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Polymycoviridae is a growing family of mycoviruses whose members typically have
non-conventional capsids and multi-segmented, double-stranded (ds) RNA genomes.
Beauveria bassiana polymycovirus (BbPmV) 1 is known to enhance the growth and
virulence of its fungal host, the entomopathogenic ascomycete and popular biological
control agent B. bassiana. Here we report the complete sequence of BbPmV-3, which
has six genomic dsRNA segments. Phylogenetic analysis of RNA-dependent RNA
polymerase (RdRp) protein sequences revealed that BbPmV-3 is closely related to
the partially sequenced BbPmV-2 but not BbPmV-1. Nevertheless, both BbPmV-3
and BbPmV-1 have similar effects on their respective host isolates ATHUM 4946 and
EABb 92/11-Dm, affecting pigmentation, sporulation, and radial growth. Production
of conidia and radial growth are significantly enhanced in virus-infected isolates as
compared to virus-free isogenic lines on Czapek-Dox complete and minimal media
that contain sucrose and sodium nitrate. However, this polymycovirus-mediated effect
on growth is dependent on the carbon and nitrogen sources available to the host
fungus. Both BbPmV-3 and BbPmV-1 increase growth of ATHUM 4946 and EABb
92/11-Dm when sucrose is replaced by lactose, trehalose, glucose, or glycerol, while
the effect is reversed on maltose and fructose. Similarly, both BbPmV-3 and BbPmV-
1 decrease growth of ATHUM 4946 and EABb 92/11-Dm when sodium nitrate is
replaced by sodium nitrite, potassium nitrate, or ammonium nitrate. In conclusion,
the effects of polymycoviruses on B. bassiana are at least partially mediated via its
metabolic pathways.

Keywords: fungal growth, fungal sporulation, Beauveria bassiana, Polymycoviridae, mycovirus

INTRODUCTION

Polymycoviridae is a recently established family exclusively accommodating viruses infecting
fungi in its sole genus Polymycovirus. The first member of the family, Aspergillus fumigatus
tetramycovirus 1, was reported in 2015 (Kanhayuwa et al., 2015) and since then over 20 related
mycoviruses have been fully or partially sequenced (Supplementary Table S1). Polymycoviruses
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have a variable number of double-stranded (ds) RNA genomic
segments, ranging from three (Mu et al., 2018) to eight (Jia
et al., 2017; Mahillon et al., 2019), while a closely related,
single-stranded (ss) RNA virus with 11 genomic segments
named Hadaka virus was recently discovered (Sato et al.,
2020). Polymycoviruses are the first dsRNA viruses found to be
infectious not only as purified entities but also as naked dsRNA
(Kanhayuwa et al., 2015; Jia et al., 2017; Niu et al., 2018); the
majority are non-conventionally encapsidated.

Beauveria bassiana is an ascomycete belonging to the family
Cordycipitaceae, order Hypocreales. B. bassiana has a widespread
geographical distribution and can be found in soil (Garrido-
Jurado et al., 2015) and in plants as an endophyte (McKinnon
et al., 2017); importantly, B. bassiana is an arthropod pathogen
with a wide host range and serves as the active ingredient of many
popular biopesticides (de Faria and Wraight, 2007). Mycoviruses
in general (Herrero et al., 2012; Kotta-Loizou et al., 2015;
Koloniuk et al., 2015; Gilbert et al., 2019) and polymycoviruses in
particular (Kotta-Loizou and Coutts, 2017; Filippou et al., 2018)
have been found to infect B. bassiana isolates, in some cases
increasing their growth and virulence (Kotta-Loizou and Coutts,
2017) and illustrating potential in biological control applications.

Here we report the complete sequence of B. bassiana
polymycovirus (BbPmV) 3 and its phylogenetic relationships
with members of the Polymycoviridae family. Both BbPmV-
3 and the previously characterized BbPmV-1 have similar
effects on the morphology, sporulation, and growth of their
respective host isolates. Polymycovirus-mediated phenotypes are
dependent on the constituents of the growth medium, suggesting
that polymycoviruses may interfere with carbon and nitrogen
metabolism of their host fungus.

