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It was first predicted in 1988 that there may be an Open Reading Frame (ORF) on the 
negative strand of the Human Immunodeficiency Virus type 1 (HIV-1) genome that could 
encode a protein named AntiSense Protein (ASP). In spite of some controversy, reports 
began to emerge some years later describing the detection of HIV-1 antisense transcripts, 
the presence of ASP in transfected and infected cells, and the existence of an immune 
response targeting ASP. Recently, it was established that the asp gene is exclusively 
conserved within the pandemic group M of HIV-1. In this review, we summarize the latest 
findings on HIV-1 antisense transcripts and ASP, and we discuss their potential functions 
in HIV-1 infection together with the role played by antisense transcripts and ASPs in some 
other viruses. Finally, we suggest pathways raised by the study of antisense transcripts 
and ASPs that may warrant exploration in the future.
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INTRODUCTION

The first hypothesis on the existence of the asp gene overlapping env in the -2 frame on 
the antisense strand of HIV-1 proviral genome was formulated in 1988 (Miller, 1988; Figure 1). 
At that time, this postulate had little impact on the retrovirology research community, and 
the bona fide existence of this gene was highly contested for several years. The discovery 
of an Open Reading Frame (ORF) on the negative strand of the HIV-1 genome was not 
in agreement with the generally-accepted retrovirology dogma, stipulating that retroviral 
genes are only expressed from a unique promoter located in the 5' Long Terminal Repeat 
(LTR; Figure  1).

Despite early skepticism and the lack of specific tools to selectively identify rare antisense 
transcripts and detect a strongly hydrophobic and “young” protein like AntiSense protein (ASP), 
several potential antisense ORFs and (ASPs) were described for different Retroviruses. One ORF 
was found on the antisense strand of the human T-cell leukemia virus type 1 (HTLV-1) genome, 
and antisense transcripts were detected in HTLV-1 infected T-cells (Larocca et  al., 1989; Barbeau 
and Mesnard, 2015; Matsuoka and Mesnard, 2020). An ORF located on the complementary 
DNA strand of the Feline Immunodeficiency Virus (FIV) envelope gene was also identified 
(Briquet et  al., 2001). Although antisense transcripts were detected in FIV-infected cell lines and 
in tissues of infected cats, their coding capacity has not been demonstrated yet (Briquet et  al., 
2001). The first retroviral ASP formally identified was the basic leucine zipper factor (bZIP) of 
HTLV-1 (Gaudray et  al., 2002), followed by the identification of the ASPs of HTLV-2, HTLV-3, 
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and HTLV-4 (Halin et  al., 2009; Larocque et  al., 2011). More 
recently, an antisense gene was characterized in the genome of 
the Simian T-Leukemia Virus type 1 (STLV-1), and antisense 
transcripts were characterized in STLV-1-infected cells (Miura 
et al., 2013). This gene encodes a protein in vitro which displayed 
functions similar to that of HBZ (Miura et  al., 2013). Antisense 
transcripts were also detected in Murine Leukemia Virus (MLV; 
Rasmussen et  al., 2010), Bovine Immunodeficiency Virus (BIV; 
Liu et  al., 2015), and Bovine Leukemia Virus (BLV; Durkin 
et al., 2016). However, no ASPs associated with these transcripts 
have thus far been identified.

The presence of antisense transcripts was first observed in 
an HIV-1-infected cell line in 1990 (Bukrinsky and Etkin, 
1990), and ASP itself was first detected in 1995 (Vanhée-
Brossollet et  al., 1995). Despite this promising discovery, very 
few studies were published on the investigation of ASP and 
its potential antisense transcripts. Several HIV-1 in vitro antisense 
transcripts were described in transfected and infected cell lines 
(Michael et  al., 1994; Landry et  al., 2007; Kobayashi-Ishihara 
et  al., 2012; Saayman et  al., 2014), and two studies recently 
detected antisense transcripts in CD4+ T cells of infected patients 
(Zapata et  al., 2017; Mancarella et  al., 2019). In 2015, two 
reports were published demonstrating the presence of CD8+ 
T cells directed against several ASP peptides in HIV-1-infected 
patients (Berger et  al., 2015; Bet et  al., 2015). Recently, the 
presence of ASP-specific antibodies was detected in the plasma 
of HIV-1-infected individuals (Savoret et  al., 2020), thereby 
confirming the pioneer study of Vanhée-Brossollet et  al. which 
first proposed the existence of ASP-specific antibodies 
(Vanhée-Brossollet et  al., 1995), and further suggesting that 
ASP is expressed and immunogenic in vivo.

ORIGIN, EVOLUTION, AND 
CONSERVATION OF THE ASP GENE

In 2016, Cassan et al. developed a new approach to characterize 
the origin, conservation, and evolution of the asp gene within 
the four phylogenetic groups of HIV-1 (M, N, O, and P; Cassan 
et  al., 2016). As asp overlaps the env gene in the −2 frame 
(Figure  1), the ASP ORF could not be  characterized with 
classical bioinformatics tools based on the measurement of 
selection pressures on a DNA fragment. To overcome this 
difficulty, Cassan et  al. (2016) considered the appearance of 
start and stop codons in the −2 frame of the env gene. The 
ASP ORF was detected in sequences of the most prevalent 
HIV-1 subtypes and circulating recombinant forms (CRFs) of 
the group M, while it was not observed in sequences from 
the endemic O group or in the rare N and P groups (Cassan 
et  al., 2016). These results indicated that the creation of asp 
was concomitant with the emergence of the group M in humans. 
It is noteworthy that the A subtype and its recombinant forms 
display a stop codon at the beginning of the ASP ORF that 
is followed in more than 90% of the sequences by a start 
codon which maintains the ASP ORF (Cassan et  al., 2016). 
As a result, the subtype A and its recombinant forms encode 
a shorter version of ASP devoid of the first 25 residues 
(Figure  2), including the two cysteine triplets of ASP which 
have been shown to be  involved in ASP multimerization in 
transfected cells in vitro (Torresilla et al., 2013; Liu et al., 2019).

Despite the high degree of conservation of asp within 
the M group (Table  1; Figure  2), 16% of the sequences 
from the A, B, C, and G subtypes and from the CRF01_AE 
did not display the ASP ORF. This observation, in conjunction 

FIGURE 1 | Schematic representation of the asp gene within the proviral genome of HIV-1. The asp gene overlaps the env gene in the −2 frame. The asp gene 
overlaps the hypervariable regions V4 and V5 of env and partly overlaps the Rev Responsive Element (RRE).
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with de novo creation of asp, strongly suggests that asp is 
an auxiliary gene which can be  lost without compromising 
the virion structure or viral replication. However, this would 
not mean that the product of this gene, ASP, is dispensable 
in vivo. Indeed, most de novo created translational products 
of viral genes play an important role in viral pathogenicity 
or spread (Li and Ding, 2006). Computer simulation showed 
that the high degree of ASP ORF conservation within the 
pandemic group M was unlikely to be  accidental (Cassan 
et  al., 2016). This finding, together with the study of asp 
sequences of the A subtype and its recombinants, provided 
evidence of a selection pressure acting to maintain asp in 
the group M and strongly suggested that asp is a 
bona fide gene.

