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The current Coronavirus Disease 2019 (COVID-19) pandemic, with more than 111
million reported cases and 2,500,000 deaths worldwide (mortality rate currently
estimated at 2.2%), is a stark reminder that coronaviruses (CoV)-induced diseases
remain a major threat to humanity. COVID-19 is only the latest case of betacoronavirus
(B-CoV) epidemics/pandemics. In the last 20 years, two deadly CoV epidemics, Severe
Acute Respiratory Syndrome (SARS; fatality rate 9.6%) and Middle East Respiratory
Syndrome (MERS; fatality rate 34.7%), plus the emergence of HCoV-HKU1 which
causes the winter common cold (fatality rate 0.5%), were already a source of public
health concern. Betacoronaviruses can also be a threat for livestock, as evidenced by
the Swine Acute Diarrhea Syndrome (SADS) epizootic in pigs. These repeated outbreaks
of B-CoV-induced diseases raise the question of the dynamic of propagation of this
group of viruses in wildlife and human ecosystems. SARS-CoV, SARS-CoV-2, and
HCoV-HKU1 emerged in Asia, strongly suggesting the existence of a regional hot spot
for emergence. However, there might be other regional hot spots, as seen with MERS-
CoV, which emerged in the Arabian Peninsula. B-CoVs responsible for human respiratory
infections are closely related to bat-borne viruses. Bats are present worldwide and
their level of infection with CoVs is very high on all continents. However, there is
as yet no evidence of direct bat-to-human coronavirus infection. Transmission of -
CoV to humans is considered to occur accidentally through contact with susceptible
intermediate animal species. This zoonotic emergence is a complex process involving
not only bats, wildlife and natural ecosystems, but also many anthropogenic and societal
aspects. Here, we try to understand why only few hot spots of B-CoV emergence
have been identified despite worldwide bats and bat-borne g-CoV distribution. In this
work, we analyze and compare the natural and anthropogenic environments associated
with the emergence of B-CoV and outline conserved features likely to create favorable
conditions for a new epidemic. We suggest monitoring South and East Africa as well as
South America as these regions bring together many of the conditions that could make
them future hot spots.
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INTRODUCTION

The current pandemic of Coronavirus Disease 2019 (COVID-
19; Zhu et al,, 2019; Guan et al., 2020), which has caused an
estimated 2,500,000 deaths to date, is only the latest example
that viruses sometimes leave their sylvatic environment to
accidentally infect humans. The etiological agent of COVID-19,
SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus
2), is a betacoronavirus (B-CoV; Sarbecovirus) that shares many
genetic similarities with bat-borne B-CoV (Zhou P. et al., 2020;
Zhou H. et al., 2020) and, to a lower extent, with 3-CoV detected
in Malayan pangolins, Manis javanica (Liu et al., 2019). Before
COVID-19, two other major 3-CoV-related epidemics occurred.
The Severe Acute Respiratory Syndrome (SARS) in 2003, which
affected mostly Guangzhou, Hong Kong, Taiwan, and Canada
with exported cases around the world, and the Middle East
Respiratory Syndrome (MERS) in 2012, which was limited as an
outbreak in the Arabian Peninsula with cases exported to other
continents. COVID-19 is a true pandemic.

Prior to 2003, when SARS emerged in China, the
only coronaviruses known to infect humans were the
alphacoronaviruses (a-CoV) HCoV-229E and HCoV-OC43,
identified in the 1960s and responsible for the seasonal (winter)
common cold. Over the past 20 years, a significant increase in
the circulation of genetically related coronaviruses (CoVs) was
observed. Five human outbreaks of CoVs inducing respiratory
diseases were reported, including SARS-CoV (Severe Acute
Respiratory Syndrome Coronavirus), HCoV-NL63, HCoV-
HKU1, MERS-CoV (Middle East Respiratory syndrome
Coronavirus), and SARS-CoV-2. Other outbreaks will certainly
occur, although it is impossible to predict where and when
this will happen. The only way to counteract this threat is
to accumulate knowledge about viruses, their hosts and their
dynamic of transmission, identify regions with the characteristics
of potential hot-spots, and then improve regional monitoring
and develop warning and intervention tools. To this end, it is
important to explore the dynamic of CoVs in wildlife and the
reasons for their transfer to humans.

The “One Health” concept recognizes that human health
is linked to animal health and to ecosystems (Zinsstag
et al, 2005). We find the source of emerging communicable
diseases in our environment. CoVs (order Nidovirales, family
Coronaviridae, subfamily Coronavirinae) are enveloped
viruses with large plus-stranded RNA genomes of 26-32 kb.
According to the International Committee of Taxonomy of
Viruses (ICTV, 2020a), they were formerly classified into
three genera containing viruses pathogenic for mammals
(Alphacoronavirus and Betacoronavirus) and, foremost, birds
(Gammacoronavirus). These alpha-, beta-, and gamma-
coronaviruses were also referred to as CoV groups 1, 2, and
3 (Drexler et al, 2010). A new classification has recently
been proposed by ICTV (2020b). According to this new
classification, SARS-CoV 1is positioned as follows: realm
Riboviria, order Nidovirales, suborder Comidovirineae,
family Coronaviridae, subfamily Orthocoronavirinae, genus
Betacoronavirus, subgenus Sarbecovirus, species Severe acute
respiratory syndrome-related coronavirus, and MERS-CoV is

assigned to the genus Betacoronavirus, subgenus Merbecovirus.
The genus Betacoravirus includes the five following subgenera:
Embecovirus (e.g, HCoV-OC43, HCoV-HKU1), Hibecovirus
(e.g., Bat Hp-betacoronavirus Zhejiang2013), Merbecovirus
(e.g, MERS-CoV, Pipistrellus bat coronavirus HKUS5, and
Tylonycteris bat coronavirus HKU4), Nobecovirus (e.g, Rousettus
bat coronavirus HKU9), and Sarbecovirus (e.g, SARS-CoV,
SARS-CoV-2 and bat SARS-batCoV HKU3). In this article, we
consider and compare the different aspects involved in the three
major human epidemics/pandemics of coronaviruses, i.e., SARS,
MERS, and COVID-19.