MATERIALS AND METHODS

Fungal Isolates and Growth Media
Beauveria bassiana isolates EABb 92/11-Dm and ATHUM 4946
originate from Spain and Greece, respectively. The isolates
were grown at 25◦C, on Potato Dextrose Agar (PDA; Sigma–
Aldrich) or Czapek-Dox minimal medium (MM; Sigma–Aldrich)
or Czapek-Dox complete medium (CM; MM in addition to
1.5 g/L malt extract, peptone, and yeast extract). For growth
assays, the sucrose and sodium nitrate in Czapek-Dox MM
were substituted with different carbon and nitrogen sources
(Supplementary Table S2; Cai et al., 2018). A cocktail of
antibiotics (ampicillin, kanamycin, and streptomycin, each at a
final concentration of 100 µg/mL) was used to prevent bacterial
contamination. For curing experiments, the protein synthesis
inhibitor cycloheximide was added at concentrations up to
1000 µg/mL.

Growth and Sporulation Assays
Fungal spores from agar plates were collected in phosphate
buffered saline (PBS), filtered through Miracloth, and counted
using the FastRead counting slides (Immune Systems). The
concentration of the fungal spore suspension was adjusted, and
1000 fungal spores were spotted centrally on solid Czapek-Dox

CM and growth was monitored for up to 18 days. All experiments
were performed in triplicate using three independent stocks
for each fungal isolate and statistical analysis was performed
using GraphPad Prism 6. Differences in growth were considered
to be statistically significant if measurements for at least five
consecutive late time points were shown to be statistically
significant (p-value < 0.05; ANOVA) between virus-infected and
virus-free isogenic lines.

Nucleic Acid Extraction
BbPmV-1 and BbPmV-3 genomic dsRNAs were purified using
a small-scale dsRNA extraction procedure. Briefly, total nucleic
acids were treated with phenol/chloroform, DNase I (Promega),
and S1 nuclease (Promega), and the remaining dsRNA was
precipitated with sodium acetate and ethanol. Total fungal
RNA and DNA were purified using the RNeasy and DNeasy
Plant Mini Kits (Qiagen), respectively, according to the
manufacturer’s instructions.

Reverse Transcription (RT), Polymerase
Chain Reaction (PCR), and Molecular
Cloning
Random reverse transcription (RT)-polymerase chain reaction
(PCR) and RNA ligase mediated rapid amplification of cDNA
ends (RLM-RACE) were performed as described by Froussard
(1992) and Coutts and Livieratos (2003), respectively. Sequence
specific oligonucleotide primers used for RT-PCR include those
amplifying the BbPmV-3 RdRp sequence (5′-CCT CAT CTC
GCT CAT GTC CC-3′ and 5′-GCA GGC GTA TAG GTC
CCT TC-3′) and the universal ITS1F primers (5′-CTT GGT
CAT TTA GAG GAA GTA A-3′; Gardes and Bruns, 1993)
and ITS4 (5′-TCC TCC GCT TAT TGA TAT GC-3′; White
et al., 1990) amplifying the internal transcribed spacer (ITS)
sequence. All PCR amplicons were cloned into the pGEM-T
Easy vector (Promega) and transformed into Escherichia coli
XL-10 Gold competent cells (Agilent). Recombinant plasmid
DNA was purified using the QIAprep Spin Miniprep Kit
(Qiagen). At least three clones for each PCR amplicon were
sequenced by Genewiz.

Computational Analyses
BLASTx analysis (Altschul et al., 1990) using the non-redundant
protein database updated on August 2020 was performed to
identify sequence similarities. The Pfam database (El-Gebali et al.,
2019) was used to identify protein family domains. Sequence
logos were generated using WebLogo (Crooks et al., 2004).
Intrinsic disorder was predicted using PONDR-FIT (Xue et al.,
2010). Maximum-likelihood (ML) phylogenetic analysis was
performed using MEGA 6 (Tamura et al., 2013). The sequences
were aligned with MUSCLE as implemented by MEGA 6, and
all positions with less than 30% site coverage were eliminated.
The LG + G + I + F substitution model was used for the
RdRP, the putative scaffold protein, and the methyl transferase;
the WAG + G substitution model was used for the PASrp.
Homologous proteins from the closely related Hadaka virus
1 (Sato et al., 2020) were used as outgroups for the RdRP,
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the putative scaffold protein, and the methyl transferase; the
PASrp from B. bassiana non-segmented virus 1 (BbNV-1; Kotta-
Loizou et al., 2015) was used as outgroup for the polymycovirus
PASrp. The Protein Homology/analogY Recognition Engine v2.0
(Phyre2; Kelley et al., 2015) was used for protein structure
predictions. Molecular graphics images were produced using
the UCSF Chimera package from the Computer Graphics
Laboratory, University of California, San Francisco (supported by
NIH P41 RR-01081; Pettersen et al., 2004).