Altogether, this study strongly suggests that the asp gene 
which appeared concomitantly with, and is uniquely conserved 
within, the HIV-1 pandemic group M, is the 10th HIV-1 
gene and that its transcriptional and/or translational products 
may endow the virus with an evolutionary advantage 
(Cassan et  al., 2016). Of note, 1  year after this study, using 
an extensive sequence analysis (660 viral strains), another 
study found that asp mutations were associated with mutations 
of the hypervariable region V3 of env and thereby proposed 

that asp mutations could be  linked to viral tropism and 
different co-receptor usage (Dimonte, 2017).

THE ANTISENSE TRANSCRIPTIONAL 
ACTIVITY OF HIV-1

The antisense transcriptional activity of HIV-1 is initiated 
from a promoter located in the 3' LTR. As a consequence 
of HIV-1 LTR bidirectionality, initiation of HIV-1 sense and 
antisense transcriptions depends the on binding of common 
transcription factors, mainly NF-kB and SP1 (Michael et  al., 
1994; Vanhée-Brossollet et  al., 1995; Peeters et  al., 1996; 
Landry et  al., 2007; Kobayashi-Ishihara et  al., 2012; Arpin-
André et  al., 2014). As described in eukaryotic cells (Adhya 
and Gottesman, 1982; Callen et  al., 2004; Shearwin et  al., 
2005), the concomitant initiation of retroviral sense and 
antisense transcriptional activities can possibly induce 
transcriptional interference. In order to prevent transcriptional 
interference, HIV-1 sense and antisense transcriptions might 
function antagonistically, similar to what has been described 
for HTLV-1 (Barbeau and Mesnard, 2015). Several data support 
this hypothesis. Indeed, in productively HIV-1-infected-cells, 
sense transcription has been shown to predominate over 
antisense transcription, in agreement with the preferential 
activation of HIV-1 sense transcription by Tat (Michael et al., 
1994; Vanhée-Brossollet et  al., 1995; Landry et  al., 2007; 
Kobayashi-Ishihara et al., 2012; Laverdure et al., 2012; Arpin-
André et al., 2014). Moreover, HIV-1 antisense transcriptional 
activity was shown to increase upon 5' LTR deletion in vitro 
(Klaver and Berkhout, 1994; Landry et  al., 2007), and the 
ratio of HIV-1 sense/antisense transcriptions was found to 
be  10-fold higher in activated CD4+ T cells than in resting 
cells such as monocyte-derived macrophages and dendritic 
cells (Laverdure et al., 2012). Finally, a study recently reported 
the expression of antisense transcripts in T cells latently 
infected in vitro with a reporter virus, further suggesting 
that HIV-1 antisense expression can occur when sense 
transcription is low (Kobayashi-Ishihara et  al., 2018).

FIGURE 2 | Alignment of the consensus amino acid sequence of AntiSense Protein (ASP) encoded by the major subtypes and circulating recombinant forms 
(CRFs) of HIV-1 (sequences were retrieved from HIV-1 data bases, Los Alamos National Laboratory and analyzed using Unipro UGENE: a unified bioinformatics 
tollkit” Okonechnikov; Golosova; Fursov. Bioinfomatics 2012 28: 1166–1,167). The first line represents the reference HXB2 sequence of ASP. The main motifs of 
ASP are indicated.

TABLE 1 | Fraction of the sequences displaying the AntiSense Protein Open 
Reading Frame (length >150 codons) within the main subtypes and circulating 
recombinant forms (CRFs) of HIV-1 group M (Cassan et al., 2016).

HIV-1 group M subtypes %% of sequences with ASP ORF

A 74
B 85
C 84
D 50
F 32
G 88
H 0
J 50
K 50
CRF01_AE 89
CRF02_AG 7
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The Antisense Transcripts of HIV-1 in vitro
Four major kinds of antisense transcripts were characterized 
so far in vitro (Michael et  al., 1994; Landry et  al., 2007; 
Kobayashi-Ishihara et  al., 2012; Saayman et  al., 2014). A 
transcript of 2.3 Kb (Transcript I; Figure  3) was first detected 
in HIV-1-infected cell lines (Michael et  al., 1994). Using a 
strand-specific RT-PCR as previously described (Barbeau and 
Mesnard, 2015), a 5 Kb transcript (Transcript II; Figure  3) 
initiating at several transcription starting sites (TSS) was 
subsequently characterized in transfected HEK 293  T cells 
(Landry et al., 2007). Using the same technique, a third antisense 
transcript of 3 Kb (Transcript III; Figure  3) was detected in 
HIV-1-infected MAGIC-5 cells and in several chronically infected 
cell lines (Kobayashi-Ishihara et al., 2012). Transcript III promotes 
the initiation and maintenance of viral latency by recruiting 
the Polycomb Repressor Complex 2 (PRC2) to the 5′ LTR of 
HIV-1 (Zapata et  al., 2017). A role in the maintenance of 
viral latency was also reported for a genome-length antisense 
transcript devoid of poly-A tail (Transcript IV; Figure 3), which 
was detected in two chronically infected T-cell lines (Saayman 
et  al., 2014). In these cells, Transcript IV behaved as a long 
non-coding (lnc) RNA by recruiting chromatin modifying 
enzymes, such as DNA methyltransferase 3a (DNMT3a), 
Enhancer of Zeste Homolog 2 (EZH2), and Histone Deacetylase 
(HDAC)-1, to the 5' LTR of the provirus (Saayman et  al., 
2014; Lange et al., 2020). This multiplicity of antisense transcripts 
characterized in vitro may be  explained by the use of different 
methodological approaches in different studies. However, it is 
also plausible that HIV-1-infected cells express several types 
of antisense transcripts during the retroviral cycle.

As we  saw above, a number of publications suggested that 
HIV-1 antisense transcripts are preferentially expressed in cells 
displaying low levels of sense transcripts (Vanhée-Brossollet 
et al., 1995; Landry et al., 2007; Kobayashi-Ishihara et al., 2012; 
Laverdure et al., 2012; Arpin-André et al., 2014; Saayman et al., 2014; 
Barbeau and Mesnard, 2015). Indeed, Transcript IV was detected 

in latently HIV-1-infected cell lines (Saayman et  al., 2014). 
Antisense transcripts were also found in CEM T cells that 
were latently infected with a VSVg-pseudotyped HIV NL-EΔEnv 
virus that carries a EGFP reporter gene (Kobayashi-Ishihara 
et  al., 2018). In this study, infected cells were sorted by flow 
cytometry to obtain a cell population composed of latently 
HIV-1-infected cells (EGFP-negative; Kobayashi-Ishihara et  al., 
2018). Moreover, it was proposed that the HIV-1 antisense 
transcripts may interfere with virus reactivation from latency 
as the addition of latency reversal agents only reactivated sense 
transcription in latently infected cells lacking antisense transcripts 
(Kobayashi-Ishihara et  al., 2018). Altogether, this study further 
suggests that HIV-1 antisense transcription might be  involved 
in the maintenance of latency.

