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In the last two decades, multi (MDR), extensively (XDR), extremely (XXDR) and total
(TDR) drug-resistant Mycobacterium tuberculosis (M.tb) strains have emerged as a
threat to public health worldwide, stressing the need to develop new tuberculosis (TB)
prevention and treatment strategies. It is estimated that in the next 35 years, drug-
resistant TB will kill around 75 million people and cost the global economy $16.7
trillion. Indeed, the COVID-19 pandemic alone may contribute with the development
of 6.3 million new TB cases due to lack of resources and enforced confinement in
TB endemic areas. Evolution of drug-resistant M.tb depends on numerous factors,
such as bacterial fitness, strain’s genetic background and its capacity to adapt to the
surrounding environment, as well as host-specific and environmental factors. Whole-
genome transcriptomics and genome-wide association studies in recent years have
shed some insights into the complexity of M.tb drug resistance and have provided a
better understanding of its underlying molecular mechanisms. In this review, we will
discuss M.tb phenotypic and genotypic changes driving resistance, including changes
in cell envelope components, as well as recently described intrinsic and extrinsic factors
promoting resistance emergence and transmission. We will further explore how drug-
resistant M.tb adapts differently than drug-susceptible strains to the lung environment
at the cellular level, modulating M.tb–host interactions and disease outcome, and novel
next generation sequencing (NGS) strategies to study drug-resistant TB.

Keywords: Mycobacterium tuberculosis, drug resistance, evolution, bacterial–host interactions, next generation
sequencing

INTRODUCTION

Tuberculosis (TB) kills one person every 21s, with ∼10 million cases and ∼1.5 million attributed
deaths in 2018 (WHO, 2019). Caused by airborne pathogen Mycobacterium tuberculosis (M.tb),
TB is the top disease killer worldwide due to a single infectious agent. After inhalation, M.tb
reaches the alveolar space and is bathed in alveolar lining fluid (ALF), being in intimate contact
with soluble components of the lung mucosa before interacting with the cellular compartment,
including alveolar macrophages (AM) and other immune cells (Arcos et al., 2011; Torrelles and
Schlesinger, 2017). This M.tb–host interplay during the initial stages of infection will determine
TB disease outcome, driving clearance or progression to active (pulmonary or extrapulmonary
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TB) or latent TB, although the exact bacterial/host determinants
and mechanisms that promote a successful infection are still
poorly understood. The success of M.tb in establishing infection
and evading the host immune system is in part due to its
unique and dynamic cell envelope, composed mainly of lipids
and carbohydrates, which changes to adapt to the different
lung microenvironments in response to local environmental
cues, and also protects the pathogen against harsh environments
and many antimicrobial drugs due to its low permeability
(Garcia-Vilanova et al., 2019; Maitra et al., 2019). And thus,
most combined treatments for active TB work disrupting the
mycobacterial cell envelope.