RESULTS AND DISCUSSION

Sequence Analysis of BbPmV-3
BbPmV-3 has the typical genomic organization of other members
of the Polymycoviridae family (Table 1). The genome of
BbPmV-3 comprises six dsRNAs, ranging from 2.5 to 0.9 kbp
in length, each one carrying an open reading frame (ORF)
flanked by 5′ and 3′ untranslated regions (UTRs; Figure 1A).
Both the 5′ and 3′ UTR termini are conserved (Figure 1B),
supporting the notion that all six dsRNAs comprise the
genome of one single virus. The BbPmV-3 full genomic
sequences were submitted to the European Nucleotide Archive
(primary accession number PRJEB42287; secondary accession
number ERP126123). It should be noted that BbPmV-3 partial
sequences corresponding to less than 10% of its genome have
been reported previously (Kotta-Loizou and Coutts, 2017) for
dsRNAs 1-3 (accession numbers LN896318-LN896320). The first
polymycovirus discovered, Aspergillus fumigatus tetramycovirus
1, has four genomic segments (Kanhayuwa et al., 2015).
Subsequently, related viruses with five (Botryosphaeria dothidea
RNA virus 1; Zhai et al., 2016), six (BbPmV 3; Kotta-Loizou and
Coutts, 2017), seven (BbPmV 2; Kotta-Loizou and Coutts, 2017),
and eight (Colletotrichum camelliae filamentous virus 1; Jia et al.,
2017; Fusarium redolens polymycovirus 1; Mahillon et al., 2019)
genomic segments were found. The variability in the number of
genomic segments is not a unique feature of the Polymycoviridae
family; the Chrysoviridae family, whose original members also
possessed four genomic segments, now accommodates viruses
with three to seven genomic segments (Kotta-Loizou et al., 2020).

The largest genomic component, dsRNA1, encodes the
RNA-dependent RNA polymerase (RdRP) responsible for the
replication of the virus. The BbPmV-3 RdRP sequence is most
closely related to BbPmV-2 RdRP (identity: 85.53%; E-value: 0.0).

TABLE 1 | Properties of BbPmV-3.

Segment Length (bp) ORF size UTR length (bp) Putative function

(nt) (aa) (kDa) 5′-UTR 3′-UTR

dsRNA 1 2401 2304 767 83 26 71 RdRP

dsRNA 2 2240 2094 697 74 70 90 Scaffold protein

dsRNA 3 1989 1848 615 66 51 90 Methyl-transferase

dsRNA 4 1131 807 268 29 110 214 PASrp

dsRNA 5 937 513 170 18 101 323 Unknown

dsRNA 6 865 618 205 22 104 143 Unknown

Similarly to its homologs in all known polymycoviruses, BbPmV-
3 RdRP belongs to the protein family RdRP_1 (PF00680) and has
three conserved motifs (Supplementary Figure S1). The GDNQ
motif, typically found in negative-sense ssRNA viruses of the
order Monogenavirales, is conserved in all members of the family
Polymycoviridae, replacing the GDD motif found in most dsRNA
and positive-sense ssRNA viruses (Supplementary Figure S1).

The second largest component, dsRNA2, encodes a protein
of unknown function, hypothesized to act as a scaffold protein
(Kotta-Loizou and Coutts, 2017). This protein, similarly to all its
homologs, contains a conserved N-terminus and a cysteine-rich,
zinc finger-like motif (Supplementary Figure S2), and is rich
in arginine repeats (R-R, R-X-R), associated with endoplasmic
reticulum (ER) retention signals.