Antisense transcription may also potentially occur in HIV-1 
productively infected cells. Indeed, Transcript III and various 
antisense transcripts were detected 3  days post-infection, in 
MAGIC-5 cells (Kobayashi-Ishihara et al., 2012) and H9-infected 
cells (Bukrinsky and Etkin, 1990), respectively. Finally, Kobayashi-
Ishihara et  al. (2018) detected antisense transcripts in HIV-1 
peripherical blood mononuclear cells (PBMCs) stimulated with 
phytohaemagglutinin (PHA), even though they were much less 
abundant than sense transcripts.

The Antisense Transcripts of HIV-1 in vivo
In one study, HIV-1 antisense transcripts were detected in CD4+ 
T cells isolated from five HIV-1-infected patients following CD3/
CD28 stimulation but not in unstimulated CD4+ T cells (Mancarella 
et  al., 2019), whereas another publication reported antisense 
transcripts in HIV-1-infected resting CD4+ T cells (Zapata et  al., 
2017). This apparent discrepancy observed in these two studies 
requires further evaluations. A possible explanation may reside 
in different RT-qPCR methods used to detect antisense transcripts 
but also in the small number of patients that was included in 
these two studies (five and three patients; Zapata et  al., 2017; 
Mancarella et  al., 2019). In any case, it cannot be  excluded that 

FIGURE 3 | Schematic representation of the principal antisense transcripts that were described in vitro (transcripts I to IV). The poly-A tails and the ASP ORF 
(yellow square) are represented for each transcript.
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antisense transcripts are expressed in both productively and 
latently HIV-1 infected cells in vivo. Productively HIV-1 infected 
cells may indeed co-express antisense mRNAs encoding ASP 
and antisense transcripts acting as bona fide lncRNAs through 
the recruitment of histone modifying enzymes to the 5' LTR 
of HIV-1, thereby playing a role in the establishment of viral 
latency. Once viral latency is established, HIV-1 antisense 
transcripts may still contribute to the maintenance of latency 
through the recruitment of enzymes responsible of the silencing 
of the 5’LTR. As latently HIV-1-infected cells express very 
low levels of HIV-1 sense transcripts, they might also express 
antisense mRNAs encoding ASP.

STRUCTURE AND SUBCELLULAR 
LOCALIZATION OF ASP

Structure of ASP
The creation of de novo proteins appears to be  a significant 
element in the evolution of viruses (Li and Ding, 2006; 
Rancurel et  al., 2009). Recent de novo creation of asp gave 
rise to a translation product which has been named ASP 
(Miller, 1988; Vanhée-Brossollet et  al., 1995; Clerc et  al., 2011; 
Torresilla et  al., 2013; Berger et  al., 2015; Bet et  al., 2015; 
Affram et  al., 2019; Savoret et  al., 2020), a small strongly 
hydrophobic protein consisting of 189 amino acids (reference 
sequence HXB2). ASP contains 14 conserved cysteine residues, 
seven of which are located in the N-terminal region (cysteine 
7C and two cysteine triplets 10CCC12 and 22CCC24), two SH3 
domain-binding motifs (47PXXPXXP53), and two strongly 
hydrophobic putative transmembrane (TM) domains (Figure 4). 
Most de novo created proteins are translated from overlapping 
genes whose sequence composition is biased toward disorder-
promoting amino acids (Rancurel et  al., 2009). However, only 
9.52, 13.76, and 18.52% of ASP amino acids were predicted 
to exist in a disordered state according to different software 
(Figure 4). This relatively low level of disorder could be explained 
by the strong constraint exerted by overlap with the env gene 
and by structural constraints associated with the Rev Responsive 
Element (RRE) sequence (Figure  4).

Due to the overlapping of env/asp genes, ASP domains 
are unevenly conserved among the HIV-1 subtypes and CRFs. 
In fact, the N-terminal extremity of ASP is well conserved 
except ASP encoded by subtype A and its recombinants, 
which have shortened N-terminal extremities (Figure 2; Cassan 
et al., 2016). Conversely, the central region and the C-terminal 
extremity of ASP, which overlap the hypervariable regions 
V5 and V4 of env, are subjected to strong sequence variations 
among the different subtypes and CRFs of HIV-1 (Figures 1, 4). 
ASP was reported to multimerize in mammalian cell lines 
(COS-7 and HEK 293  T cells) expressing a codon-optimized 
ASP (Torresilla et  al., 2013; Liu et  al., 2019). It was recently 
demonstrated that the capacity of ASP to form aggregates 
in these cells was mediated by its N-terminal region and, 
more specifically, by its cysteine residues (Liu et  al., 2019). 
Interestingly, the deletion of the first 15 residues of ASP and 
the use of a subtype-A ASP reduced the number of multimers 

detected by Western blot (Liu et al., 2019). As protein aggregates 
are targeted by constitutive and inducible autophagy (Menzies 
et  al., 2017), it was proposed that ASP multimerization 
disturbed the autophagic flux in mammalian cell lines, and 
induced its own degradation by autophagy (Torresilla et  al., 
2013). Moreover, mammalian cells expressing ASP had more 
abundant levels of LC3b-II and Beclin-1 than non-ASP 
expressing cells, and ASP was found to co-immunoprecipitate 
with LC3-IIb (Torresilla et  al., 2013; Liu et  al., 2019). Further 
analyses performed in transfected HEK 293  T cells showed 
that ASP co-immunoprecipitated with p62, a protein involved 
in induced autophagy (Klionsky et  al., 2016; Liu et  al., 2019).

In HEK 293  T cells co-transfected with expression vectors 
encoding ASP and a His-tagged ubiquitin, Western blot analyses 
performed following a co-immunoprecipitation using an 
anti-His antibody strongly suggested that ASP was ubiquitinated 
(Liu et  al., 2019). Although these promising results suggest 
that autophagy regulates ASP levels in mammalian cells 
(Torresilla et  al., 2013; Liu et  al., 2019), they might be  taken 
with caution as both of the above-mentioned studies used 
transient transfection of eukaryotic expression vector harboring 
a human codon-optimized ASP cDNA (Torresilla et  al., 2013; 
Liu et  al., 2019). Future studies performed in HIV-1-infected 
cells will be  determinant to exclude the possibility that ASP 
multimerization is a side effect of its overexpression in 
mammalian cells.

