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Serological methods serve as a direct or indirect means of pathogen infection diagnosis 
in plant and animal species, including humans. Dot-ELISA (DE) is an inexpensive and 
sensitive, solid-state version of the microplate enzyme-linked immunosorbent assay, with 
a broad range of applications in epidemiology. Yet, its applicability is limited by uncertainties 
in the qualitative output of the assay due to overlapping dot colorations of positive and 
negative samples, stemming mainly from the inherent color discrimination thresholds of 
the human eye. Here, we report a novel approach for unambiguous DE output evaluation 
by applying machine learning-based pattern recognition of image pixels of the blot using 
an impartial predictive model rather than human judgment. Supervised machine learning 
was used to train a classifier algorithm through a built multivariate logistic regression model 
based on the RGB (“Red,” “Green,” “Blue”) pixel attributes of a scanned DE output of 
samples of known infection status to a model pathogen (Lettuce big-vein associated 
virus). Based on the trained and cross-validated algorithm, pixel probabilities of unknown 
samples could be  predicted in scanned DE output images, which would then 
be reconstituted by pixels having probabilities above a cutoff. The cutoff may be selected 
at will to yield desirable false positive and false negative rates depending on the question 
at hand, thus allowing for proper dot classification of positive and negative samples and, 
hence, accurate diagnosis. Potential improvements and diagnostic applications of the 
proposed versatile method that translates unique pathogen antigens to the universal basic 
color language are discussed.

Keywords: dot-blot ELISA, machine learning, image analysis, serological assays, sensitivity and specificity, ROC 
curve, diagnostic performance

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.562199﻿&domain=pdf&date_stamp=2021-03-03
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.562199
https://creativecommons.org/licenses/by/4.0/
mailto:yianman@med.uoa.gr
mailto:inminz@gmail.com
https://orcid.org/0000-0001-7666-9198
https://orcid.org/0000-0003-0656-4715
https://orcid.org/0000-0002-0519-7776
https://orcid.org/0000-0002-6065-7368
https://doi.org/10.3389/fmicb.2021.562199
https://www.frontiersin.org/articles/10.3389/fmicb.2021.562199/full
https://www.frontiersin.org/articles/10.3389/fmicb.2021.562199/full
https://www.frontiersin.org/articles/10.3389/fmicb.2021.562199/full
https://www.frontiersin.org/articles/10.3389/fmicb.2021.562199/full


Anastassopoulou et al. Machine Learning for Dot-ELISA Diagnosis

Frontiers in Microbiology | www.frontiersin.org 2 March 2021 | Volume 12 | Article 562199

INTRODUCTION

Reliable and timely diagnosis of disease-causing pathogens is 
of paramount importance for maintaining optimal health for 
people, animals, and the environment under the integrated 
One Health approach (World Health Organization, 2018). One 
of the most widely used assays for pathogen detection is the 
enzyme-linked immunosorbent assay (ELISA); in its solid-state 
version, dot-ELISA (DE), samples are directly applied to or 
dotted on a nitrocellulose or nylon membrane and then probed 
for detection by specific antibodies in a chromogenic enzymatic 
reaction. DE is a rapid screening test that is at least as sensitive 
as ELISA, yet it is much cheaper and requires no special 
equipment or working conditions. As a result, DE has been 
adopted in a wide array of applications, ranging from disease 
diagnosis in humans (Rodkvamtook et  al., 2015; Subramanian 
et  al., 2016), animals (Fisa et  al., 1997), and plants (Savary 
et  al., 2012) to microbe and toxin detection in foods 
(Venkataramana et  al., 2015).

Dot-ELISA is a qualitative method designed to yield either 
a positive or negative result in a binary mode. The assay 
follows the ELISA architecture with similar direct or indirect 
versions that employ primary and secondary, enzyme-conjugated 
monoclonal or polyclonal antibodies for targeted antigen 
detection. In most DE applications, dots are colored by a 
formazan/indigo dye (Smejkal and Kaul, 2001), an in situ 
complex precipitate produced by alkaline-phosphatase (AP) 
5-bromo-4-chloro-3-indolyl phosphate/nitro blue tetrazolium 
(BCIP/NBT) substrate degradation. Output evaluation after 
color development is empirically eye-based; consequently, 
positive sample recognition is subjective (Pappas, 1994; Waner 
et  al., 1996) and particularly error-prone. Such errors may 
stem from overlapping dot colorations resulting from host 
pigment contamination (Chen et  al., 2012; Olkkonen and 
Ekroll, 2016), or from the inherent color discrimination 
thresholds concerning saturation and hue of the human eye 
(Krudy and Ladunga, 2001; Reinhard, 2008; Baraas and 
Zele, 2016; Olkkonen and Ekroll, 2016).

Two types of errors are possible in binary classification 
tests: false positives (FP) or “false alarms” and false negatives 
(FN) or “missing values,” referring to the incorrect recognition 
of true negatives (TN) as positives and true positives (TP) 
as negatives, respectively. Proper classification of TP and 
TN as such is known as sensitivity and specificity, 
correspondingly (Trevethan, 2017). The two error types are 
inversely related, and their rates must be  decided on a case-
by-case basis since the arbitrary choice of one over the 
other could have significant epidemiologic and/or economic 
repercussions. For example, the detection of quarantine or 
dangerous pathogens by diagnostic screening tests may require 
the adoption of a low cutoff and high sensitivity, which 
could yield increased numbers of FP, but it would also 
increase the probability of identifying all pathogens or infected 
individuals (or reduce the probability of missing any), thereby 
preventing the release of the pathogen to the environment 
or to uninfected individuals or populations. In contrast, 
selectively detecting a common pathogen in the presence 

of related species or unrelated signals (background noise) 
may necessitate the adoption of a high cutoff and specificity, 
thus reducing FP rates and costs associated with additional 
unnecessary diagnostic tests.

Analogously, accepting a priori as positives only the evident 
dark spots in a DE readout will result in a high rate of 
missing values (FN, leaving TP undetected), whereas accepting 
most or all colored dots as positive will result in high rates 
of FP (negatives mistakenly considered positives). Either 
erroneous classification will influence the outcome of diagnosis. 
A reliable method is therefore needed for non-subjectively 
discriminating positive and negative samples in DE outputs. 
Until now, apart from some procedural attempts for improving 
dot quality either by removing unspecific pigmentation in 
plant samples (Chen et  al., 2012), or by controlling the 
enzymatic reaction time during incubation (Lathwal and Sikes, 
2016), no work has been done on objectifying and improving 
DE output interpretation.