The third largest component, dsRNA3, encodes a methyl
transferase, responsible for adding a capping structure at the
5′-termini of the positive-sense strands of the viral dsRNAs
(Kanhayuwa et al., 2015; Kotta-Loizou and Coutts, 2017).
Similarly to other redox enzymes from all kingdoms of life,
the polymycovirus methyl transferases are two-domain proteins
(Supplementary Figure S3), containing a methyltransferase
catalytic motif and an N-terminal Rossmann-fold domain
belonging to the protein family methyltransf_25 (PF13649)
and the protein clan FAD/NAD(P)-binding Rossmann fold
(NADP_Rossmann; CL0063).

The fourth largest component, dsRNA4, encodes a proline-
alanine-serine-rich protein (PASrp). BbPmV-3 PASrp is the
least enriched in these residues as compared to its homologs,
whose PAS content can be up to 32%; however, its PAS
content, approximately 22%, is still higher than the UniprotKB
average of 20% (Supplementary Figure S4A). The predicted
intrinsic disorder in polymycovirus PASrp ranges from 15%
for Magnaporthe oryzae polymycovirus 1–50% for Aspergillus
spelaeus tetramycovirus 1, while BbPmV-3 PASrp is 22%
disordered (Supplementary Figure S4B). All PASrp have high
a pI (Supplementary Figure S4C); with the exception of the
Cladosporium cladosporioides virus 1 PASrp that has a pI of 7.75,
the rest range from 8.37 for F. redolens polymycovirus 1 to 9.61
for A. spelaeus tetramycovirus 1, while BbPmV-3 PASrp has a
pI of 8.94. PASrp is believed to coat the viral RNA genome in
lieu of a capsid (Kanhayuwa et al., 2015; Zhai et al., 2016; Kotta-
Loizou and Coutts, 2017; Niu et al., 2018) and its amino acid
composition, intrinsic disorder, and high pI are characteristics
that would facilitate protein–RNA interactions. It should be
noted that conventional, filamentous particles have been reported
for the C. camelliae filamentous virus 1 (Jia et al., 2017), which
is one of the two known polymycoviruses with eight segments;
it is possible that the viral proteins encoded by the additional
segments play a role in virion formation.

The two smallest BbPmV-3 dsRNAs, dsRNA5 and dsRNA6,
respectively, encode proteins homologous to BbPmV-2 dsRNA6
(identity: 71.76%; E-value: 7e-88) and dsRNA7 (identity: 82.93%;
E-value: 6e-111). No other proteins with significant similarity
were found in public databases, including those produced by
other polymycoviruses or related viruses such as the Hadaka virus
(Sato et al., 2020). Typically, polymycovirus proteins produced
by RNAs other than the largest four (or in some cases three)
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FIGURE 1 | (A) Agarose gel electrophoresis (left) and schematic representation (right) of the BbPmV-3 dsRNA genome. The ORFs (dark colored boxes) are flanked
by 5′- and 3′-UTRs (black boxes). The light colored box represents known motifs. M indicates DNA marker HyperLadder 1kb (Bioline). (B) Alignment of the 5′- and
3′-UTRs of BbPmV-3 dsRNAs 1–6. Asterisks signify identical nucleotides, and dots signify conserved purines or pyrimidines.

do not have any sequence homology or common biochemical
properties (Kotta-Loizou and Coutts, 2017); therefore, the clear
homology between the smallest dsRNAs of BbPmV-3 and
BbPmV-2 indicates that these two viruses are very closely related.

It should be noted that a couple of errors in the sequence of
BbPmV-2 dsRNA6 were detected, an additional C at position
487 within the ORF and an additional G at position 738 within
the 3′ UTR, where long stretches of, respectively, C and G are
located. The correct sequence was confirmed by sequencing three
independent clones and the alterations resulted in a predicted

protein foreshortened at the C-terminus. Both BbPmV-2 dsRNA6
and BbPmV-3 dsRNA5 possess remarkably long 3′ UTRs, 391
and 323 nt, respectively. BbPmV-2 dsRNA6 encodes a protein
172 aa in length and 18.8 kDa in mass; similarly, BbPmV-3
dsRNA5 encodes a homologous protein 170 aa in length and
18.5 kDa in mass.