OF BATS AND CORONAVIRUSES

Bats constitute a unique group of mammals of the order
Chiroptera, with no less than 1,230 species. Bats have been
recognized as an important source of zoonotic viruses, in
particular CoVs, which account for 31% of their virome (Lau
et al.,, 2010; Chen et al,, 2014; Han et al., 2015). More than
200 viruses from 28 families have been isolated or detected in
bats. Bats, along with rodents, are the most important source
of zoonotic viruses (Luis et al., 2013; O’Shea et al., 2014;
Mollentze and Streicker, 2020). However, how to explain that
bats are so much infected with CoVs? The origin of bats is
estimated around 64 million years, just following the Cretaceous-
Tertiary boundary (Teeling et al., 2005). The evolution of bats
is a very successful singular history among mammals that
led to an enormous diversity of species occupying different
environments. Indeed, bats have colonized most of the terrestrial
ecosystems. However, the main characteristic of bats, unique
among mammals, is their ability to fly. The evolution of
flight in bats seems to have selected along a unique set of
antiviral immune response genes that control virus propagation,
while limiting self-damaging inflammatory responses. Several
adaptations have been discovered in bat cells that enable robust
antiviral immune responses against RNA viruses (Subudhi et al.,
2019; Banerjee et al., 2020; Hayward et al., 2020). Bats display
a contracted IFN locus with only three functional IFN-a, but
constitutively and permanently expressed (Zhou et al., 2016).
This constitutive expression is a highly effective system for
controlling viral replication that may help explain the bats’
remarkable resistance to viruses (Omatsu et al., 2007; Storm et al.,
2018). Some species are migratory, a behavior that can lead to
the dissemination of viruses over a large area (Colombi et al,
2019). They also display a longer lifespan than most mammal
species of the same size. Some bat species are gregarious and
form colonies where individuals are in close contact, which can
provide opportunities for viral exchange. For example, some
bat colonies have more than one thousand individuals per
square meter (Serra-Cobo and Lopez-Roig, 2016). Owing to a
long coevolution between viruses and bats, an association was
developed between families or genera of viruses and bat genera.
The human a-CoV HCoV-229E described in the 1960s (Hamre
and Procknow, 1966) was reported to share a common ancestor
with Ghanaian Hipposideros spp. bats (Pfefferle et al., 2009). The
CoVs that have emerged in humans over the last twenty years
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and are suspected to originate from wildlife, all belong to the B-
CoV genus, either to lineage A/currently subgenera Embecovirus
(HCoV-HKUL1), lineage B/Sarbecovirus (SARS-CoV and SARS-
CoV-2), or lineage C/Merbecovirus (MERS-CoV) (ICTV, 2020b).
While bats and birds are considered hosts for ancestors of most
CoVs, lineage A B-CoVs have not been found in these animals,
but are rather considered to be related to the ChRCoV HKU24
from Chinese Rattus (Lau et al., 2015). Sarbecoviruses and
Merbecoviruses infecting humans and related viruses have been
found in bats. SARS-CoV, which emerged in humans in 2002-
2003, is considered to have diverged from bat-borne CoVs only a
few years before the outbreak of the epidemic (Lau et al., 2005,
2010). MERS-CoV, which emerged in 2012, has been reported
to be closely related to Ty-BatCoV HKU4 borne by Tylonycteris
pachypus and to Pi-BatCoV HKUS5 borne by Pipistrellus abramus
(Woo et al.,, 2007, 2012). CoV HKU4 and CoV HKUS5 exhibit
between 75.3 and 81.2% nucleotide identity, respectively, with
MERS-related CoVs. They have been reported in T. pachypus and
P. pipistrellus bats in China (Luo et al., 2018). These bat species
are also found in the Arabian Peninsula, where MERS emerged.
However, the only bat species in which MERS-CoV was found
in the Arabian Peninsula is Taphozous perforatus. One specimen
was captured in Bisha, Saudi Arabia, near the home of the MERS-
CoV index-case patient (Memish et al., 2013). A MERS-like virus,
85% identical to MERS-CoV (but with a highly divergent spike
protein gene), has also been reported in Neoromicia capensis
from South Africa (Ithete et al., 2013). Molecular clock dating
estimated that the divergence with the bat ancestor virus occurred
in mid-2011 (Cotten et al., 2013). SARS-CoV-2, which emerged
in 2019 in China shares 96% identity with BatCoV RaTG13
from Rhinolophus affinis (Zhou P. et al., 2020) and RmYNO02
from Rhinolophus malayanus (Zhou H. et al., 2020). The only
batCoV sequence ever found to be identical to that of human
CoV is the RNA-dependent RNA polymerase (RdRp) gene of the
MERS-CoV sequenced from T. perforatus in Saudi Arabia.

A GLOBAL DISTRIBUTION OF BATS AND
CORONAVIRUSES

Most studies agree that CoVs found in mammals are
evolutionally linked to ancestral bat-borne coronaviruses
(Hu et al, 2015). Although the accuracy of the prediction
remains difficult to evaluate, it was estimated that there are
at least 3,200 CoVs currently circulating in bats (Anthony
et al., 2017b). Consequently, bats play an important role in the
evolution of a-CoVs and B-CoVs (Drexler et al., 2014; Berto
etal,, 2017). A large-scale study conducted worldwide on 282 bat
species belonging to 12 families showed the presence of CoVs on
8.6% of bats, whereas the ratio was only 0.2% for non-bat species
(Anthony et al., 2017b). A survey conducted on 11 European bat
species revealed that the diversity and prevalence of bat CoVs
currently reported from Western Europe were much higher
than previously thought and included a SARS-CoV sister group
(Ar Gouilh et al., 2018). It is worth noting that the geographic
distribution of the bat species associated with SARS-CoV,
SARS-CoV-2, or MERS-CoV is not limited to the locations of

disease emergence in humans. These bats are largely distributed
over the old world (Figure 1A). Bats species associated with
Sarbecoviruses cover Eurasia from Western Europe to East
Asia, with a particularly significant prevalence in China and
Continental Southeast Asia (Figure 1A). They are also, although
to a lower extent, present in Sub-Saharan Africa (Figure 1A).
Bat species associated with Merbecoviruses are largely present
in Africa, but also in Europe and Asia (Figure 1B). Moreover,
bat B-CoVs related to SARS-CoV/SAR-CoV-2 and MERS are
also found in bats in different parts of the world, suggesting
that the emergence of related diseases could potentially occur
in locations other than China or the Arabian Peninsula.
However, no outbreaks of disease have yet occurred outside of
these two locations.

A MATTER OF COMPATIBILITY

A key in the emergence of an infectious disease is the
compatibility between the host and the virus, which is one of
the three conditions for disease emergence. This compatibility
is largely based on the presence of the adequate receptor for
the virus on animal and human cells. Coronaviruses contain a
surface-located spike, the S glycoprotein, which triggers infection
by mediating receptor recognition prior to membrane fusion.
Therefore, the spike protein sequence and 3-dimentional folding
of this molecule are considered to determine the "host-jump” of
coronaviruses (Lu et al., 2015). Human CoV, such as HCoV-OC43
and HCoV-HKU1, mainly use the histocompatibility antigen
HLA Class I as a receptor (Collins, 1993; Chan et al., 2009). The
HCoV-229E uses the aminopeptidase N/CD13 (Graham et al,,
2013). The HCoV-NL63, SARS-CoV, and SARS-CoV-2 use the
angiotensin converting enzyme 2 (ACE2), an 805 amino acid
transmembrane protein, to enter human cells (Simmons et al.,
2011; Graham et al., 2013; Qiu et al., 2020; Yan et al., 2020).
The MERS-CoV uses the dipeptidylpeptidase 4 (DPP4)/CD26 for
binding to human cells (Millet and Whittaker, 2014). In SARS-
CoV, the S1 domain of the spike protein mediates ACE2-receptor
attachment, a transmembrane peptidase regulating the renin-
angiotensin-aldosterone system (Lambert et al., 2005; Devaux
et al., 2020b). The viral receptor binding domain (RBD) was
mapped into a region of the spike subdomain 1 or S1 located
between the amino acid residues 318 and 510 (Babcock et al.,
2004). A co-crystal structure of ACE2 and SARS-CoV spike
RBD region indicated that residues 424-494 were involved in
the direct interaction with the first a-helix, Lys353, and the
proximal residues at the N-terminus of the B-sheet 5 of ACE2
(Li et al., 2005b). Following S1 domain binding to ACE2, the S2
domain undergoes transconformational modifications allowing
membrane fusion. Most amino acid residues, essential for the
SARS-CoV binding to ACE2, were conserved in the SARS-CoV-2
spike S1 domain. The structural basis for SARS-CoV2 interaction
with ACE2 was also solved (Yan et al., 2020). Six RBD amino
acids from the SARS-CoV S1 have been shown to be critical for
binding to ACE2, namely 1455, F486, Q493, S494, N501, and
Y505 in SARS-CoV-2 (Andersen et al., 2020). The polymorphism
of the ACE2 receptor at amino acid positions 31, 41, 82, 90, and
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FIGURE 1 | Distribution of bat species according to the group of coronavirus. (a) Distribution of bat species displaying an ACE2 receptor and associated with
Sarbecoviruses. (b) Distribution of bat species displaying a DPP4 receptor and associated with Merbecoviruses.