Standard treatment for drug-susceptible TB consists of
administering four first-line drugs for 6 months (2 months of
isoniazid, rifampicin, ethambutol and pyrazinamide, followed
by 4 months of isoniazid and rifampicin), with a success rate
of 85% (WHO, 2019). However, the worldwide emergence of
drug-resistant strains in recent years, especially in TB endemic
areas (Ellner, 2008; Lange et al., 2019), poses a global threat and
compromises the goal of the End TB Strategy of reducing 90%
the TB cases by 2035. Different causes have led to increased
drug resistance, including insufficient healthcare infrastructure,
prescription of the wrong treatment (either wrong dose or
treatment length), poor quality drugs or drug unavailability,
poor adherence to therapy, or M.tb re-infection, among others
(Zaman, 2010). Indeed, in 2018, approximately half a million
people developed drug-resistant TB (DR-TB) and of these, 78%
were multidrug-resistant (MDR-TB), and only one in three
confirmed cases were enrolled in treatment (WHO, 2019).
Different categories of drug-resistant M.tb strains have been
defined by the WHO: multi (MDR), extensively (XDR), and
extremely (XXDR) drug-resistant TB. MDR-TB, which represent
a 3.4% of new TB cases worldwide, are resistant to at least the
two first-line drugs isoniazid and rifampicin, and require 9–
20 months of costly treatment using second-line drugs, with
decreased success rate of 56% when compared to susceptible
TB (WHO, 2019). XDR-TB are also resistant to rifampicin
and isoniazid, plus fluoroquinolone and at least one of the
three injectable second-line drugs (amikacin, kanamycin, or
capreomycin), with even a lower treatment success rate of 39%
(WHO, 2019). Lastly, XXDR strains are resistant to all first
and second-line drugs. More recently, a new category of M.tb
strains not yet recognized by the WHO have been identified
in Italy, India and Iran (Velayati et al., 2009b; Loewenberg,
2012), and named totally drug-resistant TB (TDR-TB) for being
resistant to all tested antibiotics plus some of the ones currently
in the discovery pipeline (Loewenberg, 2012; Parida et al., 2015).
The emergence of these potentially incurable strains stresses the
urgent need to develop new drug regimens and/or alternative
anti-TB strategies to combat these superbugs (Lange et al., 2018).

Only a few studies have explored the cell envelope
composition of drug-resistant M.tb strains and their metabolic
responses and adaptation to the different environmental
pressures during the course of pulmonary infection, which
makes it challenging to develop new and effective treatments
(Velayati et al., 2009b). Due to an altered cell envelope
composition of drug-resistant isolates (Velayati et al., 2013), one

can hypothesize that drug-susceptible and drug-resistant strains
will adapt differently to the lung microenvironments, driving
different infection outcomes. In recent years, new developments
in next generation sequencing (NGS) technologies have allowed
investigators to gain further insight not only in specific genetic
determinants of drug resistance but have also shed some light
on how particular M.tb strains adapt and interact with the host
during infection through genome-wide transcriptomics, which is
key in finding novel bacterial determinants that can be targeted
in the development of new anti-TB drugs or host-directed
therapies (Jeanes and O’Grady, 2016).

In this review, we will discuss different factors driving the
emergence of drug-resistant M.tb strains, as well as what is
known about the adaptation of MDR strains to the different lung
environments encountered during the course of infection, and
describe recent NGS strategies that could be used to gain a better
understanding on M.tb–host interactions and key determinants
involved in MDR evolution.

ORIGIN AND EVOLUTION OF DRUG
RESISTANCE

Mycobacterium tuberculosis is a highly specialized human
intracellular pathogen with an extremely conserved genome
driving a paradigm of a near-perfect host-pathogen relationship
(Brites and Gagneux, 2015). Currently, phylogenetic inferences
reveal that there are seven global lineages of M.tb strains that
have co-evolved with human populations under sympatric and
allopatric host-pathogen combinations (Gagneux et al., 2006a;
Al-Saeedi and Al-Hajoj, 2017). These M.tb strain lineages differ
in their geographic distribution, biological fitness, virulence and
their propensity to acquire drug resistance; specifically, lineages
2 to 4 have been associated with greater disease burden and drug
resistance compared to ancient lineages, e.g., lineages 1, 5, and 6
(Al-Saeedi and Al-Hajoj, 2017; Nguyen et al., 2018).