Phylogenetic Analysis of BbPmV-3
Phylogenetic analysis was performed for all proteins known
to be conserved in members of the family Polymycoviridae,
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the RdRp, the scaffold protein, the methyl transferase, and
the PASrp. As expected based on the sequence analysis, the
BbPmV-3 RdRp is the closest taxon to the BbPmV-2 RdRp,
while the BbPmV-1 RdRp appears to be phylogenetically distant
(Figure 2). The distance between BbPmV-3 and BbPmV-
1 is supported by the phylogenetic analysis of the scaffold
protein (Supplementary Figure S5A), the methyl transferase
(Supplementary Figure S5B), and the PASrp (Supplementary
Figure S5C). Geographically, ATHUM 4946 harboring BbPmV-3
originated from Athens, Greece; BbPmV-2 has been reported in
Syria, Russia, and Uzbekistan (Kotta-Loizou and Coutts, 2017);
BbPmV-1 has been found predominantly in Spanish populations
(Kotta-Loizou and Coutts, 2017; Filippou et al., 2018).

With the exception of the three polymycoviruses infecting
Aspergillus spp., there appears to be no correlation between the
evolutionary relationships of polymycoviruses and the organism
they were isolated from, either in terms of taxonomy, geography,
or preferred host. For instance, the five polymycoviruses

associated with the oomycete Plasmopara viticola do not form
a distinct group, but often appear to be more closely related
to polymycoviruses infecting ascomycetes than to each other.
The majority of polymycoviruses originate from Europe and
Asia, with a couple found in Australia and South America
(Supplementary Table S1). Most polymycoviruses were isolated
from plant pathogens, withAspergillus spp. andC. cladosporioides
being human pathogens and B. bassiana the only arthropod
pathogen. Nevertheless, these microorganisms do not have a sole
habitat, so contact between them is not unlikely; however, how
inter-species transmission of mycoviruses in achieved remains
to be elucidated.

Generation of BbPmV-3-Infected and
-Free Isogenic Lines
Beauveria bassiana isolate ATHUM 4946 was cured from
BbPmV-3 using the protein synthesis inhibitor cycloheximide

FIGURE 2 | ML phylogenetic tree created based on the RdRP sequences of polymycoviruses. At the end of the branches, established members of the family
Polymycoviridae have shapes filled with dark color; other polymycoviruses and related viruses have shape outlines. Blue squares indicate that the virus infects
human pathogens; green circles indicate that the virus infects plant pathogens; and red triangles indicate that the virus infects arthropod pathogens.

Frontiers in Microbiology | www.frontiersin.org 5 February 2021 | Volume 12 | Article 606366

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-606366 January 27, 2021 Time: 19:59 # 6

Filippou et al. Polymycoviruses Affect Fungal Metabolism

in combination with single conidia isolation (Supplementary
Figure S6A). Elimination of BbPmV-3 was confirmed by RT-
PCR using sequence specific oligonucleotide primers designed
to generate amplicons 699 bp in length representing a
fragment of the coding region of the BbPmV-3 RdRP gene
(Supplementary Figure S6B). The identity of the BbPmV-
3-infected and -free isolates was confirmed by extracting
total DNA and amplifying, cloning, and sequencing the
fungal ITS region with ITS specific oligonucleotide primers.
Generating virus-free and virus-infected isogenic lines is
essential for further phenotypic comparisons, ensuring that
observed differences are due to the virus and not the genetic
background of the host.

Effects of Polymycovirus Infection on
Fungal Morphology and Sporulation
The morphology of BbPmV-3-infected and BbPmV-3-free
isogenic lines was compared after growth on PDA at 25◦C
for 15 days, showing significant differences in pigmentation
(Figure 3A). A less dramatic reduction in pigmentation had been
observed previously in BbPmV-1-free B. bassiana isolate EABb
92/11-Dm as compared to its respective, virus-infected isogenic

line (Kotta-Loizou and Coutts, 2017). Polymycovirus infection
has been associated with various morphological alterations,
including changes in pigmentation (Kanhayuwa et al., 2015;
Kotta-Loizou and Coutts, 2017) and sectoring (Kanhayuwa et al.,
2015; Zhai et al., 2016; Kotta-Loizou and Coutts, 2017).