353 (with the most favorable residues being K31, Y41, N82, N90,
K353) was used to estimate species susceptibility to SARS-CoV-2
(Devaux et al., 2021). Species such as Macaca mulatta, Felis catus,
Rhinolophus sinicus, M. javanica, or Pelodiscus sinensis have been
shown to be susceptible to SARS-CoV-2 infection. The analysis
of the 3-D structures of different ACE2 receptors with respect
to the amino acids found in the region 30-41, 82-93, and 353-
358 was performed after designing a backbone from the Homo
sapiens ACE2 in which the corresponding regions from R. sinicus,
Mus musculus, and Xenopus tropicalis species were substituted to
that of humans. These substitutions did not change the global 3-
D structure of the molecule, but slightly altered the electrostatic
pattern of the molecule with possible consequences on the affinity
of the SARS-CoV-2 spike for these different ACE2 receptors.
Several in silico studies have contributed to lengthen the list of
species potentially capable of replicating the virus (Liu Z. et al,,
2020; Luan et al,, 2020; Qiu et al.,, 2020). Although in silico
studies have the advantage of being able to quickly investigate
the probability of infection among a large number of species,
there is no substitute for in vivo experimentation. A recent
study (Shi et al., 2020), investigated the in vivo susceptibility of
animals to replicate SARS-CoV-2 and reported that the virus
replicated efficiently in ferrets and cats, but poorly in dogs,
pigs, chicken, and ducks. The polymorphism of ACE2 in human
populations has recently been well documented (Cao et al., 2020),
suggesting possible differences in human susceptibility to the
virus. Based on in silico analyses, it was also reported that the
DDP4 receptor could play a role in COVID-19 severity as a
secondary receptor (Bassendine et al., 2020; Vankadari and Wilce,
2020). However, this interaction was not confirmed in vitro
(Hoffmann et al., 2020).

With respect to MERS-CoV, the viral spike binds to the
DPP4/CD26 transmembrane protein on human cells (Raj et al.,

2013; Wang et al.,, 2013). This molecule is a peptidase involved
in T cell activation (Wagner et al, 2016). The structure of
the MERS-CoV spike-receptor -binding domain complexed
with human receptor DPP4 was deciphered (Cui et al., 2013;
Wang et al., 2013). Amino acid positions 267, 291, and 346-
348 are essential for virus binding. The K267E, K267N, and
A291P substitutions and the A346-348 deletion strongly reduces
binding and penetration of MERS-CoV into the target cells as
well as viral replication (Kleine-Weber et al., 2020). As observed
in human Sarbecoviruses, the S protein of MERS-CoV undergoes
a proteolytic activation following interaction with DPP4 (Shirato
et al, 2013). A multiple sequence alignment of the DPP4
sequences from 16 species is presented as Supplementary Data,
which includes H. sapiens (Hsap); M. mulatta (Mmul); Camelus
dromedarius (Cdro); Camelus bactrianus (Cbac); Camelus ferus
(Cfer); Sus scrofa (Sscr); Mustela putorius furo (Mput), F. catus
(Fcat); Rattus rattus (Rrat); M. musculus (Mmus); P. sinensis
(Psin); M. javanica (Mjav); R. sinicus (Rsin); Rhinolophus
ferrumequinum (Rfer); Pipistrellus abramus (Pabr); and Rousettus
leschenaultii (Rles). The DPP4 protein tree was consistent with
the species evolution, i.e., the DPP4 sequence from human
was very close to that of M. mulatta, the DPP4 from the
three camel species segregated together, the DPP4 from bats
segregated into two groups, one comprising Psin, Tpac, and
Pabr, and the other containing Rsin and Rfer (Supplementary
Data). Figure 2A illustrates the polymorphism of DPP4 within
the region known to be critical for MERS-CoV spike binding.
Significant differences can be observed between species. The
Hsap and Cdro DPP4 sequences were relatively conserved
and share the critical amino acids W187, K267, 1294, 1295,
H298, R317, H336, and Q344. However, the mutations T288V
and K392R were observed. When the DPP4 from H. sapiens
was compared to the DPP4 from R. sinicus, an increased
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FIGURE 2 | Polymorphism of the DPP4 receptor. (A) DPP4 multiple sequence alignments. Schematic representation of the DPP4 protein organization (upper panel).

sequence alignment (EMBL-EBI bioinformatic tool; Copyright EMBL 2020), spanning the 181-420 region of DPP4 from Pipistrella abramus (Pabr), Rhinolophus
sinicus (Rsin), Homo sapiens (Hsap), and Camelus dromedarius (Cdro) is shown (lower panel). All DPP4 sequences were downloaded from Genbank (NCBI): Homo
sapiens (GenBank: AAH13329.2); Camelus dromedarius (GenBank: AlG55259.1); Rhinolophus sinicus (GenBank: AZ092863.1); Pipistrellus abramus (GenBank:
AZ0922861.1). Within the amino acid sequences of DPP4 important for MERS-CoV spike binding, the conserved amino acids are highlighted in yellow, those critical

potential of the DPP4 receptor. The 3-D structure of DPP4 was retrieved according to the published data (PDB : 6M1D and 4L72). Critical amino acid sequences
required to allow coronaviruses spike binding to human DPP4 were substituted by the corresponding sequence from Rhinolophus sinicus, Pipistrella abramus and
Camelus dromedarius into a human DPP4 backbone sequence to determine whether or not these substitutions may change the 3-D structure of the receptors.

electrostatic potential surfaces of the human receptors and their modified chimeric versions. The red color indicates an excess of negative charges near the surface
and the blue color arises from a positively charged surface, while white is neutral.
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was performed using the Phyre2 server (Kelley et al., 2015). The PyMOL 1.8.0 software (https://sourceforge.
aptive Poisson-Boltzmann Solver (APBS) tools plugin (https://pymolwiki.org/index.php/APBS) was used to generate
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diversity was found in bats with W187S, T288V, R336G, and
K392Q substitutions. It could be hypothesized that the valine
at position 28, common to bats and dromedaries, might have
been important in the transmission of a MERS-CoV-like virus
from bats to dromedary camels. The in silico replacement of
the peptide segments 183-189, 262-269, 286-294, and 343-
353 from H. sapiens (Hsap) by the corresponding sequences
of DPP4 from C. dromedarius (Cdro), P. abramus (Pabr), and
R. sinicus (Rsin) did not change the global 3-D structure of the
molecule, but could slightly alter the electrostatic pattern of the
molecule (Figure 2B). While these in silico studies can highlight
an interspecies DPP4 polymorphism and visualize electrostatic
variations that could relate to a higher or lesser susceptibility to
the virus, there is a major limitation in that they only take into
account the receptor component (RBD), without considering the
global polymorphism of the MERS-CoV-like spikes.

THE APPARENT “MULTI-HOST
PROCESS” OF CORONAVIRUS
EMERGENCE

An explanation for the limited number of hot-spots for
coronaviruses emergence was found in the complex process of
disease emergence. The presence of viruses in bats does not
appear to be sufficient to trigger an epidemic in the human
population. Although direct transmission has been demonstrated
for some bat viruses, such as the Australian Bat Lyssavirus or
the Duvenhage virus (Tignor et al., 1977; Hanna et al., 2000;
Paweska et al, 2006; Afelt et al., 2018), there are currently
no known cases of direct transmission of CoV from bats to
humans. This led to the concept that intermediate hosts are
necessary for the transfer of CoVs to humans and perhaps for
humanization, i.e., adaptation to human receptors (Wu et al,,
2012;Li,2013). Both SARS-CoV and SARS-CoV-2 are considered
to have originated from Rhinolophus bats in China (Zhou P. et al.,
2020; Zhou H. et al., 2020). Indeed, Sarbecoviruses, which are
very similar to SARS-CoV-2, have been described in the Chinese
horseshoe bats R. affinis (Zhou P. et al., 2020) and R. malayanus
(Zhou H. et al., 2020). However, no SARS-CoV was found in
bats. Until now, no intermediary in the transfer of SARS-CoV
and SARS-CoV-2 to humans has been formally identified. The
masked palm civet, Paguma larvata, has been considered as
intermediary for SARS (Guan et al.,, 2003; Watts, 2004), and the
pangolin, M. javanica, has been accused of being responsible for
the transmission of the SARS-CoV-2 to humans (Han, 2020; Liu
et al., 2019; Liu Z. et al., 2020; Andersen et al., 2020), but these
hypotheses have recently been contradicted (Frutos et al., 2020b).
Regarding SARS-CoV-2, several animal species were considered
to be possible intermediaries, i.e. susceptible hosts which can be
infected and are directly involved in the transmission to humans,
besides pangolin, including cat, dog, cow, buffalo, goat, sheep,
swine, civet, hamster, turtle, and pigeon (Devaux et al., 2021; Luan
et al., 2020; Qiu et al., 2020).