Subcellular Localization of ASP
Different subcellular localizations were described for ASP in 
vitro, both in transfected cell lines overexpressing ASP (Briquet 
and Vaquero, 2002; Clerc et  al., 2011; Laverdure et  al., 2012; 
Torresilla et  al., 2013; Liu et  al., 2019) and in HIV-1 infected 
cell lines expressing endogenous ASP (Briquet and Vaquero, 
2002; Affram et  al., 2019). Endogenous ASP was localized 
in the nucleus of PMA-activated chronically infected ACH-2 
cells (Briquet and Vaquero, 2002), and was distributed in a 
nonhomogeneous and polarized manner beneath the nuclear 
envelope of unstimulated and chronically infected U1C8 T 
cells (Affram et  al., 2019). Within the nucleus of these cells, 
ASP was detected in areas containing actively transcribed 
chromatin (Affram et  al., 2019). Endogenous ASP was also 
observed in the cytoplasm of SupT1-infected cells (Briquet 
and Vaquero, 2002), and PMA-stimulated U1C8 cells (Affram 
et  al., 2019). ASP was also found within the cytoplasm of 
stably transfected A3.01  T cells (Briquet and Vaquero, 2002) 
and of transfected COS-7 cells, a simian cell line (Torresilla 
et  al., 2013). In the latter study, ASP was distributed in a 
punctuate manner within the cytoplasm and was partially 
co-localized with LC3-IIb, suggesting that it may be associated 
with autophagosomes (Torresilla et al., 2013). Consistent with 
both its putative TM domains, ASP was observed at the 
plasma membranes of PMA-activated, chronically infected 
U1C8 T cells and myeloid OM 10.1 cells (Affram et  al., 
2019), of ex vivo infected monocyte-derived macrophages 
and dendritic cells (Laverdure et  al., 2012), and also at the 
plasma membrane of transfected Jurkat cells overexpressing 
ASP (Clerc et  al., 2011). In HIV-1 infected Jurkat cells, ASP 
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was asymmetrically distributed at the plasma membrane 
(Clerc et  al., 2011). Recently, polarized distribution of 
endogenous ASP at plasma membranes was also observed 
in chronically infected PMA-activated U1C8 T cells and 
myeloid OM 10.1 cells, where ASP strongly co-localized with 
gp120 (Affram et  al., 2019). Two experiments indicated that 
ASP is a bona fide component of viral particles: gold-labeled 
ASP was detected in viral particles released from chronically 
infected SupT1 cells (Briquet and Vaquero, 2002), and in 
vitro fluorescence correlation spectroscopy (FCS) of cell-free 
single HIV-1 particles released from PMA-activated U1C8 
T-cells suggested that ASP is present at the surface of the 
viral envelope (Affram et  al., 2019).

ASP AND IMMUNE RESPONSE

Despite several in vitro reports of ASP in infected and 
transfected cells, the expression of ASP in vivo remained 
a subject of debate for several years. In this context, the 
study of the host immune system gave valuable clues to 
the expression of ASP in vivo. The first report of an immune 
response targeting ASP appeared in 1995, describing the 

incubation of an in vitro translated ASP with the sera of 
15 HIV-1 infected individuals (Vanhée-Brossollet et al., 1995). 
This led to the detection of a band at the expected size 
of ASP in approximately half of the serum samples by 
Western blotting (Vanhée-Brossollet et  al., 1995). 
Unfortunately, Western blotting did not allow the frequency 
of patients displaying antibodies against ASP to be accurately 
determined. Recently, a quantitative technique known as 
Luciferase Immunoprecipitation System (LIPS) was described 
to assess the antibody response targeting ASP in a panel 
of HIV-1-infected patients (Savoret et  al., 2020). LIPS is 
an assay that was initially developed to quantitatively detect 
antibodies targeting a particular antigen in patient biological 
samples (Figure  5; Burbelo et  al., 2005). Using LIPS, the 
breadth of the antibody response directed against different 
viral antigens, including HIV-1 whole proteome, has previously 
been reported (Burbelo et  al., 2007, 2014; Enose-Akahata 
et  al., 2013; Furuta et  al., 2015). Of note, the use of this 
technique allowed the quantitative study of the antibody 
response targeting ASP, which was detected in 10–15% of 
the HIV-1-infected patients (Savoret et  al., 2020).

The frequency of patients displaying antibodies to ASP is 
similar to those observed for both HBZ (Enose-Akahata et al., 2013; 

A

B

FIGURE 4 | Schematic representation of the primary, secondary, and tertiary structures of ASP. (A) Conserved cysteine triplets (CCC), Proline-rich SH3 domain-
binding motifs (PxxPxxP), putative transmembrane (TM) domains. The theorical molecular weight of ASP is 20235.26 Da (reference sequence HXB2 using Predict 
Protein software). Using PONDR VL3, PONDR VSL2, and PONDR VLXT software, it was predicted that, respectively, 9.52, 13.76, and 18.52 of ASP amino acids 
exist in a disordered state. Only four regions of ASP are expected to exist in disordered states (residues 1–2; 4–4; 44–55; 97–116 predicted using PONDR VSL2 
software). (B) Predicted secondary (alpha-helix in red and beta-sheet in blue) and tertiary structures of ASP. The reference sequence of ASP was submitted to the 
I-Tasser server (https://zhanglab.ccmb.med.umich.edu/I-TASSER/) to obtain a model via a threading prediction. C-Score = −4.07, estimated TM-
score = 0.28 ± 0.09, estimated RMSD = 15.0 ± 3.5 Å.
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Shiohama et al., 2016) and the auxiliary and regulatory proteins 
of HIV-1 (Reiss et  al., 1990; O’Neil et  al., 1997; 
Rezza et  al., 2005). The ASP-specific antibody response was 
sustained for at least 9  months and seemed to target both 
the 26–62 residues of ASP bearing the highly conserved 
proline-rich motif and the core residues 62–141 of ASP 
(Figures  2, 6A; Savoret et  al., 2020). Cytotoxic CD8+ T cells 
targeting a panel of ASPs overlapping peptides were also 
reported in 30% of the HIV-1 infected patients (Berger et  al., 
2015; Bet et  al., 2015). Moreover, the CD8+ T cells targeting 
these peptides produced multiple cytokines and chemokines, 
indicating that ASP elicited a functional cytotoxic response 
within patients (Bet et  al., 2015).

The abovementioned studies brought strong evidence in 
favor of the expression of ASP during the course of HIV-1 
infection in vivo and strongly suggest that ASP elicits an 
adaptive response in at least some of the HIV-1-infected patients, 
as previously described for the other auxiliary and regulatory 
proteins of HIV-1 that elicit both antibodies and CD8+ T cell 
responses (Allan et  al., 1985; Arya and Gallo, 1986; Kan et  al., 
1986; Wong-Staal et  al., 1987; Chanda et  al., 1988; Strebel 
et  al., 1988; Reiss et  al., 1990; O’Neil et  al., 1997; Rezza et  al., 
2005; Kiepiela et  al., 2007; Cardinaud et  al., 2009; Nicoli et  al., 
2016). Even though the presence of ASP at the surface of 
infected cells and viral particles was only reported in vitro 
(Briquet and Vaquero, 2002; Clerc et al., 2011; Laverdure et al., 
2012; Affram et  al., 2019), it is worth to highlight that an 
antibody response targeting ASP at the surface of viral particles 
and infected cells would potentially have interesting implications 
for the progression of the disease. For future investigations, 
it would therefore be of great interest to study the functionality 
of the antibodies targeting ASP in vivo and especially their 
ability to neutralize viral particles or to induce cellular 
mechanisms contributing to viral clearance such as complement 
dependent cytotoxicity (CDC), antibody-dependent phagocytosis 
(ADCP), and antibody-dependent cell cytotoxicity (ADCC), a 

mechanism whose involvement in the partial success of the 
RV144 Thai vaccine has been questioned (Kim et  al., 2015).