The emergence of drug resistance in M.tb can be divided in
two main factors and their interactions: extrinsic factors, which
are related to social determinants of TB in populations and
the quality of TB control and prevention services; and intrinsic
factors, accounting for those related to the acquisition of genetic
mutations in drug resistance-associated genes (Gygli et al., 2017;
Nguyen et al., 2018; Swain et al., 2020). Regarding the intrinsic
factors, mutations in genes coding for drug targets or drug
activating enzymes are the primary mode of drug resistance,
and they arise mainly through single nucleotide polymorphisms
(SNPs) and insertion-deletions (indels). Unlike other bacterial
pathogens, acquisition of drug resistance through horizontal gene
transfer is not consistently reported in M.tb (Namouchi et al.,
2012; Dookie et al., 2018). In addition, drug resistance in M.tb
is commonly believed to be caused by single-step chromosomal
mutations. However, there are now evidences suggesting that,
at least for certain anti-TB drugs, acquired drug resistance is
the result of a stepwise acquisition and fixation of mutations
leading to a gradual increase in resistance, initiated with the
acquisition of isoniazid resistance, subsequently followed by
rifampicin or ethambutol resistance (Cohen et al., 2015). Indeed,
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resistance to isoniazid through the KatGS315T mutation is a
common pattern that precedes rifampicin resistance and is
conserved globally regardless of the M.tb lineage, geographic
region and/or time (Manson et al., 2017). DR-TB can occur
as primary drug resistance, when a person is directly infected
by a drug-resistant M.tb strain, or as secondary or acquired
drug resistance, occurring due to the acquisition of resistance-
conferring mutations during failed treatment of drug-susceptible
TB (Dookie et al., 2018). The latter is likely associated to M.tb
metabolic adaptation to the host lung environment.

In addition to resistance caused by target mutations, several
distinctive mechanisms of anti-M.tb innate resistance have
been also described (Singh et al., 2020). These include: drug
accessibility to the target due to the low permeability of the
M.tb cell envelope, modification of drugs by M.tb enzymes,
existence of M.tb efflux pumps removing out drugs that were
able to cross the M.tb cell envelope, M.tb modulation of its gene
expression to adapt to the drug’s effects (or to its presence), and
a phenotypic drug tolerance linked to a state of slow growth
rate and metabolic shut down. In this regard, during M.tb
infection certain bacterial subpopulations, known as persisters,
can become phenotypically tolerant to antimycobacterial drugs
without acquiring genetic mutations (Kester and Fortune, 2014).
This reversible phenomenon is usually induced by external
stresses such as hypoxia or drug treatment, among others
factors (Vilcheze and Jacobs, 2019), and is associated with a
nonreplicating status of the bacilli. Several M.tb factors and
metabolic traits are linked to M.tb persistence (Keren et al.,
2011; Lee et al., 2019), although the evidence suggests that
persistence consists of an array of heterogenous physiological
states and mechanisms (Hartman et al., 2017). Mechanisms of
M.tb persistence are still being elucidated; however, different
bacterial metabolic status during early stages of the infection
might explain why some M.tb subpopulations can become
phenotypically drug-resistant.

Indeed, a novel genetically encoded mechanism that causes
reversible drug tolerance was recently described in M.tb
(Bellerose et al., 2019; Safi et al., 2019; Vargas and Farhat,
2020). This phase variation phenomenon is caused by transient
frameshift mutations in a 5’ homopolymeric region in the
glpK gene, which encodes the glycerol-3-kynase required for
M.tb glycerol catabolism. This phenomenon has been observed
in several clinical isolates which, as a consequence, generate
bacterial variants (small smooth colonies) that exhibit a drug-
tolerant phenotype easily reversible through the introduction
of additional insertions/deletions in the same glpK region.
This frameshift mutations are particularly enriched in MDR-
and XDR-M.tb strains, and suggest that variation in GlpK
might contribute to the development of drug resistance.
Thus, limited efficacy of current TB treatments suggests that
heterogeneity of both host and mycobacterial physiologies in
the different lung compartments during the different stages of
the infection can influence the emergence of persisters and
ultimately, increased drug resistance (Warner and Mizrahi, 2006;
Ben-Kahla and Al-Hajoj, 2016; Boldrin et al., 2020). Novel
antimycobacterial drugs that target persisters populations are
critical in order to shorten TB treatment and decrease the

emergence and transmission of MDR-M.tb strains (Zhang et al.,
2012; Mandal et al., 2019). Conversely, mixed clonal infections
and/or genetic heterogeneity of M.tb populations with different
drug susceptibility profiles within a patient can also lead to
disparate responses during treatment, promoting drug resistance
(Liu et al., 2015).