The animal intermediates, if any, for both SARS-CoV and
SARS-Cov-2, still remain to be identified. The full length genome
sequence of viruses circulating in wildlife could provide very

valuable information regarding the origin of these viruses.
Unfortunately, the number of full length CoV genomes in
databases is generally limited to viruses isolated from humans,
animal hosts considered as intermediaries and few bat species,
usually from the region of emergence and at a time of epidemics.
Most bat CoV sequences available are coming from phylogenetic
studies and are thus often limited to the RdRp. Although the -
CoVss closely related to SARS_CoV and SARS-CoV-2 are mostly
found in Asian bats, some circulate in European bats such
as R. ferrumequinum, Rhinolophus mehelyi, Rhinolophus blasii,
or Rhinolophus euryale (Figure 3). Beta-coronaviruses more
distantly related are also circulating in European bats, such as
R. blasii, R. ferrumequinum, Myotis daubentonii, Miniopterus
schreibersii, or Nyctalus leisleri (Figure 3). The phylogenetic
analysis of the RdRp gene shows two different situations with
respect to SARS-CoV and SARS-CoV-2 and their respective
suspected intermediaries. SARS-CoV displays the same RdRp
as viruses isolated from masked palm civets, both at the gene
and protein levels (Figure 3 and Supplementary Figure 1).
The RdRp from SARS-CoV-2 is different from that of B-CoV
from pangolin both with respect to the gene (Figure 3) and the
protein (Supplementary Figure 1). Human and pangolin viruses
cluster separately (Figure 3 and Supplementary Figure 1). The
human SARS-CoV-2 is more closely related to the virus from
the horseshoe bats R. affinis and R. malayanus (Figure 3 and
Supplementary Figure 1) than to that of pangolin. Interestingly,
the RdRp of the pangolin virus seems to have diverged from
that of bats and human viruses (Figure 3 and Supplementary
Figure 1). However, the transition/transversion ratio (Ts/Tv)
displayed by these sequences is lower than 1 (0.971). This
indicates that the genome is saturated, i.e., all possible mutations
exist in each site, and therefore the linear correlation between
time and the number of mutations is no longer valid. The
consequence is that phylogeny and molecular clocks might
be biased (Davalos and Perkins, 2008; Duchéne et al., 2015).
Nevertheless, the protein distance is significant and is more
reliable than the gene phylogeny. In this case, both the gene
and protein analyses are congruent. Although the number of
sequences of the spike gene from European bats is very limited,
a similar feature is found with respect to masked palm civet and
pangolin. They both make separate cluster, with, in the case of
SARS-CoV-2 a closer relationship with the spike gene from the
R. affinis raTG13 than with that from pangolin (Supplementary
Figure 1). These spike genomic sequences also display a Ts/Tv
ratio very close to 1 (1.050) indicative of a situation very
close to full genome saturation. Nevertheless, the analysis of
the spike gene and protein are congruent and confirm the
conclusions from the RdRp analysis, albeit with some slight
differences. Both gene and protein analyses show the parallel
but separate clustering of civet and human SARS-CoV with a
close relationship with a virus from R. sinicus (Supplementary
Figures 2, 3). SARS-CoV-2 from human and pangolin show the
same distribution as with RdRP. They both cluster separately
with the human SARS-CoV-2 being a lot closer to the virus
from R. affinis (Supplementary Figures 2, 3). The conclusion is
that both the masked palm civet and the pangolin are parallel
hosts, i.e., susceptible hosts infected along with humans, but
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FIGURE 3 | Phylogenetic analysis of Sarbecoviruses RdRp genes. The alignment of the full RdRp genes was performed with MUSCLE from the SeaView package
(Gouy et al., 2010). The tree was built using the maximum likelihood method under the GTR model with 500 repeats. The tree was rooted using the RdRp sequence
of a MERS-CoV from Camelus dromedarius (KT368883) as outgroup. Violet: RdRp sequences from human SARS-CoV-2. Green: RdRp sequences from pangolins’
Sarbecoviruses. Red: RdRp sequences from SARS-CoV. Sample names are built with the GenBank accession number followed by a four-letter code identifying the
species. The species codes are as follows: Asto, Aselliscus stoliczkanus; Cpli, Chaerephon plicata; Hsap, Homo sapiens; Mdau, Myotis daubentonii; Mjav, Manis
javanica; Msch, Miniopterus schreibersii; Nlei, Nyctalus leisleri; Plar, Paguma larvata; Pnat, Pipistrellus nathusii; Ppyg, Pipistrellus pygmaeus; Raff, Rhinolophus
affinis; Rbla, Rhinolophus blasii; Reur, Rhinolophus euryale; Rfer, Rhinolophus ferrumequinum; Rmac, Rhinophilus maculatus; Rmal, Rhinolophus malayanus; Rmeh,
Rhinolophus mehelyi; Rmon, Rhinophilus monoceros; Rpus, Rhinolophus pusillus; Rsin, Rhinolophus sinensis; Rspp, Rhinolophus unidentified species; NA, Not
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not responsible for the transmission to humans, rather than
intermediaries, i.e., susceptible hosts which are infected and are
directly involved in the transmission to humans, a conclusion
confirming previous reports (Tu et al., 2004; Han, 2020; Liu
P. et al, 2020). The circulation of human coronaviruses in
other mammals is not limited to SARS-CoV and SARS-CoV-2.
The human HCoV-229E shares common ancestors with alpha-
CoVs from the bat Hipposideros caffer ruber (Pfefferle et al.,
2009) and a virus infecting captive alpacas (Vicugna pacos),
while another related virus infects camels (Corman et al,
2016). HCoV-NL63 displays sequence similarities with the bat
Perimyotis subflavus CoV ARCoV.2, and can replicate in cell
lines derived from the lungs of tricolored bats (Huynh et al.,
2012). MERS-CoV is another example. MERS-CoV is closely
related to both bat CoV HKU4 (found in Tylonycteris bats)
and bat CoV HKUS5 (found in Pipistrellus bats). The MERS
epidemic was attributed to a coronavirus probably initially
present in Pipistrellus (Wang et al., 2014; Anthony et al., 2017a)
or Taphozous bats (Memish et al, 2013) and transmitted to
humans by dromedaries, C. dromaderius (Azhar et al.,, 2014;
Haagmans et al., 2014; Hemida et al., 2014; Memish et al., 2014).
In the case of MERS, it is not clear whether dromedaries were
intermediaries or parallel hosts. For both the RdRp and spike
genes, the same sequences are found in human and dromedary
viruses (Figure 4 and Supplementary Figure 4). The genome of
the Merbecoviruses is also close to saturation, although the Ts/Tv
ratio is slightly above 1 for both the RdRp and spike genes with
values of 1.220 and 1.254, respectively. The protein tree confirms
this distribution (Supplementary Figures 5, 6). However, it
might be possible that humans also infect dromedaries and that
a double-sense circulation may therefore exist. A MERS-CoV
found in a T. perforatus bat in Saudi Arabia displayed the exact
same RdRp sequence as a MERS-CoV from a human patient
(Figure 5; Memish et al., 2013). Interestingly, the RARp sequence
of both the human and T. perforatus viruses slightly differ from
all the other MERS-CoV’s isolated from humans and dromedaries
(Figure 4). No other MERS-CoV has been found in any other
bat species. However, a Merbecovirus sequence amplified from
the South African Bat N. capensis was found to be closely
related to MERS-CoV based on the RdRp gene (Figure 4). When
considering the spike gene and protein, other Merbecoviruses
found in Pipistrellus hesperidus in Uganda clustered with the
viruses from N. capensis (Supplementary Figures 6, 7).