The increase of computational power and advances in 
information science in the last two decades have led to 
the revival of artificial intelligence (AI), a concept first 
introduced in the 1950s as “the science and engineering 
of making intelligent machines by simulating human 
intelligence without confining to methods that are biologically 
observable” (McCarthy, 1956). AI may be  described as a 
system’s ability to correctly interpret external data, to learn 
from such data, and to use those learnings to achieve specific 
goals and tasks through flexible adaptation, essentially 
mimicking the human brain. Supervised machine learning 
is a type of AI in which the learning process is directed 
by a training algorithm, usually in the form of a linear or 
generalized linear regression model (e.g., linear or logistic 
function), different types of classification trees (e.g., CART, 
random forests) or different neural network architectures. 
AI has been successfully exploited in many scientific fields 
and everyday life situations, from face and voice recognition 
to self-driving vehicles. In agricultural applications, it has 
been exploited to increase crop productivity, while AI has 
also been extensively employed in medical diagnostic 
procedures in conjunction with image analysis. However, 
up to this date AI has not been exploited in serodiagnostic 
techniques such as ELISA or DE, despite the need for 
correct classification of analyzed biological samples with 
these methods.

Herein, we describe an image pixel-based supervised machine 
learning method for DE output evaluation. To develop it, 
we  used, for convenience, two plant viruses, namely Lettuce 
big-vein associated virus (Mononegavirales; LBVaV) and Mirafiori 
lettuce big-vein virus (Serpentovirales; MiLBVV). Both viruses 
are transmitted by zoospores of the soil fungus Olpidium 
virulentus and can cause an economically important disease 
in lettuce known as “lettuce big-vein” (Roggero et  al., 2003). 
Although MiLBVV is currently considered the pathogen, the 
etiological relation of the two viruses to the disease has not 
been established as either virus or both can be  found in 
lettuce plants with or without symptoms (Roggero et al., 2003). 
Improving detectability in survey methods by controlling FP/
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FN ratios could help resolve similar epidemiological problems. 
We used negative and positive samples of LBVaV to construct 
a prototypic DE output. Out of this raster image, we extracted 
all pixels from the positive and negative dots and background, 
on which we trained a model supervised by a logistic function 
based on the pixel color attributes (Red, Green, and Blue or 
RGB) values of the positive and negative categories. The model 
was then used to evaluate DE outputs of LBVaV and the 
second virus, MiLBV, in diluted positive and negative controls 
as well as of LBVaV in samples of unknown status from 
open-field plants. Our results showed a highly effective model 
that classified dots of the two viruses with high accuracy. 
To the best of our knowledge, applying machine learning to 
accomplish this goal using an impartial predictive model rather 
than human judgment is novel.

MATERIALS AND METHODS

Dot-ELISA output evaluation may be  reduced to a binary 
classification problem since test samples can be either infected 
or not infected with a given pathogen. Machine learning can 
be  used to train a classifier algorithm on known sample 
attributes to predict the infection status of unknown samples. 
The following steps are key to this process: (1) prototypic 
DE dataset construction; (2) model selection with appropriate 
predictive variables of high discriminative power and supervised 
training of the classifier algorithm; (3) validation of the trained 
algorithm; (4) receiver operating characteristic (ROC) curve 
analysis and cutoff selection; (5) infection status prediction 
of unknown samples. An overview of the method is presented 
in Figure  1, while each step is described in the sections 
that follow.

Step 1: Prototypic DE Dataset 
Construction
The prototypic dataset (Figure  2) was constructed from a 
scanned output image of known positive and negative 
controls following DE undertaken according to standard 
protocols using the Bioblot apparatus (Bio-Rad Laboratories, 
Redmond, WA, United  States) and commercially available 
LBVaV antigens and specific antibodies (Prime Diagnostics, 
The Netherlands). Volumes of 100  μl of the following types 
of samples were loaded on the prototypic nitrocellulose 
membrane: (i) virus standard prepared according to the 
manufacturer’s instructions (1 OD in ELISA at 405  nm in 
30  min, Prime Diagnostics, The Netherlands), undiluted 
or diluted 1:2, 1:10, 1:50, 1:100, and 1:500  in 0.01  M PBS 
at pH  =  7.4 (positive controls); (ii) healthy lettuce extracts 
diluted 1:10 in the same phosphate buffer (negative controls); 
and (iii) buffer alone (additional negative control for assessing 
background noise). Positive, negative, and buffer controls 
were randomly distributed on the 96-well apparatus in 12, 
11, and 13 replicates, respectively. A blocking stage [5% 
skimmed milk in PBS plus 0.05% Tween (PBS-T)] was 
included after sample loading. The membrane was then 
processed with the corresponding specific secondary, 

AP-conjugated antibodies. Washing for 5  min with PBS-T 
was applied three times between each stage and after color 
development following incubation with BCIP/NBT substrate 
for 15–20  min. The blot was then dried on Wittman paper 
and scanned as a TIFF color image at a resolution of 
150 dpi.

Pixels in the scanned image of the prototypic DE dataset 
belonged to the following four categories: positive, negative, 
and buffer or background controls, reflecting the three types 
of loaded material and the area around them, correspondingly. 
The positive category was further divided into six subcategories 
reflecting the undiluted state or the five dilution levels of the 
virus standard. The prototypic dataset was created by manually 
selecting regions of each pixel category in the image (i.e., 
respective dots, but also including representative regions of 
the background) and storing and processing the X-Y coordinates 
and RGB information of the pixels using the ImageJ package 
(Schneider et al., 2012). Exploratory data analysis (Tukey, 1977) 
was used to identify patterns in the data that could be exploited 
in machine learning.