FUNCTIONS OF ANTISENSE 
TRANSCRIPTS AND ASP IN THE LIFE 
CYCLE OF HIV-1

The asp gene emerged de novo at the beginning of the last 
century concomitantly with the pandemic group M of HIV-1 
(Cassan et al., 2016). The creation of asp has several consequences 
and also questions the evolution of HIV-1. Firstly, de novo 
creation and conservation of asp within the HIV-1  M group 
altered the repertoire of its auxiliary proteins, meaning that 
HIV-1 acquired an additional factor that is probably not involved 
in the viral replication cycle per se, but which could play a 
role in pathogenicity or viral transmission (Li and Ding, 2006; 
Rancurel et  al., 2009). Secondly, contrary to the other HIV-1 
auxiliary genes, asp did not benefit from centuries of evolution, 
and it may be  assumed that it is still evolving. Thirdly, since 
ASP is a young de novo protein, it may not as of yet have 
adopted a fully compact and specific structure but rather a 
more rudimentary folding form which may require the 
intervention of chaperones to partially avoid aggregation and/
or use a cellular mechanism like autophagy to degrade aggregated 
forms (Figure 6). Although the studies of ASP multimerization 
and its link with autophagy were performed in cell lines 
overexpressing ASP (Torresilla et  al., 2013; Liu et  al., 2019) 
and would need to be  confirmed by future studies in HIV-1-
infected cells, it is tempting to speculate that one pool of ASP 
could fold into a monomeric functional form in infected cells, 
while another pool folds into oligomers of non-functional 
forms. Conversely, we  can also speculate that ASP forms 
non-toxic and functional oligomers that would represent an 
additional way to subvert the autophagic flux of the cell to 
the benefit of HIV-1.

FIGURE 5 | The Luciferase Immuno-Precipitation System (LIPS) as a detection assay to measure antigen-specific antibodies in biological samples of infected 
patients. The biological samples (plasma, serum, lactoserum, etc.) potentially containing antigen-specific antibodies are incubated with a fusion protein between the 
antigen and a luciferase. After an immuno-precipitation step, the substrate of the luciferase is added. The detection of a luminescent signal indicates the presence of 
antigen-specific antibodies in the biological sample.
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On the one hand, it is thus possible that the oligomerization 
of ASP mediates its own degradation by a process of selective 
autophagy while at the same time disrupting the autophagic 
flux of infected cells, as has been previously described for the 
viral proteins Tat, Nef, and Vif (Borel et  al., 2015; Sagnier 
et al., 2015; Sardo et al., 2015; Saribas et al., 2015). As subtype-A 
ASP is devoid of the N-terminal part required for ASP 
oligomerization (Liu et  al., 2019), it could be  of interest to 
wonder whether ASP from subtype A represents a form of 
ASP which evolved to avoid ASP multimerization and to 
partially counteract its own degradation by autophagy. On the 
other hand, the fact that asp did not benefit from centuries 
of evolution to adapt the expression of ASP in host cells could 
argue in favor of the hypothesis stipulating that ASP multimers 
are deleterious both for the cell and the virus.

Different hypotheses relating to the functions endorsed by ASP 
can be  inferred from its different subcellular localizations. Like 
HBZ, a key protein in the establishment and maintenance of 
HTLV-1 latency (Gaudray et al., 2002; Barbeau and Mesnard, 2015; 
Matsuoka and Mesnard, 2020), nuclear ASP could contribute to 

viral latency by interacting with proteins involved in the 
regulation of gene expression, for example, chromatin modifying 
enzymes or transcription factors. In addition to encoding 
ASP, antisense transcripts may also, as previously discussed, 
exert a role in the establishment and maintenance of viral 
latency (Figure  6; Kobayashi-Ishihara et  al., 2012, 2018; 
Saayman et  al., 2014; Zapata et  al., 2017).

It is possible that at the plasma membrane of infected cells, 
ASP could modulate the expression of immune receptors as 
previously described for other HIV-1 auxiliary proteins (Guy 
et  al., 1987; Schwartz et  al., 1996; Stumptner-Cuvelette et  al., 
2001; Sol-Foulon et al., 2002; Hrecka et al., 2005; Michel et al., 
2005; Chaudhry et  al., 2009; Sauter et  al., 2009; Shah et  al., 
2010) or interfere with cell signaling pathways by interacting 
with SH3-proteins through its PxxP motifs (Figure  6). ASP 
might also favor optimal HIV-1 replication at early steps of 
HIV-1 cycle. Indeed, HEK 293 T cells transfected with a pNL4.3 
construction carrying an abortive mutation in the sequence 
encoding ASP showed lower extracellular p24 levels than cells 
transfected with wild type pNL4.3 (Clerc et  al., 2011). 

A
B

FIGURE 6 | Potential functions of HIV-1 antisense transcripts and ASP in infected cells. (A) Potential functions of ASP motifs and localization of its epitope in vivo. 
Patients’ antibodies target the 26–141 core region of ASP encompassing the V5 and proline-rich motifs. (B) Schematic representation of the potential functions of 
ASP and of antisense transcripts in infected cells. In addition to their messenger function, the antisense transcripts of HIV-1 may contribute to the establishment and 
maintenance of viral latency by recruiting chromatin-modifying enzymes to the 5′ LTR of the proviral genome. ASP oligomers, by interacting with LC3-IIb and p62 in 
autophagosomes, are degraded by a selective autophagy process and disrupt the autophagic flux of infected cells. At the plasma membrane, ASP could 
be involved in deregulating infected cells by disrupting cell signaling pathways or the expression of immune receptors. In the nucleus, ASP may be involved in the 
establishment and maintenance of viral latency, as was described for HBZ. As ASP was detected at the surface of viral particles, it may also play a role in the very 
early stages of the viral cycle, such as viral replication.
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Corroborating results were obtained in HEK 293 T cells, HeLa 
cells, and U937 monocytic cells transfected with a differently 
ASP-mutated version of pNL4.3, as well as in U937 cells infected 
with VSVg-pseudotyped ASP-mutated pNL4.3 virions: 
ASP-mutated pNL4.3 led to reduced p24 extracellular levels 
compared to wild type pNL4.3 (Torresilla et  al., 2013). The 
detection of ASP at the surface of HIV-1 particles released 
from infected cells may also indicate that ASP exerts an effect 
at an early stage of the viral cycle (Briquet and Vaquero, 2002; 
Affram et  al., 2019).