EMERGENCE OF A UNIQUE VIRUS
POPULATION FROM A
METAPOPULATION

Coronaviruses, and other viruses, are organized in
metapopulations, i.e., a population of populations (Levins,
1969). A metapopulation is composed of distinct populations
that share most of the genetic background, but also differ
from each other for part of it. These populations cover the
whole area of distribution of the metapopulation. Viruses
display an additional dimension in population dispersion, since
they live in other living organisms, themselves organized in

metapopulations covering an area of distribution. Furthermore,
coronaviruses, like other RNA viruses, display a quasispecies
organization, which is host driven (Xu et al., 2004; Song et al.,
2005; Tang et al., 2006; Zhang et al., 2007; Briese et al., 2014;
Karamitros et al., 2020). Taken together, these populational
traits give rise to a great diversity of viral populations, and
therefore genotypes. The disease emergence event concerns
one given population of virus among a multitude. What is
described as “The virus” responsible for a disease is therefore
not a microorganism selected for human pathogenesis, but
only one possibility among many. The emerging virus is simply
one given population of virus within a multitude of genetically
related populations, i.e., a metapopulation, which by chance,
hence the accidental nature of disease emergence, was exposed to
the unique conjunction of biological and societal events leading
to the emergence of a disease. It is very unlikely that another
accidental conjunction of events will lead to the emergence of
the very same single population of virus. For a given group of
virus, two independent events of emergence will concern two
different populations that will be very closely related since they
belong to the same metapopulation, but will also be genetically
distinct since they correspond to two separate populations
within this metapopulation. This is what has been observed with
SARS-CoV and SARS-CoV-2, causing SARS and COVID-19,
respectively. Beyond coronaviruses, this is what is observed with
the flaviviruses responsible for dengue. Four different dengue
viruses are circulating in humans, DENV1, DENV2, DENV3,
and DENV4. These viruses are simultaneously very similar
and genetically and serologically different. These four viruses
are resulting from four independent events of emergence in
humans from the same sylvatic viral metapopulation (Moncayo
et al.,, 2004; Vasilakis et al.,, 2011). There is therefore nothing
exceptional in having two closely related SARS viruses that
emerged a few years apart and others may emerge in the future.

THE SOCIETAL ENVIRONMENT OF THE
EMERGENCE OF CORONAVIRUSES

The circulation of CoVs involves bats but also other mammals or
birds, and passages from bats to other animals might therefore be
relatively frequent. Similarly, passages to humans might also be
relatively frequent, but remain essentially unnoticed and rarely
turn into emerging epidemics or pandemics. Most zoonotic
emergences result in only few human cases and disappear with
no subsequent epidemic or pandemic (Jones et al., 2008). The
reason is that, beyond compatibility, another key driver for
the emergence of human communicable diseases is the human
societal environment, which provides the amplification loops
for the outbreak to occur. The sole biological compatibility is
not sufficient to trigger an outbreak. The two anthropogenic
conditions required for an epidemic or pandemic to happen are
contact and establishment of a human to human urban cycle.
Both are consequences of human activities. The emergence of
a communicable disease is only one of the many possibilities
that just happen by chance due to the stochastic, unique,
and unpredictable conjunction of events leading to disease
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FIGURE 4 | Phylogenetic analysis of Merbecoviruses RdRp genes. The
alignment of the full RdRp genes was performed with MUSCLE from the
SeaView package (Gouy et al., 2010). The tree was built using the maximum
likelihood method under the GTR model with 500 repeats. The tree was
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FIGURE 4 | Continued

rooted using the RdRp sequence of a Sarbecovirus from Manis javanica
(MT040333) as outgroup. Deep blue: RdRp sequences from human
MERS-CoV. Red: RdRp sequences from dromedaries MERS-CoV. Sample
names are built with the GenBank accession number followed by a four-letter
code identifying the species. The species codes are as follows: Cdro,
Camelus dromedarius; Eeur, Erinaceus europaeus; Hpul, Hypsugo pulveratus;
Hsap, Homo sapiens; Hsav, Hypsugo savii; Ncap, Neoromicia capensis; Pabr,
Pipistrellus abramus; Pkuh, Pipistrellus kuhlii; Pspp, Pipistrellus unidentified
species; Tpac, Tylonycteris pachypus; Tper, Taphozous perforatus; Tspp,
Tylonycteris unidentified species; Vsup, Vespertilio superans; NA, Not
available.

emergence. The emergence of an epidemic or pandemic is a
very rare event. However, it is a matter of probability and if
human activities increase the frequency of anthropogenic factors
leading to amplification and emergence, then the probability of
occurrence will increase as well.

A COMPARATIVE HISTORY OF
SARS/COVID-19 AND MERS

SARS-CoV has emerged as a human disease in Guangdong,
Southern China, in November 2002. The location and time of
the original transmission from animal to human is not known
and SARS-CoV was found in wet markets in Guangzhou and
Shenzhen in masked palm civets (P. larvata) and raccoon dogs
(Nyctereutes procyonoides) (Tu et al., 2004; Webster, 2004; Song
et al., 2005). However, these two markets were the only places
where SARS-CoV was found in small mammals. It was not
found in any other masked palm civet samples from farms
in Guangdong, Henan and Hunan (Tu et al,, 2004). Although
no virus has ever been isolated outside the two markets of
Guangzhou and Shenzhen, a massive culling of civets was carried
out to eradicate the “source” of infection (Tu et al., 2004; Watts,
2004). SARS-CoV-related viruses were isolated from Chinese
rufous horseshoe bats R. sinicus. However, these viruses were not
the proximal ancestors of SARS-CoV and civet viruses. Following
the emergence in Guangzhou, SARS spread in the urban human
population mostly around the Hong Kong bay, Taiwan, and
Canada, killing 8,422 persons for a death rate of 9.6% (Chan-
Yeung and Xu, 2003). Bats were designated as “reservoir” for
SARS-CoV, but the exact path leading to the emergence of SARS
in the human population has never been elucidated. Masked palm
civets, who were pointed out at responsible for human infection,
seem to simply be parallel hosts that were infected in these two
markets along with humans (Tu et al., 2004; Li et al., 2005a).
Furthermore, civets were successfully infected experimentally
with human isolates of SARS-CoV (Li et al., 2005a; Wu et al.,
2005). The virus were most likely imported to the markets from
an unknown place by an unknown intermediary, which could
potentially be a human being. The wet markets were not the
place of origin, but simply places of amplification for SARS
(Li et al., 2005a; Wu et al., 2005). Serological and molecular
clock analyses indicated that SARS-CoV may have emerged 4-
7 years before the reported 2003 human outbreak in China
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FIGURE 5 | Comparison of the distribution of Taphozous perforatus and the ancient silk roads.
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(Zheng et al., 2004; Hon et al., 2008; Bolles et al., 2011), The very
same pattern was observed with SARS-CoV-2 and the associated
COVID-19. COVID-19 is officially considered to have emerged
in the Huanan Seafood Wholesale Market (HSWM), a wet market
in Wuhan, Hubei on December 8, 2019. However, the virus
had probably already been circulating since early October 2019
and the HSWM was, like the wet markets of Guangzhou and
Shenzhen, a place of amplification and not the place of origin.
An intermediary was proposed, the pangolin (M. javanica), but
viruses isolated from pangolin are different from SARS-CoV-
2 and indeed more distant than bat viruses (Figure 3 and
Supplementary Figures 1-3). Just as for civets in the SARS-
CoV case, pangolins are more likely to be parallel hosts rather
than intermediaries in the transmission of SARS-CoV-2 from
bats to humans (Frutos et al., 2020b). Viruses very closely related
to SARS-CoV-2 have been isolated from Rhinolophus bats, i.e.,
R. affinis and R. malayanus, from Yunnan (Zhou P. et al., 2020;
Zhou H. et al,, 2020). However, just as for SARS-CoV, the time
and location of the initial event of emergence of SARS-CoV-2
and the path from bats to humans remains unknown. In both
SARS and COVID-19, the main drivers for disease emergence
are human activities. A reasonable hypothesis is that the SARS-
CoV-like and SARS-CoV-2-like viruses were circulating at low
levels in the wild without being detected and that these viruses
triggered an outbreak in densely populated cities with high
population mobility after amplification in wet markets. One can
expect that this pattern may reiterate in the future with the