Step 2: Model Selection and Supervised 
Training of the Classifier Algorithm
The constructed prototypic DE dataset was used for model 
variable exploration and machine learning. Statistical analysis 
and training were performed by programming the proper library 
or function of the “R” statistical program (R Core Team, 2018). 
A multivariable logistic regression model was employed in 
which the log odds of infection status (i.e., “Yes” or “No”) 
was the dependent variable and the R, G, B attributes of the 
pixels were the predictor variables. The generalized linear model 
had the following form (Agresti, 2013):
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probabilities can be  obtained from the model according to 
the equation:
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To select the most appropriate predictors, the Akaike 
information criterion (AIC) value of different logit models 
was considered. Since AIC provides an estimate of the relative 
amount of information lost by a given model, the less 
information a model loses, the higher the quality of that 
model (Akaike, 1974; Hosmer et  al., 2013). Each model 
was constructed using a single predictor (i.e., R, G, or B), 
each of all possible pairwise predictor combinations (i.e., 
R  +  G, R  +  B, or G  +  B), or all three predictors combined 
(i.e., R  +  G  +  B). In all cases, the “Dilution” category and 
variable interactions were excluded at this stage for simplicity. 
Logistic regression was performed using the “glm” function 
in “R” (R Core Team, 2018).
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Step 3: Validation of the Trained Algorithm
Training was performed using the best fit logistic model and 
the prototypic subset. To avoid data overfitting (overtraining), 
an additional cross-validation step was undertaken using two 
random subsets obtained from the prototypic DE dataset by 
employing the “caTools” library (Tuszynski, 2018) in R 
(R Core Team, 2018): a training subset holding about 70% 
of pixels and a test subset holding the rest 30% of pixels of 
the original (prototypic) image (Figure  2). For validation, 
predictions on the “training” and “testing” subsets were made 
by the “predict” function in “R” based on the logistic training 

model and the training subset. Confusion matrices were 
constructed at 0.01 intervals for each randomly created dataset 
and critical diagnostic parameters, such as the cutoff, sensitivity, 
specificity, Accuracy, and Error, were calculated as follows: 
Sensitivity was estimated as TP/(TP  +  FN), Specificity as TN/
(TN  +  FP), Accuracy as (TP  +  TN)/(TP  +  TN  +  FP  +  FN), 
and Error as (FP  +  FN)/(TP  +  TN  +  FP  +  FN). Three more 
confusion matrix-based metrics (Chicco and Jurman, 2020), 
namely the F1, the Matthews correlation coefficient (MCC), 
and Precision, were also included to detect possible effects 
stemming from the slightly imbalanced nature of the training 

A E

BC

D

FIGURE 1 | Overview of the proposed machine learning approach for DE output evaluation that harnesses pixel information for dot classification and diagnosis in 
merely a few hundreds of seconds after running the blot using standard methods. The DE output is first scanned (at a resolution of 150 dpi) and the prototypic 
image is converted to a matrix, holding pixel position and color information for all pixels contained in the dots (A). The matrix is then randomly tessellated into a 
training and testing dataset at a 70:30 ratio. Next, training of the classifier algorithm (B) is supervised by a logistic model of choice which, following validation (C), is 
used for infection status predictions on the testing subset. Receiver operating characteristic (ROC) curve analysis allows for selection of an appropriate cutoff (D). 
The procedure of scanning the blot and harnessing its pixel information is repeated on a DE of unknown samples (E). Pixel probabilities of the unknown samples are 
predicted by the trained classifier and a new image of the blot, with dots consisting of pixels with probabilities above the selected cutoff, is reconstituted, allowing for 
proper dot classification and, hence, unambiguous diagnosis.
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categories. These metrics were calculated as follows: 
PREC  =  [TP/(FP  +  TP)], MCC  =  [(TP*TN)  −  (FP*FN)]/
[(TP  +  FP)*(TP  +  FN)*(TN  +  FP)*(TN  +  FN)]^0.5 and 
F1  =  (2*PREC*TP)/(PREC  +  TP). The optimal cutoff was 
estimated as the probability at which sensitivity and specificity 
differed the least. The above process was repeated 100 times 
using “R” (R Core Team, 2018). For validation purposes, the 
same diagnostic parameters of each random dataset were 
obtained using the “performance” function of the “ROCR” 
library (Sing et  al., 2005) in “R” (R Core Team, 2018).

To obtain 95% confidence intervals (CI) for the mean 
of each variable, the corresponding dataset containing a 
random sample (n  =  100) of each of the parameters was 
bootstrapped 10,000 times using the “boot” library (Davison 
and Hinkley, 1997) in “R” (R Core Team, 2018). To ensure 
reproducibility and integrity of the used datasets, which 
could be  influenced by stochasticity introduced during the 
dataset splitting, each of the 100 splitting events was controlled 
by the R base “set.seed” function, taking incrementally integer 
arguments from 1 to 100, with each integer corresponding 
to one splitting event.

Step 4: ROC Curve Analysis and Cutoff 
Selection
The ROC curve of each dataset was constructed using the 
“ROCR” library (Sing et  al., 2005) in “R.” Representative cutoffs 
and the corresponding sensitivity and specificity values were 
obtained from constructed ROC curves. Optimum cutoff selection 
and corresponding variables were obtained by finding the 
minimum absolute difference between “sensitivity” and “specificity” 
that coincided with the crossing point of the two variables. 
Area Under the Curve (AUC) was calculated at the selected 
cutoff. In addition, the AUC of the Precision-Recall plot (AUC_pr) 
was obtained to examine possible effects stemming from the 
slightly unbalanced categories (Saito and Rehmsmeier, 2015).

Step 5: Infection Status Prediction of 
Unknown Samples
To investigate the diagnostic performance of the method and 
its applicability to real-world situations, we  used lettuce plants 
grown in a field infested with the fungus Olpidium virulentus, 
a known vector of LBVaV (Roggero et  al., 2000). Sap from 