Factors Contributing to the Emergence
of Drug Resistance
The mechanisms and pathways that result in the emergence and
subsequent fixation of M.tb resistant strains and its dynamics
are not fully understood. However, evidence suggest an interplay
of several mechanisms involved during drug selection pressure,
including clonal interference, mutation rates, efflux pumps,
compensatory mutations, and epistasis (Al-Saeedi and Al-Hajoj,
2017). Exposure of M.tb to drugs induces a bacterial stress
response while exerting a drug selection pressure; thus, only those
M.tb strains able to adapt will prevail, initiating a competitive
selection process between M.tb clones that may acquire different
beneficial mutations to survive (clonal interference). In this
regard, M.tb strain lineages can present different mutation rates
and different capacity to acquire drug resistance (Ford et al.,
2013), where clones of the Beijing/East Asian lineage (lineage
2) are associated to an hypermutability phenotype mediated
through polymorphisms in anti-mutator genes (mut) involved
in DNA repair systems (Ebrahimi-Rad et al., 2003). Recently,
DNA methylation has been proposed as a mechanism for
phenotypic plasticity inM.tb, aiding rapid adaptation to changing
environmental pressures, with heterogeneous DNA methylation
reported in MTBC clinical isolates (Modlin et al., 2020), which
could have potential implications in the development of drug
resistance. Further, because of the drug-induced stress response
of M.tb, M.tb efflux pumps are rapidly upregulated within hours
after drug exposure, being responsible of conferring a low-level
resistance profile (described in detail below). Interestingly, efflux
pump inhibitors reduce the minimum inhibitory concentrations
(MICs) of key drugs such as isoniazid, rifampicin, linezolid
and some fluoroquinolones (Escribano et al., 2007; Machado
et al., 2012). Thus, this efflux pump mediated low-level resistance
confers a selective advantage and allows M.tb to survive and
replicate under sub-optimal drug concentrations, until further
development of classical resistance-associated mutations that
confer clinical drug-resistant phenotypes (Fonseca et al., 2015;
Dheda et al., 2017).

Although beneficial against anti-TB treatment, drug resistance
mutations may also impose a fitness cost to M.tb survival, as they
can compromise genes involved in essential mycobacterial cell
functions. This subject is a matter of debate aiming to elucidate
the mechanisms involved in impaired fitness, transmissibility and
virulence of DR-M.tb strains. The concept of reduced virulence of
MDR-M.tb strains comes from early experiments in the Guinea
pig infection model (Middlebrook and Cohn, 1953). More
recently, clinical isolates with common mutations for isoniazid,
rifampicin, and streptomycin were associated with low or absent
in vivo fitness cost (Comas et al., 2011). Thus, clinical isolates
undergo mutations to overcome fitness deficits associated to drug

Frontiers in Microbiology | www.frontiersin.org 3 February 2021 | Volume 12 | Article 612675

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-612675 January 29, 2021 Time: 19:22 # 4

Allué-Guardia et al. Adaptation of DR-M.tb to the Human Host

resistance, setting the basis for the compensatory evolutionary
role in the spread of DR-TB (Nguyen et al., 2018). There is a wide
diversity of resistance-conferring mutations in M.tb; however,
during selective pressure, specific mutations in clinical isolates
are associated with a high-level of resistance without losing fitness
or transmissibility (Casali et al., 2014). Different compensatory
mutations were demonstrated for rpoA and rpoC in rifampicin-
resistant rpoB mutants (Comas et al., 2011; de Vos et al., 2013),
for ahpC in isoniazid-resistant KatG mutants (Sherman et al.,
1996), and 16S RNA for aminoglycoside resistance (Shcherbakov
et al., 2010). This evidence supports the successful expansion
of MDR and XDR-M.tb strains worldwide (Merker et al., 2018;
Cohen et al., 2019a).