emergence of another SARS-CoV-related virus coming from the
SARS metapopulation. This novel SARS-CoV-related emergence
is most likely to emerge again in East Asia, partly because of
its specific ecology, since the areas of distribution of several
Rhinolophus species overlap in this region (Figure 1A), but
mostly because of human activities facilitating this emergence.
Middle East Respiratory Syndrome is telling a very different
story. MERS was first described as a disease on September 2012
in the Kingdom of Saudi Arabia (KSA) from a 60-year old man
from the city of Bisha (Zaki et al., 2012). However, this was
not the actual first case. MERS cases had been described in a
hospital in Zarqa in Jordan, earlier the same year (Reusken et al.,
2013a). MERS extended poorly outside the Arabian Peninsula
and only through imported cases. Unlike SARS-CoV-2, and to
a lower extent, SARS-CoV, there was no pandemic associated
with MERS-CoV. MERS-CoV was found only in one bat sample
from KSA, an Egyptian tomb bat, T. perforatus, originating
from the vicinity of the index case in KSA (Memish et al,
2014). The only closely related MERS-like virus from bats,
was found in the South African bat, N. capensis. MERS-CoV
was detected both in dromedaries and humans throughout the
Arabian Peninsula, but not in any other livestock (Reusken
et al., 2013b). The major dromedary camel producers are Chad,
Somalia, Sudan and Kenya, with about 7.3, 7.2, 4.8, and 3.3
million heads, respectively (Younan et al., 2016; Devaux et al.,
2020a). KSA and other Arabian Peninsula countries import
numerous camels from these countries (Younan et al., 2016;

Frontiers in Microbiology | www.frontiersin.org

March 2021 | Volume 12 | Article 591535


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Frutos et al.

Betacoronaviruses: Hazard and Risks

Devaux et al., 2020a). However, a serological survey conducted in
Sudan and Qatar showed that no camel care-takers were found
infected by MERS-CoV, whereas camels were indeed infected
(Farag et al., 2019). Surveys have shown that dromedaries from
the producing African countries have been infected with MERS-
CoV (Reusken et al., 2014). Furthermore, serological analyses of
archive blood samples reported the presence of MERS-CoV in
dromedaries in Eastern Africa since the early 1980s (Miiller et al.,
2014). However, these serological analyses cannot tell whether
it was the exact MERS-CoV or a related virus. Camels reared
in Australia were also tested and showed no serological signs
of MERS-CoV infection (Crameri et al., 2015). Camels were
introduced in Australia at the end of the 19th Century, most
likely from Pakistan (Crameri et al., 2015). This confirms the
African origin of MERS-CoV. Interestingly, even though MERS-
CoV was found in dromedaries and MERS-CoV-like viruses were
identified in bats in Africa, no MERS epidemic has ever been
recorded in Africa. Another interesting feature is that the only
bat found infected in the Arabian Peninsula, T. perforatus, is an
African bat which distribution outside Africa overlaps perfectly
the ancient maritime silk roads (Figure 5). This suggests that
contacts between dromedaries, humans and bats are very ancient
and that MERS-CoV-related viruses may have widely circulated
over a very long period of time.

HAZARD AND RISKS

MERS-CoV was found in dromedaries in the Arabian Peninsula
and Africa, indicating that the MERS virus was circulating outside
the Arabian Peninsula (Reusken et al., 2013b, 2014; Chu et al.,
2014, 2018; Corman et al., 2014b; Miiller et al., 2014). Anti
MERS-CoV immunoglobulin and viral MERS-CoV RNA have
been detected in camels in different African countries (Cui et al.,
2013; Alagaili et al., 2014; Chu et al., 2014; Corman et al., 2014a,b;
Miiller et al., 2014). However, no epidemics of MERS were ever
recorded in Africa, even though infected bats, dromedaries and
perhaps other animals were present. No epizootics were recorded
either. The same was observed with SARS. No epidemics were
observed before the disease broke out in Guangdong, and no
animals were found infected alongside masked palm civets and
raccoon dogs in the two wet markets where the disease was
detected (Song et al., 2005). Human seropositivity to SARS was
evidenced on samples collected before the SARS outbreak (Zheng
et al., 2004), thus indicating an early circulation of the virus in
the human population without any clinical signs. The circulation
of MERS-CoV and SARS-CoV long before any epidemic broke
out is an indication that the mere presence of coronaviruses in
wildlife and even in humans is not sufficient enough to trigger
an epidemic. The danger, i.e., the presence of CoVs potentially
capable of emerging as an epidemic or a pandemic is recognized.
It requires human activity to amplify the frequency of virus
encounters and thus create amplification loops to reach the
threshold necessary to trigger an epidemic. This is where the
risk lies, in the anthropogenic amplification loops. These can
be assessed and the risk can then be estimated. Wet markets
and human population density and mobility played a key role

in the emergence of SARS (Webster, 2004; Song et al., 2005)
and COVID-19 (Frutos et al., 2020a). Assessment of the risks
associated with the emergence of coronaviruses can and should be
carried out. However, there is a need to focus at the right level, i.e.,
to stop focusing solely on reaction procedures when the disease is
declared, but rather to develop and implement preventive actions
to block the dynamics of disease emergence before an epidemic
can establish itself. This requires a in-depth analysis of the human
activities in place and of how they can be modified to limit
the risk of triggering an amplification loop. In East Asia, after
the successive outbreaks of SARS and COVID-19, risk factors
have been identified and correspond to deforestation, land-use
and anthropized environments, wet markets selling wild and live
animals, population density, and mobility. The amplification loop
of the emergence of MERS in the Arabian Peninsula seems to
be different and linked to the camel trade (Reusken et al., 2014;
Younan et al., 2016; Devaux et al., 2020a).

SARBECOVIRUSES: A PRESENCE
THROUGHOUT EUROPE

The risk of emergence of Sarbecoviruses is not limited to East-
Asia. Rhinolophus bats harboring Sarbecoviruses closely related
to SARS-CoV and SARS-CoV-2 are also found in Europe and
Africa (Figures 1A, 3; Drexler et al., 2010; Ar Gouilh et al., 2018).
The potential for emergence, thus the danger, exists outside Asia,
as in Europe. However, what could have prevented a Sarbecovirus
emergence in Europe is a difference in human activities and in
the organization of society. Contacts with wildlife, live animals
or animal parts occur more frequently in East Asia through
wet markets, traditional pharmacopeia and farming. The societal
organization in Europe is not facilitating the establishment of
amplification loops as has been the case in Asia. Nevertheless,
an accidental process leading to a Sarbecovirus emergence in
Europe, for instance in a very specific niche like MERS in the
Arabian Peninsula, cannot be excluded, even if the probability of
occurrence is lower.