The effects on BbPmV-1 and BbPmV-3 on the sporulation
of B. bassiana isolates EABb 92/11-Dm and ATHUM 4946,
respectively, were assessed. Both virus-infected strains produced
approximately twofold more spores as compared to their virus-
free isogenic lines, and in both cases, this difference was
statistically significant (Figures 3B,C). Increased sporulation,
in this case production of asexual conidia, enhances the
potential of the fungus and therefore of the polymycovirus to
disperse. The effects of polymycovirus infection on sporulation
have not been investigated previously; however, other viruses
such as Sclerotinia sclerotiorum partitivirus 1 (Xiao et al.,
2014), Pseudogymnoascus destructans partitivirus-pa (Thapa
et al., 2016), and uncharacterized dsRNA elements in Nectria
radicicola (Ahn and Lee, 2001) have been reported to increase
sporulation of their fungal hosts. Conversely, Cryphonectria
hypovirus 1 (Kazmierczak et al., 1996; Robin et al., 2010),
Diaporthe RNA Virus (Moleleki et al., 2003), Colletotrichum
acutatum partitivirus 1 (Zhong et al., 2014), and two viruses in

FIGURE 3 | (A) Cultures of BbPmV-3-infected (left) and BbPmV-3-free (right) isogenic lines of ATHUM 4649 grown on PDA at 25◦C for 2 weeks, showing significant
differences in pigmentation. (B) Spore suspensions from BbPmV-3-infected (left) and BbPmV-3-free (right) isogenic lines of ATHUM 4649, demonstrating increased
sporulation in the BbPmV-3-infected isogenic line as compared to the BbPmV-3-free line. (C) Difference in sporulation between virus-infected and virus-free isogenic
lines. Student’s t-test: ∗∗ indicates p-value < 0.01.
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FIGURE 4 | Growth of ATHUM 4946 BbPmV-3-infected and -free (left) and EABb 92/11-Dm BbPmV-1-infected and -free (right) after 18 days on (A) Czapek-Dox
CM; Czapek-Dox MM; Czapek-Dox MM lacking a carbon source; Czapek-Dox MM lacking a nitrogen source; Czapek-Dox MM lacking both a carbon and a nitrogen
source; (B) Czapek-Dox MM containing lactose as a carbon source; Czapek-Dox MM containing maltose as a carbon source; Czapek-Dox MM containing trehalose
as a carbon source; Czapek-Dox MM containing fructose as a carbon source; Czapek-Dox MM containing glucose as a carbon source; Czapek-Dox MM containing
glycerol as a carbon source; (C) Czapek-Dox MM containing sodium nitrite as a nitrogen source; Czapek-Dox MM containing potassium nitrate as a nitrogen source;
Czapek-Dox MM containing ammonium nitrate as a nitrogen source; Czapek-Dox MM containing ammonium chloride as a nitrogen source; Czapek-Dox MM
containing ammonium sulfate as a nitrogen source. Two-way ANOVA; ∗∗∗∗ indicates p-value < 0.0001.
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Botrytis cinerea (Potgieter et al., 2013) decrease sporulation of
their fungal hosts.

Effects of Polymycovirus Infection on
Fungal Growth
The effects on BbPmV-1 and BbPmV-3 on the growth of
B. bassiana isolates EABb 92/11-Dm and ATHUM 4946,
respectively, were investigated on different carbon and nitrogen
sources. The disaccharide sucrose, which serves as the carbon
source in Czapek-Dox MM, was replaced by the disaccharides
lactose, maltose and trehalose, the monosaccharides fructose
and glucose, glycerol, or omitted altogether. Sodium nitrate
(NaNO3), which serves as the nitrogen source in Czapek-Dox
MM, was replaced by sodium nitrite (NaNO2), potassium
nitrate (KNO3), ammonium nitrate (NH4NO3), ammonium
chloride (NH4Cl), ammonium sulfate [(NH4)2SO4)], or
omitted altogether.