Epistasis, a form of interaction between genes or mutations
that influences a phenotype, is also thought to drive the
evolution of DR-TB (Borrell et al., 2013; Koch et al., 2014).
In fact, some M.tb compensatory mutations are associated with
epistatic interactions. Epistasis is conceptually linked to fitness
and is divided into negative and positive epistasis; the latter
meaning that the interaction between genes or mutations has
a smaller fitness cost compared to the genetic determinants
alone. Different positive and negative epistasis exist in M.tb
between drug-resistant mutations and between drug resistance-
associated mutations and compensatory mutations (Phillips,
2008; Nguyen et al., 2018). In this context, different lineages
of M.tb carrying identical rifampicin-associated mutations
showed different levels of fitness cost, supporting the idea
that epistasis is influenced by M.tb strain’s genetic background
(Gagneux et al., 2006b; Borrell and Gagneux, 2011; Li
et al., 2017). Epistatic interactions may also determine the
order in which drug resistance mutations and compensatory
mutations arise, playing a key role in defining the evolutionary
processes toward acquisition of MDR-TB (Salverda et al., 2011;
Muller et al., 2013).

ADAPTATION OF DRUG-RESISTANT
M.tb STRAINS TO THE HUMAN LUNG
ENVIRONMENT

Mycobacterium tuberculosis evolved from a mycobacterial
ancestor to effectively infect and persist in the human host (Brites
and Gagneux, 2015; Jia et al., 2017). Its higher hydrophobicity
compared to other mycobacterial species might have contributed
to increased transmission through aerosolization (Jankute
et al., 2017). After being inhaled and during the course of
infection, M.tb gets in contact with very different host lung
microenvironments, which can be extracellular (during the initial
stages of infection and before interacting with alveolar phagocytes
and other immune cells, after escaping necrotic cells, or after
re-activation in cavities); or intracellular (in alveolar phagocytes
such as alveolar macrophages (AMs) during primary infection, or
within AMs in granulomas during the latency stage) (Figure 1).
In these different environments, M.tb has evolved to use host
resources to its advantage and adapt its metabolism in order to
evade the host immune system, survive, and establish a successful
active or latent infection.

The M.tb cell envelope provides structural support and
protection to osmotic changes, and is composed of four
main layers: an inner plasma membrane and periplasmic
space, a cell envelope core composed of peptidoglycan (PG)
covalently linked to arabinogalactan (AG) and mycolic acids
(MAs), the peripheral lipid layer [formed by non-covalently
linked lipids and glycolipids such as trehalose dimycolate
(TDM), phthiocerol dimycocerosates (PDIMs), mannose-
capped lipoarabinomannan (ManLAM), sulfolipids (SLs),
phosphatidyl-myo-inositol mannosides (PIMs), and phenolic
glycolipids (PGLs), among others], and the outermost layer (also
named capsule) (Kalscheuer et al., 2019). Although lipids and
carbohydrates constitute ∼80% of the cell wall, proteins are also
important components of the M.tb envelope, being studied as
potential drug targets (Gu et al., 2003; Mawuenyega et al., 2005;
Niederweis et al., 2010; Chiaradia et al., 2017; Hermann et al.,
2020). Several described proteins regulate the permeability
of the M.tb cell envelope, with important implications
in drug resistance. Among many, we find mycobacterial
membrane protein Large 3 (MmpL3), Rv3143/Rv1524 axis, and
decaprenylphosphoryl-D-ribose 2′-epimerase (DprE), which
are involved in the export and synthesis of the M.tb cell wall,
regulating its permeability (Dong et al., 2020). Other M.tb
cell wall proteins act directly inactivating the drug. This is
the case of Rv2170, a putative acetyltransferase that acetylates
isoniazid (INH), inducing its breakdown into acetylhydrazine
and isonicotinic acid, thus defining a mechanism by which some
M.tb strains could bypass INH toxicity (Arun et al., 2020).