FIGURE 2 | Scanned image (at 150 dpi resolution) of the prototypic DE output used for training the classifier algorithm. Positive, negative, and buffer controls were 
randomly distributed on the membrane in 12, 11, and 13 replicates, respectively. The letters on top of the dots denote the Buffer (B) and the negative (N) controls, 
while the numbers 1, 2, 10, 50, 100, and 500 denote no dilution, or 1:2, 1:10, 1:50, 1:100, and 1:500 dilutions of the positive control (LBVaV virus standard, Prime 
Diagnostics, The Netherlands), respectively.
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lettuce leaves was extracted (1  g/10  ml) in phosphate buffer 
(0.01  M, pH  =  7.4) and centrifuged at low speed (10,000  g) 
for 10  min. The supernatant was collected and loaded onto 
nitrocellulose membranes, which were processed with LBVaV-
specific, AP-conjugated antibodies and NBT/BCIP substrate as 
described previously. To further examine the detection 
performance of the method for an antigen other than that on 
which the training model was based, we followed the described 
procedure for a DE blot loaded with representative dilutions 
of commercially available MilBVV positive and negative controls 
(Prime Diagnostics, The Netherlands). After color development 
and washing, dried sheets in each case were scanned into 
color images and the corresponding matrices with pixel coordinate 
information and RGB values were obtained by programming 
the “sys,” “NumPy,” and “pandas” libraries in Python ver. 3.5 
(Oliphant, 2007; McKinney, 2010; van der Walt et  al., 2011). 
Pixel probabilities of the unknown sample datasets were predicted 
using the “predict” function in “R” (R Core Team, 2018) and 
the trained subset logistic model. DE images of unknown 
samples were reconstituted at a broad range of cutoffs to 
investigate their effects on infection status predictions. Pictures 
were reconstituted by programming the “ggplot2” library 
(Wickham, 2016) in “R” (R Core Team, 2018) using pixels 
falling above the representative cutoffs of 0.05, 0.16, 0.5, 0.8, 
and 0.995 obtained from the ROC curve or from the described 
explorative confusion matrices, along with the corresponding 
pixel X-Y coordinates. The DE image of MiLBVV dilutions 
was reconstituted at the 0.13 cutoff.

Predicted Pixels’ Classification and Dot 
Infection Status
To further examine the association between predicted pixels’ 
classification and dot infection status, we  manually collected 
all X-Y coordinates and RGB information of the dots of the 
unknown samples using ImageJ (Schneider et  al., 2012). 
Subsequently, we made predictions using the trained algorithm 
and calculated the total positively and negatively classified pixels 
across the range of representative cutoffs, i.e., at 0.050, 0.135, 
0.500, 0.800, and 0.995. Then, using the mean number of 
pixels per dot, we  estimated the positive and negative dots 
corresponding to the reconstituted pictures of each of the 
examined cutoffs.

RESULTS

The New Approach for DE Output 
Evaluation: From Pixel Information to Dot 
Classification and Diagnosis
Our approach to evaluating DE outputs and predicting the 
infection status of samples followed five steps (Figure  1). 
First, a dot blot of a prototypic DE dataset that included 
known positive and negative control samples was scanned at 
a resolution of 150 dpi and a “Pixel Information Matrix” of 
this prototypic image was constructed with the X-Y position 
coordinates and RGB color information for the pixels of 

known infection status dots. We  also attempted to use higher 
resolution images (e.g., 300 or 600 dpi) without, however, 
any difference in performance, but with a considerable delay 
in analysis (data not shown). This process was followed by 
supervised training of a classifier algorithm to predict pixel 
probabilities based on a random subset of the prototypic 
image pixel information. The third step included the cross-
validation of the trained classifier algorithm by predicting 
pixel probabilities in a random subset of the original dataset 
not used for training, while the fourth involved confusion 
matrix and ROC curve analysis and selection of the appropriate 
cutoff value. Using the trained and validated classifier, pixel 
probability predictions could be made after matrix construction 
of DE readouts of unknown samples. DE image reconstitution 
of unknown samples at the selected cutoff allowed for proper 
dot classification and, hence, accurate diagnosis. The entire 
process, after running the blot using standard methods, could 
be  completed in a few seconds.

Harnessing Pixel Information of the 
Prototypic Image to Train the Classifier 
Algorithm
Negative controls in the prototypic DE output displayed a light 
olive-green color, readily distinguishable from the colors of 
other categories of samples by the naked eye (Figure  2). 
However, the color of positive controls ranged from dark purple 
in undiluted or low sample dilutions to light violet at higher 
sample dilutions, with lighter colorations at higher dilutions. 
Color hues tended to overlap between similar level dilutions, 
either at the high or low end (i.e., 1:50 vs. 1:100 or undiluted 
vs. 1:2, respectively), rendering eye-based dot 
discrimination uncertain.

Image conversion of the scanned prototypic membrane 
resulted in an (X, Y, Z) 663 × 458 × 3, 3D matrix of a total 
of 303,654 pixels, each having unique X-Y coordinates and a 
particular R, G, B triple integer combination defining its color. 
After pixel selection, the prototypic image dataset comprised 
65,310 observations (rows) and five variables (columns): the 
pixel color attributes, “Red” (R), “Green” (G), and “Blue” (B), 
“Sample dilution” and “Infection status.” In turn, the “Sample 
dilution” variable included six levels (i.e., the undiluted state 
and the five tested dilutions), whilst the “Infection status” 
variable included two levels, indicating the presence or absence 
of the pathogen. The total number of pixels of positive and 
negative samples were 14,907 and 50,403, respectively. The 
relative frequencies of pixels of the various categories of the 
prototypic dataset according to their infection status are presented 
in Table  1. The pixel information of the samples included in 
the prototypic DE image was harnessed to train the 
classifier algorithm.

Image Pixel Attributes of Positive vs. 
Negative Samples
Boxplot analysis of all pixels of samples in the prototypic 
DE dataset revealed unique RGB patterns by infection status 
(Figure  3; Table  2). In positive controls, the pixel intensity 
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of Green was consistently lower than that of the Red or 
Blue, whereas in negative controls the intensity of Green 
was equal to or greater than the Blue. In the buffer alone 
control, the pixel intensity of Green was also slightly lower 
than the Blue or Red. Yet, the distributions of the Green 
and Blue colors of the background area (around the dots) 
category were similar (and lower than the Red) and their 
medians tended to be  equal. These patterns were preserved 
when considering one pixel-wide line traversing each dot 
of the blot at a specific Y coordinate along the corresponding 
X coordinates (Figure  4). Blue and Green displayed the 
lowest pixel intensity in negative and positive controls, 
respectively, in all dilutions. In the highest dilution (i.e., 
1:500), although the color intensity was very low, the pattern 
analogies were maintained. Taken together, these results 
suggest that pixels of dots of samples in images of DE 

readouts contain pieces of specifically discriminative 
information that can be  exploited for model training 
and classification.