MERS-CoV: A THREAT FOR EASTERN
AND SOUTHERN AFRICA

Although MERS emerged in the Arabian Peninsula, MERS-CoV
is very likely to have originated in Africa. Indeed, MERS-CoV-
like viruses were found in bats in South Africa and Uganda
or Ghana (Annan et al, 2013; Corman et al.,, 2014a; Anthony
et al., 2017a; Geldenhuys et al., 2018). Some of these bats are
found along the camel trade road that begins in Kenya, goes up
along the Nile before entering the Arabian Peninsula through
Jordan and can also pass by sea transfer directly from Djibouti.
The amplification loops that led to the emergence of MERS
in the Arabian Peninsula did not occur in Africa. The reason
might be a lower human population density in the close vicinity
of camels and a lower human mobility. However, the risk of
an outbreak of MERS in Africa is not negligible. The Arabian
Peninsula provided a niche for the emergence of MERS, but this

Frontiers in Microbiology | www.frontiersin.org

March 2021 | Volume 12 | Article 591535


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Frutos et al.

Betacoronaviruses: Hazard and Risks

was due to the specific market for dromedaries in this region.
Other animals, which are not found in the Arabian Peninsula
but are present in Africa, could also be infected with MERS-CoV
and other contacts may therefore exist beyond the camel trade.
Many African countries are on track for greater development
and the pressure they exert on the environment is increasing.
A context similar to that of East Asia is therefore developing,
which could favor the occurrence of amplifying loops in addition
to the already existing contacts with wildlife. Although there are
currently no reports of human cases of MERS-CoV in Eastern
and Southern Africa, an emergence of MERS may well occur in
the future. This conclusion is consistent with previous hypotheses
suggesting that a new MERS-CoV outbreak is likely to emerge in
resource-poor countries of East Africa (Anthony et al., 2017a).
Africa, and in particular Eastern and Southern Africa, should
be under surveillance for risk of MERS emergence with sanitary
survey, and human activities should be organized to avoid the
occurrence of amplification loops.

THE AMAZON RAINFOREST AND LATIN
AMERICA: THE NEW HOT SPOT

The ecosystem of the Amazon rainforest is favorable to the
occurrence of an emerging infectious disease. A very elegant
study exploring bat CoV diversity worldwide has shown that
Latin America is among the hot spots to monitor (Anthony
et al., 2017b). So far, there is no evidence that a CoV from a
Latin American bat has been circulating among the inhabitants
of this region, even at a low level, below the clinical detection
threshold. Coronaviruses in South America are spreading among
unrelated bat species four times less than in Africa, which
could be linked, either to disparate bat species interactions in
different regions, or to genetic differences in CoVs (Anthony
et al., 2017b). Colombia and Venezuela are the countries with the
greatest diversity of bats (Mattar and Gonzalez, 2018). CoV RNA
was found in Carollia perspicillata (Bt-CoV/Trinidad/1CO7B)
and Glossophaga soricina (Bt-CoV/Trinidad/1FY2B) bats in
the Caribbean island of Trinidad (Carrington et al, 2008).
A bat CoV (BatCoV DR/2007) found in Desmodus rotundus
bats in Brazil showed similarities with HCoV-OC43 (Brandao
et al., 2008). In southern Brazil, where almost 40 bat species
are living, an a-CoV RNA was reported in urban roosts of
Molossus molossus and Tadarida brasiliensis bats (Lima et al,,
2013). An a-CoV (BatCoV-M.rufus28/Brazil/2010) was isolated
in M. molossus and Molossus rufus in Brazil and a novel -
CoV (BatCoV-P.davyi49/Mexico/2012) was found in Pteronotus
davyi in Mexico, who displayed high similarities with MERS-
CoV (Goes et al., 2013). A survey conducted on 606 bats
from 42 species in Southern Mexico led to the identification
of 9 a-CoV and 4 B-CoV, as well as another B-CoV displaying
96.5% amino acid identity with MERS-CoV in Nyctinomops
laticaudatus (Anthony et al., 2013). The forest areas extending
from Southern Mexico to Brazil, and in particular the Amazon
region, represent a biodiversity hot spot largely unexplored
in terms of coronaviruses diversity. Studies aiming to better
understand the role of CoVs in human and animal health in Latin
America, particularly in the Amazon rainforest, are very limited

considering the probable risk of this region becoming a hot spot
for CoV emergence. Owing to the acceleration of anthropization
of the environment, in particular massive deforestation, land
conversion for agriculture and mining and the creation of roads
in the Amazonian rainforest, the risk of emergence of new CoVs
(or other viral species)-related diseases in Latin America has
increased sharply recently. More contacts with a still largely
unknown fauna and virus diversity can be expected, while the
development of human dwellings is increasing. There is an urgent
need to closely monitor this biodiversity, but more importantly
to monitor human activities and potential amplification loops.
Unfortunately, monitoring the latter in this region might prove
very difficult owing to the lack of coverage, the occurrence of
armed conflicts and the presence of numerous illegal activities.
Latin America is probably the region most at risk of hosting a
future emergence of a virus epidemic.

CONCLUSION

The emergence of a novel pandemic is unpredictable, although
specific geographical regions, or interfaces between wildlife,
livestock and humans have been identified as the source of
recent emerging infectious diseases (Morse et al., 2012). However,
analysis of past disease emergence events, pathogen transmission
dynamics and ecosystems can help to better understand the
mechanisms of disease emergence. In this study, we report
evidence that coronavirus-carrying bat species are found across
the planet. It could therefore be hypothesized that epidemics
of coronaviruses could theoretically emerge anywhere. However,
the history of epidemics such as SARS, COVID-19, and MERS
demonstrates that this is not the case and that these disease
outbreaks occur at the level of regional hot spots. Several
conditions are essential to trigger the emergence of a disease,
in particular the circulation of the virus, the ability of the
virus to recognize a receptor on human cells, contacts between
viruses and humans, and amplification of the phenomenon
by inter-human transmission. Changes in ecosystems due to
anthropization of the environment may push regions that until
now have been free from coronavirus emergence to become hot
spots. The global economy favors the circulation of hosts, vectors
and viruses altogether. This is true for coronaviruses, with SARS
in 2003, MERS in 2012 and COVID-19 in 2019, but also for other
human pathogens (e.g., Dengue, Chikungunya and Zika viruses
in the last decade or earlier with the pandemic (HIN1) 2009
influenza). Although the risks are known, we prefer to wait for the
emergence of a disease and find culprits such as bats, pangolins or
mosquitoes, rather than recognize that it is the impact of human
activities on ecosystems (anthropization) and our model of global
economy that are the real drivers of disease emergence.

The recent COVID-19 pandemic has created an
unprecedented panic reaction among governments and
populations worldwide, triggering almost global lockdowns,
restrictions on peoples life and unprecedented damage to
the economy. This pandemic mostly highlighted the lack of
preparedness to face such a public health issue, inadequate risk
assessment regarding the urgency of the situation, late reporting
of early cases, with insufficient internationally coordinated
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actions and with detection and containment strategies, often very
variable from one country to another (Peeri et al., 2020). Our
global model of society today is the society of the immediate.
We live in an ultra-connected world, overflown with data and
fast information flows (sometimes fake news) and with a culture
of reaction instead of preparation. In medicine, every effort and
organization is aimed at finding a cure for a communicable
disease and ultimately a vaccine, but very little is done to
prevent the disease. The real challenge for the future is to be
able to intervene before the step of amplification in the human
population.

