716)

RMSE 0.837 ± 0.040 0.827 ± 0.051 0.841 ± 0.049 0.664 ± 0.039 0.847 ± 0.053 0.863 ± 0.044
(0.826, 0.847) (0.813, 0.841) (0.828, 0.855) (0.653, 0.675) (0.832, 0.861) (0.851, 0.875)

Af 1.098 ± 0.005 1.095 ± 0.007 1.096 ± 0.006 1.071 ± 0.005 1.095 ± 0.007 1.102 ± 0.005
(1.097, 1.100) (1.093, 1.097) (1.095, 1.098) (1.070, 1.073) (1.093, 1.097) (1.100, 1.103)

Bf 1.017 ± 0.009 1.012 ± 0.008 1.008 ± 0.009 1.005 ± 0.007 1.016 ± 0.009 0.995 ± 0.007
(1.014, 1.019) (1.009, 1.014) (1.005, 1.010) (1.003, 1.007) (1.014, 1.019) (0.993, 0.997)

Accuracy (%) 74.234 ± 2.733 73.572 ± 3.239 75.338 ± 2.977 85.669 ± 2.667 75.090 ± 3.086 73.076 ± 2.603
(73.477, 74.992) (72.675, 74.470) (74.513, 76.163) (84.930, 86.408) (74.234, 75.945) (72.354, 73.797)

aTotal of 50 iterations. 
CI, 95% confidence interval; R2, coefficient of determination; RMSE, root mean square error (log CFU/g); Af, accuracy factor; Bf, bias factor.
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temperatures), and the biochemical fingerprint of Salmonella 
in the event of cross-contamination. The results of the current 
study outline the efficiency of FTIR spectroscopy in tandem 
with the described data analysis and model building workflow 
to satisfactorily describe spoilage on chicken liver.
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