The RGB Model Displayed the Best 
Performance Characteristics for Infection 
Status Prediction
Among candidate models for infection status prediction, those 
with B, R, and G as single predictors were dismissed for having 
the highest AIC values (means  ±  SEM  =  29,592.0  ±  12.69, 
21,554.0 ± 11.62, and 20,449.1 ± 11.42, respectively). The R + G 
combination also had a similarly decreased AIC value 
(19,548.1  ±  11.52), while the AIC of R  +  B was still lowered, 
but at about a third of the R  +  G value (6,263.0  ±  9.42). 
Although the AIC value of the G  +  B pairwise combination 
was further reduced (2,395.0 ± 9.40), it was still larger compared 
to that of the model constructed using all predictors combined; 
R  +  G  +  B had the lowest AIC (2,382.2  ±  7.05) and was 
thus selected for training the classifier algorithm, although the 
G  +  B model is expected to work equally well. Using the 
selected model, the R, G, B variable coefficients  ±  SEM were 
all found to be  highly significant (p  <  10−8) and estimated at 
β1 = 0.080 ± 0.0152, β2 = −0.722 ± 0.0174, β3 = 0.543 ± 0.0140, 
respectively, implying a minor contribution of the R variable 
to positive pixel predictability and a substantial but reciprocal 
effect of the G and B variables.

The Cutoff (Positive/Negative Threshold) 
of Choice for Diagnosis
A comparison of the TP and TN pixel occurrences of the test 
subset to those predicted by the trained classifier algorithm 
provided an initial validation of our approach. Table 3 displays 
the corresponding confusion matrices at five representative 
cutoff values (0.050, 0.135, 0.500, 0.800, and 0.995). All three 
calculated diagnostic parameters (accuracy, sensitivity, and 

TABLE 1 | Relative frequencies of pixel categories of the prototypic dataset by 
infection status.

Sample type Dilution level No. of replicates Number of pixels

Positive controls No dilution 12 3,189
Positive controls 1:2 12 2,780
Positive controls 1:10 12 2,428
Positive controls 1:50 12 1,804
Positive controls 1:100 12 2,523
Positive controls 1:500 12 2,183
Positive pixels 
subtotal 14,907
Background (area 
around dots)

NA NA
44,993

Buffer alone No dilution 13 2,426
Negative controls No dilution 11 2,984
Negative pixels 
subtotal 50,403
Total 65,310

NA, Not Applicable.

FIGURE 3 | Box plots of relative color intensity of prototypic blot pixels of different categories. Numbers above the plots indicate the undiluted status (1) or dilutions 
of the positive control (1:2, 1:10, 1:50, 1:100, and 1:500), while letters indicate the Buffer alone (B), background area around the dots (BGR), and Negative 
(N) controls.
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FIGURE 4 | RGB pixel intensity vs. dot coloration patterns in a perceived one pixel-wide line. A four pixel-wide line (~6 pixels per mm) is actually shown here 
traversing the fourth row of the prototypic blot image at a representative point of the Y-axis (Y = 204). Each dot on the blot is a raster or bitmap image of ~200 
pixels. Numbers above the dots denote the undiluted status (1) or dilution factor of positive samples. N and B denote negative and buffer controls, respectively.

specificity) were very high (>0.94) across these cutoffs. As 
expected, when cutoff values increased, TP (sensitivity) and 
FP (false alarms) decreased, while TN (specificity) and FN 
(missing values) increased. The relative cost of misclassifying 
pixels at more or less stringent cutoff values becomes tangible 
in Figure 5 that shows the overlapping distributions of negative 
and positive pixels of the test subset of the prototypic image. 
Yielding the lowest FP and FN rates, the 0.135 cutoff appeared 
to offer the best trade-off among the various diagnostic 
performance parameters.

The chosen model with all three-color predictors displayed 
the best performance indicators at the 0.135  ±  0.0022 cutoff, 
which was the crossing point between sensitivity 
(0.98882 ± 0.000128) and specificity (0.98823 ± 0.000090) across 
the entire cutoff range (Figure  6). At this point, the two 
variables differed the least (Difference  =  0.0006, Table  3) and 
consequently, FP and FN rates were at their nadir. Accuracy 
was also superior for the three-predictor model at this cutoff 
(0.98845  ±  0.000093) and inaccuracy was about 
0.01155 ± 0.000093, which translates to about 230 faulty pixels 
out of the 19,593 pixels of the test subset. The excellent 
performance of the RGB model was also evidenced by the 

constructed ROC curve (Figure  7), which revealed an AUC 
value very closely approximating unity (0.99716  ±  0.000057). 
This value was almost identical to the AUC value of the 
Precision-Recall plot (0.99660  ±  0.000052), a metric suitable 
for evaluating imbalanced datasets (Saito and Rehmsmeier, 
2015). Similarly, the Precision, MCC, and F1 metrics, two 
diagnostic indicators of imbalanced training effects had values 
of 0.98921  ±  0.000089, 0.97870  ±  0.000138, and 
0.98935 ± 0.000070 respectively, suggesting an unaffected training 
process (Chicco and Jurman, 2020). Analogous values were 
obtained for these indicators for all representative cutoffs tested 
(i.e., 0.050, 0.500, 0.800, 0.995) (data not shown). The optimal 
cutoff of 0.135 corresponds to a 98.9% success rate of TP and 
TN (1  −  0.0112) predictions.

Unambiguous Dot Classification and 
Infection Status Prediction of Unknown 
Samples
We applied our method to test plants suspected for Lettuce 
big-vein associated virus (LBVaV) infection. On the original 
blot (Figure 8A), dots of negative and positive controls displayed 

TABLE 2 | Median, means, and SE of means of pixel color categories in which outliers have been removed (n = 65,108).

Categories
Median Mean SE means

  n
R G B R G B R G B

  Positive

No dilution 66 60 65 79 71 80 29.1 26.0 29.4 3,101
1:2 85 70 86 85 72 86 11.2 11.2 11.3 2,666
1:10 106 93 108 108 95 110 11.7 10.8 11.1 2,428
1:50 161 141 157 162 143 159 16.1 17.1 15.5 1,804
1:100 168 146 164 172 151 167 18.2 20.2 17.1 2,523
1:500 206 187 198 206 187 198 12.7 15.1 13.1 2,183