It may be  speculated that ASP could perform different 
functions according to the stage of the viral cycle: It might 
promote viral replication at an early stage, and conversely, it 
might promote the maintenance of viral latency once established. 
Furthermore, ASP could possibly be involved in the deregulation 
of infected cells by disrupting (i) the autophagic flux, (ii) cell 
signaling-pathways, or (iii) the expression of immune receptors 
(Figure 6). Like other HIV-1 auxiliary proteins, ASP is therefore 
probably a pleiotropic protein. The exploration of ASP presents 
a particular challenge, and unraveling its potential functions 
will require the combined study of productively and latently 
infected cells, as well as the development or optimization of 
tools and techniques to detect this hydrophobic protein which 
might be  expressed in very low amounts by infected cells.

FUNCTIONS OF ANTISENSE 
TRANSCRIPTS AND ANTISENSE 
PROTEINS IN OTHER VIRUSES

As we  saw above, antisense transcription is not exclusive 
to HIV-1. Indeed, not only some other lentiviruses (FIV, 
BIV), deltaretroviruses (HTLV-1, HTLV-2, HTLV-3, HTLV-4, 
STLV-1,and BLV), and gammaretroviruses (MLV) but notably 
some phylogenetic divergent viruses as Herpesviridae are 
capable of so-called antisense transcription (Spivack and 
Fraser, 1987; Larocca et  al., 1989; Flemington and Speck, 
1990; Cheung, 1991; Holden et  al., 1992; Prang et  al., 1995; 
Perng et al., 1996, 2002; Speck et al., 1997; Jiang et al., 1998; 
Borchers et al., 1999; Ciacci-Zanella et al., 1999; Briquet et al., 2001; 
Gaudray et  al., 2002; Inman et  al., 2004; Rajčáni et  al., 2004; 
Bego et  al., 2005; Calattini et  al., 2005, 2006; Jones et  al., 
2006; Ahn et  al., 2007, 2010; Ou et  al., 2007; Duellman 
et al., 2009; Halin et al., 2009; Rasmussen et al., 2010; Larocque 
et  al., 2011, 2014; Barbeau et  al., 2013; Miura et  al., 2013; 
Barbeau and Mesnard, 2015; Barez et al., 2015; Daskalogianni 
et  al., 2015; Liu et  al., 2015; Durkin et  al., 2016; Fochi et  al., 
2018; Moldován et  al., 2018; Harrod, 2019; Jégado et  al., 
2019; Martinez et  al., 2019; Tagaya et  al., 2019; Hau et  al., 
2020; Matsuoka and Mesnard, 2020). In cell lines infected 
with laboratory-adapted FIV isolates and in various lymphoid 
tissues of cats infected by a FIV primary isolate, antisense 
transcripts arising from an antisense ORF that is complementary 
to the FIV env gene were detected (Briquet et  al., 2001). 
Interestingly, the antisense ORF was shown to be  conserved 
in five FIV isolates (Briquet et al., 2001). Antisense transcripts 
were also detected in HEK 293  T cells transfected with the 

BIV-127 proviral clone and in BIV-permissive cell lines infected 
with BIV-127 (Liu et  al., 2015).

Antisense Transcripts and Antisense 
Proteins in Retroviruses
HTLVs are composed of four members: HTLV-1, which is 
the etiological agent of adult T-cell leukemia/lymphoma 
(ATLL) and HTLV-1 associated myelopathy/tropical spastic 
paraparesis (HAM/TSP); HTLV-2, for which no clinical 
correlation with HAM/TSP or lymphoproliferative disease 
has been established, though it was initially discovered in 
a patient displaying a rare benign form of hairy T-cell 
leukemia; HTLV-3, which might present some transforming 
abilities; and HTLV-4, for which very few clinical data are 
available (Roucoux and Murphy, 2004; Duong et  al., 2008; 
Chevalier et al., 2012; Tagaya et al., 2019). HTLV-1, HTLV-2, 
HTLV-3, and HTLV-4 are complex retroviruses that encode 
several regulatory and auxiliary products. The viral transcription 
of the HTLVs is stimulated by a complex composed of the 
transactivator of pX (Tax) and transcription factors such as 
the cAMP response element binding protein (CREB) but 
also histone acetyl transferases CBP/p300, which binds to 
sequences called cAMP response element (CRE) within the 
retroviral promoter.

Human T-cell leukemia virus type 1 encodes Tax-1, a 
transforming protein in vivo that activates not only the viral 
sense transcription from the 5’LTR but also many host genes 
through the activation of the NF-κB and CREB/ATF pathways. 
HTLV-2, HTLV-3, and HTLV-4 respectively, encode Tax-2, which 
displays transforming abilities in vitro, Tax-3, and Tax-4 
transactivators (Calattini et al., 2006; Chevalier et al., 2012; Gessain 
et  al., 2013; Shirinian et  al., 2013). The protein derived from the 
antisense transcripts produced from the 3′ LTR of HTLV-1, called 
HBZ, together with the hbz mRNA, has shown to play a crucial 
role in HTLV-1 replication and its associated pathologies (ATLL, 
HAM/TSP; Gaudray et al., 2002; Satou et al., 2006; Barbeau et al., 
2013; Barbeau and Mesnard, 2015; Tagaya et  al., 2019; Matsuoka 
and Mesnard, 2020). Indeed, the hbz mRNA promotes the 
proliferation of ATL cells while HBZ plays a central role in the 
process of oncogenesis and is interfering with many cellular 
processes (innate immune signaling, apoptosis, autophagy, DNA 
repair, and genes expression; Mitobe et  al., 2015; Zhao, 2016; 
Tagaya et  al., 2019; Matsuoka and Mesnard, 2020).

The HTLV-2, HTLV-3, and HTLV-4 nonconventional basic 
zipper (bZIP) proteins that are encoded by antisense transcripts 
are named ASP of HTLV-2/3/4 (APH-2, APH-3, and APH-4, 
respectively), and are functional synologs of HBZ (Halin et  al., 
2009; Larocque et  al., 2011). HBZ has been shown to interact 
via its bZIP domain with several cellular transcription factors 
such as CREB, CREB2, JunD, c-Jun, JunB, and the p65 subunit 
of the NF-B complex. By heterodimerizing with CREB, HBZ is 
preventing its recruitment to the 5’LTR and, therefore, inhibiting 
HTLV-1 sense transcription, which facilitates the entry of HTLV-
1-infected cells into latency (Matsuoka and Mesnard, 2020). 
Conversely, several studies showed that HBZ could have a positive 
impact on its own expression by stimulating the transcription 
from the 3’LTR through the binding of a complex including 
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JunD and Sp1 on the Sp1 binding sites located in the U5 region 
of the 3' LTR (Satou et  al., 2006; Gazon et  al., 2012). Altogether, 
HBZ plays an essential role in the regulation of HTLV-1 expression 
by acting as a negative regulator of the viral sense transcription, 
which in turns inhibit Tax-1 expression and viral particle production, 
and by positively modulating the viral antisense transcription 
and thus its own expression (Barbeau and Mesnard, 2015; 
Tagaya et  al., 2019; Matsuoka and Mesnard, 2020).