Viruses circulate and our modern global society, characterized
by extensive movements of goods and people, greatly facilitates
this circulation. However, the dissemination of coronaviruses
from one region to another, as seen with COVID-19 and, to
a lower extent with SARS, is not the only source of danger.
Sarbecoviruses and Merbecoviruses circulate in bats and most
likely in other animals, certainly in dromedaries for MERS-
CoV, and perhaps also humans, outside the initial region of
epidemics. Epidemics broke out in specific regions because all
the elements of the accidental chain leading to the emergence
of the disease were present at the time of the outbreak. Owing
to specific societal traits, the probability might still be higher
in these regions to see another emergence of a closely related
disease in the future, since human activities are the main
drivers of transmissible diseases emergence. However, since the
emergence of such diseases is an accidental process, this may
very well happen elsewhere, even if the probability is lower. It
just takes an unfortunate conjunction of events. The emergence
of a SARS-related disease is possible in Europe and, similarly,
the emergence of a MERS-related disease is possible in Africa.
MERS-CoV could also emerge in Asia, since MERS-CoV-like
viruses (e.g., BtCoV/Ii/GD/2014-422) that have acquired a S1
spike RBD conferring the capacity to bind DPP4 receptor were
found in South China vespertilionid (Vespertilio superans) bats
(Luo et al., 2018). A MERS-CoV-like coronavirus showing 72%
nucleotide identity with MERS-CoV was also isolated in P. davyi
bats (BatCoV-P.davyi49/Mexico/2012) in Mexico (Goes et al.,
2013). Other coronaviruses than MERS-CoV and SARS-CoV
might also emerge in slightly different contexts. A coronavirus,
or another kind of virus, might also emerge in South America,
especially in the Amazon region. The extensive deforestation
under way in the Amazon is increasing the risk of new epidemics
as deforestation and anthropized environments are key drivers
for the emergence of communicable diseases (Afelt et al., 2017,
2018).

Although SARS-CoV-2 has, per today, killed 2.5 million
people worldwide, its mortality rate is relatively low and
is currently estimated at 2.2 %. However, it is most likely
in the range of 0.5-1%, as a large number of cases of
infection remain asymptomatic and underestimated. MERS-
CoV did not spread worldwide (2,494 cases reported), but
its mortality rate was high, with an estimated rate of 34.4%
(858 deaths) (WHO, 2020). What will happen if the next CoV
to emerge is both very virulent and highly transmissible? It
is essential that we change the way we address the risk of
epidemics and pandemics. Waiting for a disease to emerge

makes it more difficult to react. Preventive actions should be
taken. There are conserved features between emergence events
of related viruses. Coronaviruses are circulating widely, but
human activities are the main drivers. These activities should
therefore be organized to limit the risk of zoonotic emergence.
Contacts with wildlife should also be limited. It is a priority
that the uncontrolled high-scale process of deforestation, land
conversion and wildlife trafficking should be stopped. The
hazard is here. We now need to think about how to manage
risk and how to integrate it into public health policies and
international regulations.
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Supplementary Figure 1 | Distribution of Sarbecoviruses RdRp protein
sequences. The alignment of the translated full RdRp genes was performed with
MUSCLE from the SeaView package (Gouy et al., 2010). The tree was built using
the maximum likelihood method under the LG model with 500 repeats. The tree
was rooted using the translated RdRp sequence of a MERS-CoV from Camelus
dromedarius (KT368883) as outgroup. Violet: RdRp protein sequences from
human SARS-CoV-2. Green: RdRp protein sequences from pangolins’
Sarbecoviruses. Red: RdRp protein sequences from SARS-CoV. Sample names
are built with the GenBank accession number followed by a four-letter code
identifying the species. The species codes are as follows: Asto, Aselliscus
stoliczkanus; Cpli, Chaerephon plicata; Hsap, Homo sapiens; Mdau, Myotis
daubentonii; Mjav, Manis javanica; Msch, Miniopterus schreibersii; Nlei, Nyctalus
leisleri; Plar, Paguma larvata; Pnat, Pipistrellus nathusii; Ppyg, Pipistrellus
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pygmaeus; Raff, Rhinolophus affinis; Rbla, Rhinolophus blasii; Reur, Rhinolophus
euryale; Rfer, Rhinolophus ferrumequinum; Rmac, Rhinophilus maculatus; Rmal,
Rhinolophus malayanus; Rmeh, Rhinolophus mehelyi; Rmon, Rhinophilus
monoceros; Rpus, Rhinolophus pusillus; Rsin, Rhinolophus sinensis; Rspp,
Rhinolophus unidentified species; NA, Not available.

Supplementary Figure 2 | Phylogenetic analysis of Sarbecoviruses spike genes.
The alignment of the full spike genes was performed with MUSCLE from the
SeaView package (Gouy et al., 2010). The tree was built using the maximum
likelihood method under the GTR model with 500 repeats. The tree was rooted
using the spike sequence of a MERS-CoV from Camelus dromedarius (KT368860)
as outgroup. Violet: spike sequences from human SARS-CoV-2. Green: spike
sequences from pangolins’ Sarbecoviruses. Red: spike sequences from
SARS-CoV. Sample names are built with the GenBank accession number followed
by a four-letter code identifying the species. The species codes are the following:
Asto, Aselliscus stoliczkanus; Cpli, Chaerephon plicata; Hsap, Homo sapiens;
Mijav, Manis javanica; Msch, Miniopterus schreibersii; Plar, Paguma larvata; Pnat,
Pipistrellus nathusii; Ppyg, Pipistrellus pygmaeus; Raff, Rhinolophus affinis; Rbla,
Rhinolophus blasii; Reur, Rhinolophus euryale; Rfer, Rhinolophus ferrumequinum;
Rmac, Rhinophilus maculatus; Rmal, Rhinolophus malayanus; Rmon, Rhinophilus
monoceros; Rpus, Rhinolophus pusillus; Rsin, Rhinolophus sinensis; Rspp,
Rhinolophus unidentified species; NA, Not available.

Supplementary Figure 3 | Distribution of Sarbecoviruses spike protein
sequences. The alignment of the translated full spike genes was performed with
MUSCLE from the SeaView package (Gouy et al., 2010). The tree was built using
the maximum likelihood method under the LG model with 500 repeats. The tree
was rooted using the translated spike gene sequence of a MERS-CoV from
Camelus dromedarius (KT368860) as outgroup. Violet: spike protein sequences
from human SARS-CoV-2. Green: spike protein sequences from pangolins’
Sarbecoviruses. Red: spike protein sequences from SARS-CoV. Sample names
are built with the GenBank accession number followed by a four-letter code
identifying the species. The species codes are the following: Asto, Aselliscus
stoliczkanus; Cpli, Chaerephon plicata; Hsap, Homo sapiens; Mdau, Myotis
daubentonii; Mjav, Manis javanica; Msch, Miniopterus schreibersii; Nlei, Nyctalus
leisleri; Plar, Paguma larvata; Pnat, Pipistrellus nathusii; Ppyg, Pipistrellus
pygmaeus; Raff, Rhinolophus affinis; Rbla, Rhinolophus blasii; Reur, Rhinolophus
euryale; Rfer, Rhinolophus ferrumequinum; Rmac, Rhinophilus maculatus; Rmal,
Rhinolophus malayanus; Rmeh, Rhinolophus mehelyi; Rmon, Rhinophilus
monoceros; Rpus, Rhinolophus pusillus; Rsin, Rhinolophus sinensis; Rspp,
Rhinolophus unidentified species; NA, Not available.

Supplementary Figure 4 | Distribution of Merbecoviruses RdRp protein
sequences. The alignment of the translated full RARp genes was performed with
MUSCLE from the SeaView package (Gouy et al., 2010). The tree was built using
the maximum likelihood method under the LG model with 500 repeats. The tree
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