  Negative
Background 237 229 229 237 229 229 3.0 3.5 3.91 44,993
Buffer 228 218 221 228 218 221 8.3 9.7 9.54 2,426
Negative 165 147 116 166 148 119 14.6 15.1 18.3 2,984
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the light olive-green and purple color, respectively, as in the 
prototypic DE output (Figure  2). Therefore, the olive-green 
dots of unknown samples (e.g., C5:D5, C7:D7, E10:F10, and 
E12:F12, Figure  8A) resembling negative controls (G9:H9 to 
G12:H12) could be classified rather easily as virus-free. However, 
most dots of unknown samples displayed different shades of 
purple, ranging from cyclamen to deep violet. Some dots were 
lighter (e.g., C4:D4 and E4:F4), comparable (e.g., A12:B12 and 
C12:D12), or darker (e.g., A1:B1, A2:B2, E8:F8, and E9:F9) 
than the positive controls, rendering infection status 
determination by eye-based comparison uncertain. Application 
of our trained and validated algorithm cleared up the confusion. 
After matrix conversion and pixel probability prediction, the 
DE image of unknown samples was reconstituted at various 
cutoffs (Figures  8B-F), revealing truly positive samples with 
a very high probability of success. Positive controls produced 
a robust signal throughout the range of examined cutoffs, while 
negative controls did not produce a signal at any considered 
cutoff value, as was the case for the Buffer alone negative controls.

Table  4 shows the relative preponderance by increasing 
cutoff values of positive vs. negative pixels of unknown samples 
classified by the trained algorithm, as well as the corresponding 
dots calculated from pixels by accepting a mean value of 237 
pixels per dot, or actually detected in the reconstituted images 
of the DE output of unknown samples. As the cutoff increased, 
so did the negative pixels and the corresponding dots, either 
calculated from the pixels or actually detected (the two categories 
differed <3%, i.e., by a maximum of two dots out of the 72 
of unknown samples). The opposite trend was noted among 
positively detected pixels and the respective dots, the numbers 
of both of which decreased as the cutoff increased.

At the very low cutoff of 0.050, which corresponds to low 
specificity and low FN rates (Figure  8B), all dots suspected to 
be negative due to their color hue (light olive-green in Figure 8A) 

TABLE 3 | Comparison of diagnostic performance indicators at representative cutoffs generated from the respective confusion matrices of observed against predicted 
by the trained classifier algorithm pixel status in the test subset (n = 19,593).

Cutoff Confusion matrices of pixel status Diagnostic performance

  0.050

Predicted Accuracy 0.98173

Negative Positive Sensitivity 0.99217

  Observed
Negative 14,798 323 Specificity 0.97864

Positive 35 4,437 Difference 0.01353

  0.135

Predicted Accuracy 0.98836
Negative Positive Sensitivity 0.98882

  Observed
Negative 14,943 178 Specificity 0.98823
Positive 50 4,422 Difference 0.00059

  0.500

Predicted Accuracy 0.99433
Negative Positive Sensitivity 0.98323

  Observed
Negative 15,085 36 Specificity 0.99767
Positive 75 4,397 Difference −0.01439

  0.800

Predicted Accuracy 0.99234
Negative Positive Sensitivity 0.96847

  Observed
Negative 15,112 9 Specificity 0.99940
Positive 141 4,331 Difference −0.03093

  0.995

Predicted Accuracy 0.98816
Negative Positive Sensitivity 0.94879

  Observed
Negative 15,118 3 Specificity 0.99980
Positive 229 4,243 Difference −0.05101

FIGURE 5 | Histogram of stacked bars and the corresponding density 
curves showing the frequencies and density of classified pixels of the test 
subset of the prototypic image as negative (blue) or positive (orange). The 
length of each bar is proportional to the number of classified pixels at each 
probability class (defined by the bar width). The picture zooms at the range of 
probabilities between 0.05 and 0.99, concealing the high proportions of 
negatives (near zero) and positives (near one) to emphasize the overlapping 
between misclassified pixels. The black vertical line crossing at the selected 
cutoff (0.135 in this case) divides the plot into two halves that represent 
negative (below the cutoff) and positive (above the cutoff) predicted pixels. As 
the vertical line moves to the right (increasing cutoff), more TN are collected 
(blue bars to the right) at the cost of considering some orange bars (TP) as 
negatives (TN or specificity increase). When the line moves to the left 
(decreasing cutoff) more TP (orange bars) are detected at the cost of 
misconsidering some blue bars (TN) as orange (positives; TP or sensitivity 
increase). Selecting the appropriate cutoff for each diagnostic case is 
unavoidably a compromise that minimizes the effects of the least important 
error type.
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FIGURE 6 | Sensitivity and specificity of the test dataset across the entire 
cutoff range (0–1). The crossing point (red dot) of the two curves indicates the 
selected cutoff value (0.135), at the zenith of the TP (0.9888) and TN rates 
(0.9882), which corresponds to the nadir of FP and FN rates 
(1 − 0.9882 = 0.0118 and 1 − 0.9888 = 0.0112, respectively).

FIGURE 7 | Sensitivity vs. 1-Specificity (FP) plot of the test dataset (left panel), zooming into the top left-hand corner of the plot region (right panel). The blue 
shaded part of the plot in the left shows the Area Under the Curve (AUC). The selected cutoff of 0.135 (red dot) corresponds to a 98.9% success rate of TP and 
98.8% (1 − 0.0118) TN predictions.

were classified as such. Nevertheless, some dots that were practically 
indistinguishable by eye from positively classified pairs on the 
original blot also appeared to be  negative (e.g., A2:B2 and 
C12:D12 vs. A1:B1 and A12:B12, Figures  8A,B, respectively). 
One of the duplicate dots that gave a weak positive signal at 
the 0.050 cutoff (E4) appeared negative at the 0.135 cutoff, which 
corresponds to the lowest FP and FN rates (Figure  8C). At the 
more elevated cutoff of 0.500 (Figure  8D), some dots that 
appeared positive at the 0.135 cutoff were found to be  negative 
(e.g., E4:F4), whereas some others appeared sparsely populated 
by positive pixels (e.g., C8:D8, C10:D10, and E7:F7).

These findings are consistent with a trend towards increasing 
FN rates with higher cutoff values as also suggested by the pixel 
vs. dot data presented in Table  4. Thus, at the 0.800 cutoff 
more positive pixels were lost from the sparsely populated dots 
detected at the previous cutoff; some of these dots appeared to 
be negative (e.g., C8:D8), whereas some others were still positive 
(e.g., C3:D3, E8:F8; Figure  8E). At the highest cutoff examined 
(0.995), where sensitivity and FP rates are expected to be  even 
lower, dots yielding positive signals had the highest probability 
of being TP (Figure 8F). Here, only the darkest dots maintained 
their compactness, whilst most sparsely populated dots detected 
at the previous cutoff appeared negative (e.g., C3:D3 and E8:F8).