Like HBZ, APH-2 can interact with CREB and thus inhibit 
the transactivation of HTLV-2 sense transcription. However, 
APH-2 does not possess a classical bZIP domain and interacts 
with CREB through a leucine-rich pattern LXXLL. Unlike 
HBZ, APH-2 possesses the ability to interact directly with 
Tax-2 to inhibit the Tax/CREB-dependent sense transcription 
and to positively regulate JunB and c-Jun through an 
interaction involving its nonconventional bZIP domain 
(Barbeau and Mesnard, 2015; Fochi et  al., 2018; Harrod, 
2019; Martinez et  al., 2019). Although only few studies have 
been performed on APH-3 and APH-4, these antisense 
proteins display common features with HBZ and APH-2, 
suggesting that they might play an important role in HTLV-3 
and HTLV-4 infections. Like APH-2, but unlike HBZ, APH-3 
and APH-4 are able to activate c-Jun, JunB, and JunD 
through the interaction of their nonconventional bZIP domain 
with these factors. Although some of the functions of APH-2, 
APH-3, APH-4, and HBZ are divergent, APH-3 and APH-4 
share with HBZ and APH-2 the ability to inhibit retroviral 
sense transcription (Larocque et  al., 2011, 2014).

In 2013, STLV-1 spliced transcripts corresponding to 
HTLV-1 tax, and HTLV-1 hbz transcripts were identified 
in STLV-1-infected cells from naturally infected Japanese 
macaques (Miura et  al., 2013). The products of these 
transcripts, named Tax and SBZ, seem to share similar 
functions with their HTLV-1 counterparts (Miura et  al., 
2013). The identification of BLV microRNAs and the recent 
identification of BLV antisense transcripts represent a major 
shift in the understanding of BLV pathogenesis (Kincaid 
et  al., 2012; Rosewick et  al., 2013; Durkin et  al., 2016). 
Indeed, in contrast to the previously prevailing paradigm 
of a silent BLV provirus, these discoveries show that BLV 
provirus is producing viral microRNAs and antisense 
transcripts in all the tumors that were investigated. The 
consistent expression of these antisense transcripts in both 
leukemic and nonmalignant cells suggests that they are 
playing a crucial role in the virus life cycle and its tumorigenic 
potential (Durkin et  al., 2016). Besides, it has been shown 
that MLV can initiate transcription from the U3 region of 
the negative strand of its proviral genome to produce 
transcripts of negative polarity (Rasmussen et  al., 2010).

All these results suggest that antisense transcription might 
be  a rule rather than an exception in retroviruses. In this 
context, the study of the role exerted by antisense transcripts 
and potential/proven ASPs in other retroviruses, as well as in 
endogenous retroviruses, could be  of particular interest to 
enhance our understanding of the impact of these retroviruses 
on human biology and on numerous pathologies (Manghera 
et  al., 2017). However, antisense transcription is not limited 

to retroviruses and has also been described in numerous other 
viruses, such as herpesviruses (HVs).

Antisense Transcripts and Antisense 
Proteins in Herpesviruses
Antisense transcription has also been particularly studied in 
the Herpesviridae family. HVs are double-stranded DNA viruses 
which possess large genomes that encode hundreds of proteins. 
HV infections can remain unnoticed or on the contrary 
be  associated with a wide range of pathologies in their natural 
host (Mahalingam and Gilden, 2007; Griffiths et  al., 2015; 
Hammerschmidt, 2015; Yildirim et  al., 2015; Kennedy and 
Gershon, 2018; Jones, 2019; Saleh and Sharma, 2020; Sehl and 
Teifke, 2020). HV infections lead to persistent infections that 
are characterized by latency and lytic phases. Interestingly, the 
use of sense or antisense transcription within HVs seems to 
be strongly associated with these two distinct phases of infection 
(Rovnak et  al., 2015; Phelan et  al., 2017).

The molecular mechanisms underlying viral latency/
reactivation of HVs have been the subject of numerous 
studies. In the case of HSV-1, both types of infection can 
be  developed through the coexistence in the viral genome 
of two alternative gene expression programs that are notably 
under the control of epigenetic mechanisms (Rovnak et  al., 
2015). HSV-1 genome possesses a Unique Long (UL) region, 
which is flanked by the identical but inverted Repeat Longs 
(RLs), and a Unique Short (US) region, which is flanked 
by the identical but inverted Repeat Shorts (RS). During 
the lytic phase, a ternary complex, including the viral 
tegument protein VP16/host cell factor 1 (HCF1)/octamer 
binding protein 1 (OCT1), associated with CBP/p300 and 
lysine demethylases (LSD1), interacts with the promoters 
of very early viral genes, preventing the formation of repressive 
heterochromatin and activating the expression of very early 
proteins: ICP0, ICP4, ICP22, ICP27, and ICP47. These 
proteins then regulate the expression of early genes that 
are coding for proteins involved in DNA replication, with 
the exception of ICP47, which assists the virus in avoiding 
the host immune response, and late genes that are coding 
for capsid proteins, the tegument envelope, and the viral 
envelope. During latent infection, HSV-1 lytic genes are 
silenced and the only HSV-1 transcripts that are detected 
are named Latency Associated Transcripts (LATs) and map 
the RL (Stevens et  al., 1988; Phelan et  al., 2017). Among 
these transcripts, the first to be  described was a RNA of 
8.3  kb that is antisense to the ICP0 and ICP34 encoding 
genes. Later, spliced products, called “major LATs” of 2.0  kb 
and 1.5, were also characterized (Phelan et al., 2017). However, 
more recently, it has been shown that the region encoding 
the LATs is transcriptionally much more complex than 
originally described (Stevens et  al., 1988; Rovnak et  al., 
2015; Phelan et  al., 2017). Indeed, this region encodes also 
several additional noncoding RNAs and about a dozen 
miRNAs. A number of phenotypes were found to be associated 
with the expression of the LAT genes, and by extension to 
the LATs, including establishment and reactivation from 
latency, apoptosis regulation, neuronal survival, and 
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modulation of the innate immunity (Du et  al., 2011, 2012, 
2013; Phelan et  al., 2017; Watson et  al., 2018; Barrozo et  al., 
2020a,b). Through the viral life cycle, the epigenetic profile 
of the HSV-1 genome was shown to change in a LATs-
dependent manner. Indeed, during the transition into latency 
phase, repressive histone modifications (methylated H3K9) 
accumulate on HSV-1 promoters, and functional LAT genes 
are associated with more abundant heterochromatin. 
Interestingly, LAT-dependent heterochromatin modification 
on lytic virus promoters was found to be  linked to 
modifications of host PRC-2 (Kwiatkowski et  al., 2009; 
Cliffe et  al., 2013).