BbPmV-3-infected ATHUM 4946 and BbPmV-1-infected
EABb 92/11-Dm demonstrated significantly (p-value < 0.05)
increased radial growth as compared to their virus-free
isogenic lines on Czapek-Dox CM and MM (Figure 4A
and Supplementary Figures S7, S8A,B), confirming
previous observations on EABb 92/11-Dm (Kotta-Loizou
and Coutts, 2017). When both a carbon and a nitrogen
source were absent, all strains grew very slowly producing
very thin mycelium (Supplementary Figure S7) and no
significant differences between the virus-infected and the
virus-free isogenic lines could be detected (Figure 4A and
Supplementary Figure S9C).

When sucrose was replaced by other carbon sources,
the virus-mediated increase in growth was maintained in
the presence of the disaccharides lactose (Figure 4B and
Supplementary Figures S10, S11A) and trehalose (Figure 4B
and Supplementary Figures S10, S11C), the monosaccharide
glucose (Figure 4B and Supplementary Figures S11, S12B), and
glycerol (Figure 4B and Supplementary Figures S10, S12C).

Conversely, the BbPmV-3-infected ATHUM 4946 and BbPmV-
1-infected EABb 92/11-Dm grew significantly (p-value < 0.05)
slower as compared to their virus-free isogenic lines in
the presence of the disaccharide maltose (Figure 4B and
Supplementary Figures S10, S11B) and the monosaccharide
fructose (Figure 4B and Supplementary Figures S10, S12A).
The virus-mediated effect on growth disappeared when a
carbon source was absent (Figure 4A and Supplementary
Figures S7, S9A). Since glucose is a direct substrate for
glycolysis, the first step of respiration, and all other sugars
need to be catabolized and/or modified to be utilized, it is
possible that the polymycoviruses affect a metabolic process
downstream of glycolysis.

It should be noted that trehalose in particular is the major
carbohydrate in the insect hemolymph (Thompson, 2003),
and is considered a growth-promoting factor in the case
of entomopathogenic fungi such as B. bassiana (Pendland
et al., 1993). The BbPmV-1-infected EABb 92/11-Dm strain
grows significantly (p-value < 0.0001) faster on trehalose
as compared to sucrose (Table 2). Fungi have evolved two
mechanisms for trehalose utilization: (1) secretion of trehalases
that hydrolyze extracellular trehalose into glucose, followed
by uptake and assimilation of the resultant glucose, and (2)
direct uptake of trehalose via active transport and subsequent
intracellular catabolism. B. bassiana encodes homologs of AGT1,
a glucoside transporter found in Saccharomyces cerevisiae, which
is implicated in germination, vegetative growth, and conidial
yield on various carbohydrate carbon sources (Wang et al., 2013).

The opposite phenotype in the case of maltose and fructose is
due to both a significant (p-value < 0.0001) growth increase of
the virus-free strains and a significant (p-value < 0.001) growth
decrease of their virus-infected isogenic lines (Table 2). This
may be attributed to potential effects of polymycoviruses on the
metabolic pathway prior to the conversion of these sugars to
glucose, such as the alpha/beta-glycosidase encoded by the agdC
gene that cleaves the alpha(1,4)glycosidic bond of maltose to yield
molecules of glucose.

TABLE 2 | Comparison of growth on different carbon sources.

MM[lactose]
vs MM

MM[maltose]
vs MM

MM[trehalose] vs
MM

MM[fructose]
vs MM

MM[glucose]
vs MM

MM[glycerol]
vs MM

BbPmV-3-infected ATHUM 4946 NS ↓↓↓↓ NS ↓↓↓↓ ↑ NS

BbPmV-3-free ATHUM 4946 NS ↑↑↑↑ NS ↑↑↑↑ NS ↓↓↓↓

BbPmV-1-infected EABb 92/11-Dm ↑↑↑↑ ↓↓↓ ↑↑↑↑ ↓↓↓ ↑↑↑↑ NS

BbPmV-1-free EABb 92/11-Dm ↑↑↑↑ ↑↑↑↑ NS ↑↑↑↑ ↑↑ NS

Two-way ANOVA; | p-value < 0.05; | | p-value < 0.01; | | | p-value < 0.001; | | | | p-value < 0.0001.

TABLE 3 | Comparison of growth on different nitrogen sources.