To test the versatility of the method, we  examined an 
additional DE output loaded with representative dilutions of 
Mirafiori lettuce big vein virus (MilBVV), a virus unrelated to 
the training procedure. All TP and TN samples were correctly 
predicted as such in the reconstituted image of the scanned 
DE output, corroborating the versatility of the method (Figure 9).

DISCUSSION

Diagnostic procedures for pathogens differ depending, inter 
alia, on the physiology of the infected organism. In animal 
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species including humans, diagnostic methods, such as nucleic 
acid testing, allow for the direct detection of the microorganism 
causing the infection, typically after an amplification step 
using, preferentially but not exclusively, the polymerase chain 
reaction (PCR), whilst indirect methods, such as serological 
assays, allow for the detection of antibodies against 
microorganism antigens. Pathogen detection in plants that 
lack an immune system do rely on the proper detection of 
the pathogen, but with a couple of notable exceptions: the 
amplification of specific targets through PCR is often proven 
difficult due to the presence of inhibitors in plant cells 

(Dorn et  al., 1999; Schrader et  al., 2012; Rački et  al., 2014; 
Lacroix et  al., 2016; Lardeux et  al., 2016; Suther and Moore, 
2019), whereas, the role of the detected pathogen component 
is rather obscure at least from the etiological point of view. 
In the case of viral plant pathogens, for instance, the capsid 
protein subunits or the virus particles containing the viral 
genome may be  detected simultaneously (Manoussopoulos 
and Tsagris, 2015), indicating the establishment of the virus 
in its host. ELISA and its inexpensive and even more sensitive, 
solid-state alternative DE are the methods of choice for 
quick and reliable pathogen diagnosis in both analytical 

A

B

C

D

E

F

FIGURE 8 | Scanned image of a DE output of lettuce samples suspected for LBVaV infection (A) and the corresponding images reconstituted from pixels applying 
cutoffs of 0.050 (B), 0.135 (C), 0.500 (D), 0.800 (E), and 0.995 (F). Duplicates of 36 samples of unknown infection status were loaded in [(A-F):(1–12)]. Lanes G 
and H contain duplicates of positive (+) controls (1–4), Buffer only (5–8), and negative (−) controls (9–12). Framed in red are two of the sets of dots of ambiguous 
diagnosis that appear similar in the original DE output (A). In the reconstituted images, however, where pixel information of dots has been harnessed, it becomes 
clear that dots A12:B12 are positive and C12:D12 negative.
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TABLE 4 | Relative numbers of predicted positive and negative pixels of dots of 
the DE output of unknown samples and the corresponding numbers of dots 
calculated from pixels or counted in the reconstituted images by increasing cutoff 
values (related to Figure 8).

Dots (n)

  Pixels (n)*
  Calculated from 

pixels**
  Detected on 
reconstituted 

images

Cutoff Positive Negative Positive Negative Positive Negative

0.050 14,782 7,939 62 34 60 36
0.135 14,281 8,440 60 36 59 37
0.500 12,691 10,030 54 42 53 43
0.800 11,377 11,344 48 48 46 50
0.995 9,874 12,847 42 54 43 53

*The total number of pixels selected from the 96 dots was 22,721.
**Dots were calculated from pixels by accepting a mean value of 237 pixels per dot. 
Images’ resolution was ~5.9 pixels/mm.

A

B

FIGURE 9 | Scanned image of a DE output of positive and negative controls of MilBVV (A) and reconstituted image (B) made by pixels with predicted probabilities 
above the 0.135 cutoff based on the LBVaV-trained model. Lanes A and B show duplicates of undiluted (1 and 5), and 1:5 (2) 1:10 (3), and 1:50 (4) dilutions of the 
positive control of MilBVV. Dots 6 and 7 are buffer only controls. Dots 8 to 12 contain the negative control of MilBVV undiluted (8, 12), and at 1:5 (9), 1:10 (10), and 
1:50 (11) dilutions. The translation of unique antigens, of MilBVV here, to the universal basic color language allows for its detection by the algorithm (model) we built, 
even though it was trained on the basis of a different virus, LBVaV.

and epidemiological surveys in plants (Henry Sum et al., 2017). 
DE has also been used for disease diagnosis in humans 
(Rodkvamtook et  al., 2015; Subramanian et  al., 2016) and 
animals (Fisa et  al., 1997), but mostly in resource-poor 
settings. The major obstacle limiting the generalized 
applicability of the method is uncertainties in DE output 
evaluation. In this work, we  present an innovative, flexible, 
and reliable unbiased approach through which unique pathogen 
antigens are translated into the universal, basic color language 
of pixels (RGB) that may be  used for unambiguous DE 
output evaluation.

The proposed method relies on supervised machine learning 
based on a logit (logistic) function that is used for prediction 
purposes. Machine learning is, in the broader sense, an AI procedure 
that enables a computer (machine) to identify patterns in big 
datasets on the basis of previous training on known data (Alpaydin, 
2014). Classification is a type of supervised machine learning in 
which the learning algorithm (model) is trained on a set of rules 
that enable the correct discrimination of items into categories 

(Raschka and Mirjalili, 2017). Depending on their dimensions 
and resolution, raster images consist of thousands to millions of 
pixels containing information that may be exploited for classification 
purposes. Raster images can be  obtained easily via a scanner or 
a similar device and, in turn, they can be  readily converted into 
3-D matrices and datasets, holding the pixel RGB attributes and 
X-Y position-specifying coordinates in the image. Our analysis 
showed that the RGB values of dots of DE outputs remained 
constant at different antigen dilutions, providing discriminating 
information suitable for training in machine learning applications. 
Differences in RGB patterns persisted even at the highest sample 
dilutions. Although not easily discriminable by eye evaluation, 
samples at high dilutions had distinguishable RGB patterns from 
those of buffer control or the background. Thus, DE blots scanned 
to raster images may be  used in machine training not only for 
discriminating negative from positive samples but also for 
distinguishing between low concentration antigens and background, 
a task currently challenging in serodiagnostic techniques.