Besides providing structural support, the M.tb cell envelope
also plays a critical immunomodulatory role in the bacterium-
host crosstalk, where several cell envelope outer molecules
are known to participate in different stages of the infection
with key implications in M.tb pathogenesis and development
of drug resistance (Sonawane et al., 2012; Gago et al., 2018;
Garcia-Vilanova et al., 2019; Kalscheuer et al., 2019). Indeed,
the mycobacterial cell envelope is considered a highly dynamic
structure, tightly regulated and remodeled in response to
changing host environmental pressures. Consequently, a wide
range of cell envelope compositions in different bacterial cells can
be found during the course of infection (Kalscheuer et al., 2019).
These will determine how M.tb interacts with the host immune
system and its potential implications for antibiotic resistance
(Dulberger et al., 2020).

However, little is known about the temporal changes of
the M.tb cell envelope in response to local environmental
cues and how these can lead to different disease outcomes,
especially in DR-M.tb strains, since most of the data come
from in vitro studies and/or specific stages of infection,
not necessarily reflecting the actual temporal dynamics
of this complex and heterogeneous structure. M.tb–host
interactions and subsequent infection outcome might also
be influenced by M.tb metabolic and/or physiologic status
before and/or during infection. Below we will discuss recent
developments on MDR-M.tb adaptation to the different human
lung microenvironments, and how the dynamics of the M.tb
cell envelope might determine disease outcome during the
M.tb-host interplay.
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FIGURE 1 | Drug-resistant M.tb–host interactions within lung microenvironments at different stages of the infection. (A) After being in close contact with an
individual with active TB disease, infection can be initiated through inhalation of drug-resistant (DR) M.tb-containing droplets. DR-M.tb bacilli contain altered levels of
cell envelope lipids such as free fatty acids (FAs), trehalose dimycolate (TDM), Phthiocerol dimycocerosates (PDIMs), phenolic glycolipids (PGLs) and
glycerophospholipids, among others. Upon bypassing upper respiratory tract barriers, DR-M.tb will ultimately reach the alveoli, a sac-like structure composed of a
thin layer of alveolar epithelial cells type I (ATIs, with structural and gas exchange function) and alveolar epithelial cells type II (ATII, with secretor function) surrounded
by capillaries. Alveolar macrophages (AMs) are resident phagocytes that populate the alveolar space, while the interstitial space surrounding the alveoli contains
interstitial macrophages (IMs), dendritic cells (DCs), neutrophils (N), and T cells, among other host cells. (B) In the alveolar space, DR-M.tb bacilli first interact with
host soluble innate components present in the alveolar lining fluid (ALF), where hydrolases (represented as scissors) can cleave and modify the M.tb cell envelope,
releasing cell envelope fragments into the alveolar space. (C) Subsequently, ALF-modified DR-M.tb bacilli will interact with AMs (professional phagocytes) and/or
with ATs (non-professional phagocytes), as well as with other host innate immune cells (e.g., neutrophils, DCs). Released DR-M.tb fragments are immunogenic and
could attract neutrophils to the infection site driving local oxidative stress and inflammation, which could assist resident resting AMs to clear the infection. (D) The
outcome of these initial interactions will resolve in ALF-exposed DR-M.tb clearance, establishment of a successful infection driving primary active TB disease, or a
latent M.tb infection defined by M.tb persisters within granulomas, a niche that provide a protective environment against anti-TB drugs, thus increasing the DR-M.tb
phenotype. Surrounding mesenchymal stem cells (MSCs) can also dampen immune responses and provide a protective intracellular environment for M.tb
persistence. (E) Reactivation and subsequent progression to active TB disease can happen when granulomas fail to contain DR-M.tb, with extracellular DR-M.tb
growth that leads to lung tissue destruction and cavity formation. It has been suggested that in this scenario, DR-M.tb secretes free fatty acids, creating some kind
of extracellular matrix (EM) that further shields the DR-M.tb against TB drugs. Figure created with BioRender.com.