MM[NaNO2] vs MM MM[KNO3] vs MM MM[NH4NO3] vs MM MM[NH4Cl] vs MM MM[(NH4)2SO4] vs MM

BbPmV-3-infected ATHUM 4946 ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓

BbPmV-3-free ATHUM 4946 NS NS NS ↓↓↓↓ NS

BbPmV-1-infected EABb 92/11-Dm ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ ↓↓↓↓ NS

BbPmV-1-free EABb 92/11-Dm ↑↑ ↑↑↑↑ NS NS NS

Two-way ANOVA; | p-value < 0.05; | | p-value < 0.01; | | | p-value < 0.001; | | | | p-value < 0.0001.
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The BbPmV-3-infected ATHUM 4946 and BbPmV-1-
infected EABb 92/11-Dm grew significantly (p-value < 0.05)
slower as compared to their virus-free isogenic lines
when sodium nitrate was replaced by other nitrogen
sources (Figure 4C and Supplementary Figure S13),
such as sodium nitrite (Supplementary Figure S14A),
potassium nitrate (Supplementary Figure S14B), ammonium
nitrate (Supplementary Figure S14C), ammonium
chloride (Supplementary Figure S15A), ammonium sulfate
(Supplementary Figure S15B), or omitted altogether (Figure 4A
and Supplementary Figures S7, S9B). In most cases, the
growth of virus-free ATHUM 4946 and EABb 92/11-Dm is
the same on alternative nitrogen sources (Table 3). Conversely,
the majority of virus-infected isogenic lines grow consistently
slower (p-value < 0.0001) on any other nitrogen source as
compared to sodium nitrate (Table 3). Moreover, it is evident
(Figure 4 and Supplementary Figures S14, S15) that any virus-
mediated effects, either positive or negative, on fungal growth
are more striking in the presence of nitrate and nitrite salts;
the presence of ammonium salts lessens these effects that may
even become non-significant (e.g., Supplementary Figure S15B).
Nitrate is converted to nitrite and then to ammonia/ammonium,
which can be used for amino acid biosynthesis. Therefore,
it is likely that polymycoviruses specifically affect the uptake
and/or the assimilation of nitrate salts. Remarkably, the opposing
effects on fungal growth in the presence of two different
nitrate salts, sodium nitrate (Supplementary Figure S8B) and
potassium nitrate (Supplementary Figure S14B), indicate that
the polymycovirus-mediated phenotypes may be pleiotropic
and that effects may be exerted at different control points of
metabolic pathways.

The growth trends illustrated by ATHUM 4946 and EABb
92/11-Dm on the various media are similar but not identical,
suggesting that the fungal isolates themselves differ in their
genetic background. ATHUM 4946 and EABb 92/11-Dm are
infected with different polymycoviruses BbPmV-3 and BbPmV-
1, respectively, which have the ability to modulate host
metabolic pathways in a similar but not identical way. The
observed variation may be attributed to the fungal hosts, the
polymycoviruses, the specific host–virus pairs under study, the
presence of a second virus BbNV-1 in EABb 92/11-Dm (Kotta-
Loizou et al., 2015), and/or a combination of these factors.

The number of mycoviruses that enhance fungal growth
and/or virulence is increasing in the literature (Ahn and Lee,
2001; Özkan and Coutts, 2015; Thapa et al., 2016; Kotta-Loizou
and Coutts, 2017; Aihara et al., 2018; Okada et al., 2018; Shah
et al., 2018, 2020); however, the majority of mycoviruses are
known to cause no obvious phenotypic changes or a debilitating
effect on their host fungus. In plant pathogenic fungi in
particular, such as Cryphonectria parasitica, mycovirus-mediated

hypovirulence has been successfully utilized in biological control
applications (Rigling and Prospero, 2018). There is accumulating
evidence that the ability of the mycoviruses to confer a specific
phenotype to their fungal host is conditional and this has
been clearly illustrated in the case of two betachrysoviruses:
Alternaria alternata chrysovirus 1 downregulates growth in vitro
and increases virulence in planta (Okada et al., 2018), while
M. oryzae chrysovirus 1 strain A modulates pathogenicity
depending on the rice variety (Aihara et al., 2018). Our
present work on polymycoviruses further supports this notion,
indicating that BbPmV-1 and -3 interfere with basic B. bassiana
metabolic pathways.
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