To the best of our knowledge, machine learning has not 
been exploited for DE output evaluation. The method proposed 
herein is simple and requires no expensive accessories to run; 
a computer and a common portable/handheld scanner are all 
that is needed. The innovation at the heart of the procedure 
lies on the exploitation of image pixels, which convey invaluable 
information ideally suited for machine training, thereby allowing 
for predictions to be  made for unknown pixel status with 
measurable probabilities of success. Concerning previous work 
in the field, only a few attempts have been made mainly based 
on deep learning with most of them serving to complement 
other procedures. Thus, a deep learning approach has been 
employed to predict positives in ELISA microplates (Nath et al., 
2018) based on the training of an artificial neural network 
with microplate images of known sample status and the 
application of the trained algorithm on microplate images of 
unknown samples. In another report, machine learning was 
used as an additional step in a procedure used to evaluate 
transformed ELISA microplate images of a Cellphone-Based 
Hand-Held Microplate Reader (Berg et  al., 2015). In a more 
recent work, an AI system was presented based on supervised 
deep learning that outperformed human expertise in the 
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evaluation of mammograms for breast cancer prediction, 
demonstrating the great promise that such systems hold for 
diagnostic applications (McKinney et  al., 2020).

Enzyme-linked immunosorbent assay is a widely used method 
for serodiagnosis of many important human, animal, and plant 
pathogens. One drawback of the method is the need for 
sophisticated and expensive laboratory equipment that increases 
the per test cost. Another, perhaps more important disadvantage, 
is the lack of assessment of FP and FN rates that limits its 
application solely to high accepted cutoff (positive/negative 
threshold) values that correspond to increased FN, unavoidably 
leading to the loss of TP. Indeed, lacking a reliable method for 
cutoff estimation, the general rule of thumb for in-house ELISA 
microplate evaluation is the acceptance as positives only of those 
samples having OD values either two or three times the mean 
of negative controls (Crowther, 2009; Lardeux et  al., 2016), 
resulting in elevated FN rates. The situation is not less problematic 
for commercially available ELISA kits, where manufacturers often 
claim comparable sensitivity and specificity to other commercially 
available – and even licensed – ELISA kits, without elaborating 
further on the actual diagnostic performance of the assays.

However, serodiagnostic methods are ever important in both 
clinical, veterinary, and phytopathological practices, 
complementing the so-called molecular methods, exemplified 
by, but not restricted to, hybridization and PCR, or the recently 
developed advanced sequencing methods known as next (NGS) 
and third-generation (TGS) sequencing. Although extremely 
useful as an ultra-sensitive and highly specific diagnostic tool, 
PCR, in its various formats, needs laborious optimization and 
stringent conditions to avoid the risk of contamination, it is 
costly and time-consuming with rather low throughput since 
nucleic acid isolation and possibly reverse transcription steps 
have to precede it. The newly developed NGS and TGS, on 
the other hand, are highly informative for unknown or candidate 
pathogens, but are still very expensive for diagnostic purposes 
and they tend to yield results that are difficult to interpret, 
particularly in the field of etiological host-pathogen interactions. 
Compared to these approaches, serological methods are cheaper, 
require less sophisticated equipment, and are better suited for 
large surveys for the detection of known pathogens in established 
host-pathogen relationships. Serological monitoring is essential, 
in particular, to the design and evaluation of effective vaccination 
programs. DE inherits all advantages of the maternal ELISA 
application and overcomes most of its disadvantages pertaining 
to cost and the need for specialized equipment, rendering it 
an attractive alternative for serodiagnosis in epidemiologic 
research once the problem of output evaluation is resolved.

Besides fully addressing in an objective and reliable manner 
the issue of output evaluation, a major advantage of our method 
is that it allows for cutoff selection, thus enabling decisions 
to be  made on FP and FN acceptance rates suited to the 
diagnostic question at hand; furthermore, estimated probability 
values are calculated for TP, TN, accuracy and all types of 
errors. The trained model showed outstanding performance 
with high accuracy and very low FP and FN rates. The accepted 
values of FP and FN could be  easily selected through the 
generated ROC curve. These features potentially enhance assay 

reproducibility by eliminating signal variability among 
experiments arising from fluctuations in pathogen antigenicity 
levels or pathogen-antibody and/or antibody-conjugate affinities. 
Our findings demonstrate the unambiguous recognition of TP 
and TN dots in DE outputs, with certain probabilities of success, 
a feature missing from serodiagnostic applications. Another 
advantage of the method is the short time it requires since 
no image preprocessing is necessary and only a few tens of 
seconds, depending on the size of the image, are needed to 
scan the processed blot and reconstitute the image from pixels 
above the selected threshold.

Importantly, the method is both antigen- and control-
independent. As shown in the proof-of-concept experiment, the 
trained by the LBVaV antigen algorithm successfully detected 
all tested dilutions of the MilBVV antigen. The two lettuce 
big-vein disease-associated viruses belong to different classes and, 
as such, they have completely different molecular and particle 
structural properties. This universality stems from the fact that 
there is no relationship between the kind of antigen and the 
color produced; therefore, the method is highly versatile and 
appropriate for the serodiagnosis of antigens of any microorganism. 
The algorithm classifies image pixels based on their color intensity, 
rendering retraining and the inclusion of controls with each run 
unnecessary, so long as the same chromogenic substrate is used. 
The DE control-independence offers a great advantage over ELISA, 
where output evaluation is chiefly dependent on positive and 
negative controls, limiting the number of samples that can 
be  tested simultaneously and increasing cost.

The method can be further improved by training the algorithm 
with pixels from many more prototypic images, covering all 
possible dot colorations from the full range of dilutions, with 
emphasis on the lower end of the spectrum where positive 
signals turn blurry and indistinguishable from the background. 
In theory, the training dataset could be  developed by code 
that calculates the entire range of RGB values specific for the 
substrate spectrum of color intensities, thereby avoiding 
prototypic blot preparations which cannot easily cover the 
whole spectrum of colors. Both the incorporation of more 
exploratory variables (e.g., dilution levels) in the training model 
and the employment of different models, such as classification 
trees or random forest algorithms, could be  also explored. In 
addition, the whole procedure could be  further developed to 
a web-based application where the input will be  the scanned 
DE image of interest and the output will be  the reconstituted 
image showing the positive and negative dots along with useful 
statistical metadata.

Application of the described method could contribute to 
the rapid and reliable diagnosis of common or emerging 
pathogens in both developed and developing countries since 
serological methods are probably the most economical and 
rapidly applicable methods available.
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