Antisense transcription has also been described for other 
species within the family of the Herpesviridae. Indeed, EBV 
(Flemington and Speck, 1990; Prang et  al., 1995; Speck et  al., 
1997; Duellman et  al., 2009; Daskalogianni et  al., 2015; Hau 
et  al., 2020) encodes an oncoprotein named Zta (BZLF1, 
ZEBRA, EB1), which is a bZIP transcription factor and a 
key regulator of the switch from latent to lytic phases of the 
virus life cycle (Lee et  al., 1987; Lieberman and Berk, 1990; 
Sinclair, 2003; Bhende et  al., 2004; Kenney, 2007; Tsai et  al., 
2009; Ramasubramanyan et  al., 2012; Gustems et  al., 2014; 
Hong et al., 2017; Germini et al., 2020). Antisense transcription 
has also been detected in HCMV (Ma et  al., 2012), VZV 
(Markus et al., 2017; Depledge et al., 2018; Bisht et al., 2020), 
SVV (Ou et  al., 2007), EHV1 and EHV4 (Holden et  al., 
1992; Borchers et  al., 1999; Ahn et  al., 2007), pseudorabies 
virus (PRV; Jiang et  al., 1998; Ciacci-Zanella et  al., 1999; 
Inman et al., 2004; Jones et al., 2006; Wu et al., 2012; Klionsky 
et  al., 2016; Wang et  al., 2018), and BHV-1 (Jiang et  al., 
1998; Ciacci-Zanella et  al., 1999; Inman et  al., 2004; 
Jones et  al., 2006; Glazov et  al., 2010).

Altogether, antisense transcription in viruses appears 
more widespread than expected and could highlight an 
evolutionary and functional convergence between families 
of viruses that are phylogenetically distant. Indeed, as we saw 
previously, the antisense proteins and/or the antisense 
transcripts may be  endorsed with important functions in 
viral infections, including the control of viral sense 
transcription and viral latency. Beyond that, viral antisense 
actors may be  essential to maintain a latent reservoir and 
to modulate virulence, which may in turn confer a tremendous 
selective advantage for the virus by maintaining a longer 
lasting source of spreading infection. Although several 
proposals have been made concerning the function of ASP 
and antisense transcripts in HIV-1 infection, the exact roles 
endorsed by these antisense actors in HIV-1 replication 
cycle and physiopathology still remain to be  defined (Clerc 
et al., 2011; Kobayashi-Ishihara et al., 2012; Laverdure et al., 
2012; Torresilla et  al., 2013; Saayman et  al., 2014; 
Zapata et  al., 2017; Affram et  al., 2019; Liu et  al., 2019).

DISCUSSION AND PERSPECTIVES

HIV-1 has the typical retrovirus genomic organization, and 
contains both regulatory and auxiliary genes. Until recently, 

retroviral antisense transcription was not evaluated or even 
considered as a new source of viral transcripts and proteins 
playing important roles in the viral life cycle. However, this 
viewpoint has evolved with accumulating evidence of antisense 
transcription in several retroviruses, and the discovery of 
HBZ plays different roles in the pathogenesis of HTLV-
mediated T-cell leukemia (Gaudray et  al., 2002; Barbeau 
and Mesnard, 2015; Matsuoka and Mesnard, 2020). The 
ability of HIV-1 to produce antisense transcripts and ASP 
in vitro has been well established; many studies have described 
the expression of antisense transcripts and ASP in various 
HIV-1 infected cells, including T-cells, monocyte-derived 
macrophages, and dendritic cells (Ludwig et al., 2006; Landry 
et  al., 2007; Clerc et  al., 2011; Kobayashi-Ishihara et  al., 
2012; Torresilla et  al., 2013; Affram et  al., 2019). Moreover, 
CD8+ T cells and antibodies targeting ASP were detected 
in HIV-1 infected patients (Vanhée-Brossollet et  al., 1995; 
Berger et  al., 2015; Bet et  al., 2015; Savoret et  al., 2020). 
Bioinformatic approaches demonstrated that a conserved asp 
gene was created, concomitant with the emergence of the 
HIV-1 pandemic group M (Cassan et  al., 2016), further 
supporting the idea that the asp gene might now be considered 
as the 10th gene of HIV-1. The presence of the overlapping 
asp gene in the −2 frame of the env gene shows that HIV-1 
has evolved to increase its coding capacity but, at the same 
time, has also increased the level of constraints imposed 
by overlapping genes.

The de novo creation of an overlapping gene on the antisense 
strand of the env gene, the expression of the “young” and 
pleiotropic protein ASP, together with the potential expression 
of various viral antisense transcripts possibly involved in viral 
latency, support the fact that HIV-1 is a complex retrovirus 
and provide new evidence of the HIV-1 evolution process. 
Future research avenues will be  directed to understand the 
precise functions of these new elements during the course of 
HIV-1 infection. The potential role of ASP and its transcripts 
in viral replication and latency, the ability of ASP to elicit 
both arms of adaptive immunity, and its potential expression 
at the surface of infected cells and viral particles could make 
ASP an interesting new target for antiretroviral treatment and 
vaccine strategies.
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GLOSSARY

Term Definition

ADCC Antibody dependent cell cytotoxicity

ADCP Antibody dependent phagocytosis
APH-2/3/4 Antisense protein of HTLV-2/3/4
ASP Antisense protein
ATLL Adult T cell leukemia/lymphoma
BHV-1 Bovine herpes virus type-1
BIV Bovine immunodeficiency virus
BLV Bovine leukemia virus
CDC Complement dependent cytotoxicity
CRE cAMP response element
CREB cAMP response element binding protein
CRF Circulating recombinant form
DNMT3a DNA methyltransferase 3a
EGFP Enhanced green fluorescent protein
EHV1/4 Equine herpesvirus 1 and 4
EZH2 Enhancer of zeste homolog 2
FCS Fluorescence correlation spectroscopy
FIV Feline immunodeficiency virus
HAM/TSP HTLV-1 associated myelopathy/topical spastic paraparesis
HBZ HTLV-1 Basic leucine zipper factor
HCF-1 Host cell factor 1
HCMV Human cytomegalovirus
HDAC Histone deacetylase
HIV-1 Human immunodeficiency virus type 1
HTLV-1/2/3/4 Human T-cell leukemia virus type-1/2/3/4
HV Herpesvirus
ICP Infected cell protein
LAT Latency associated transcripts
LC3 Microtubule-associated protein light chain 3
LIPS Luciferase immuno-precipitation system
Lnc Long non-coding
LSD1 Lysine demethylase
LTR Long terminal repeat
MLV Murine leukemia virus
OCT1 Octamer binding protein 1
ORF Open reading frame
PBMC Peripherical blood mononuclear cells
PHA Phytohaemagglutinin
PMA Phorbol myristate acetate
PRC2 Polycomb repressor complex 2
PRV Pseudorabies virus
RL Repeat longs
RRE Rev responsive element
RS Repeat shorts
SBZ STLV-1 basic leucine zipper factor
STLV-1 Simian T-Leukemia virus type 1
SVV Simian varicella virus
UL Unique long
US Unique short
V4/V5 Hypervariable region V4 and V5
VZV Varicella-zoster virus
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