Initial M.tb–Host Interactions Within the
Lung Mucosa
Mycobacterium tuberculosis infection requires close contact with
an infectious individual with active TB, occurring through
airborne transmission of droplets containing viable bacteria

(Figure 1A). Infection in the lungs is initiated when the pathogen
is inhaled and bypasses bacterial clearance mechanisms present
in the first interaction points that act as barriers, including
nose and sinuses, tracheobronchial tree and bronchioles,
ultimately reaching the alveoli (Torrelles and Schlesinger, 2017)
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(Figure 1A). In the alveolar space, M.tb first comes in close
contact with soluble elements present in the lung alveolar
mucosa, which is composed of surfactant lipids and a hypophase
layer or ALF (Figure 1B). ALF contains surfactant proteins,
hydrolytic enzymes, and complement proteins, among others, all
critical components of the host soluble innate immune response.
Indeed, ALF hydrolases are known to interact and modify the
cell envelope of M.tb, significantly reducing the amount of two
major virulence factors, ManLAM and TDM on the bacterial cell
envelope surface (Arcos et al., 2011) (Figure 1B and Table 1).
This ALF-driven changes on the M.tb cell envelope are correlated
with a significantly better control of M.tb intracellular growth
by professional phagocytes in vitro by increasing phagosome-
lysosome fusion, as well as long-term effects in vivo (Arcos et al.,
2011, 2015; Moliva et al., 2019) (Table 1), suggesting a critical
role of these first interactions between M.tb and host innate
soluble proteins in determining infection and disease outcome.
In fact, M.tb exposure to ALF, besides modifying the M.tb cell
envelope, can also drive differential M.tb infection outcome in

alveolar epithelial cells (ATs). In this regard, two distinct subsets
of human ALFs are defined, the ones that upon exposure drove
M.tb to replicate faster (H-ALF), and the ones that upon exposure
slowed down M.tb replication (L-ALF) within ATs. This M.tb
differential replication within ATs is further correlated with an
altered human ALF composition and function, where people with
H-ALF could be more susceptible to M.tb infection (Scordo et al.,
2019) (Table 1).

Indeed, altered ALF composition and functionality in certain
human populations such as the elder, HIV-infected, diabetic
and/or individuals with underlying chronic lung diseases might
be a contributing factor related to increased susceptibility to M.tb
infection (Moliva et al., 2014, 2019; Bell and Noursadeghi, 2018;
Segura-Cerda et al., 2019), demonstrating the protective and
unique role of ALF in determining M.tb infection control and/or
progression to disease. In this context, the elderly population
is characterized by a pro-inflammatory lung environment, with
increased protein oxidation levels in the ALF linked to decreased
soluble innate immune function (Moliva et al., 2014, 2019).

TABLE 1 | DS-M.tb and DR-M.tb interactions with the host at different stages of the infection.

Lung environments DS-M.tb DR-M.tb

Initial M.tb–host
interactions
ALF (e.g., hydrolases,
surfactant proteins, etc.)

• Decrease of ManLAM and TDM in the cell envelope surface:
increased P-L fusion in phagocytes (better control of M.tb
intracellular growth).
• Differential M.tb infection outcome in ATs after ALF exposure:

H-ALF vs. L-ALF (based on ALF composition and functionality:
host component).
• Increased neutrophil’s capacity to eliminate ALF-exposed M.tb

(increased P-L fusion and higher levels of TNF and IL-8, but
reduced oxidative burst).

• Thicker cell envelope.
• Presumably altered levels of fatty acids, TDM, TMM,

glycerophospholipids, GLs, PDIM, PGL.
• Presumably altered protein composition.
• Presumably altered ALF-driven cell envelope modifications.

Initial stages of infection
Macrophages, Neutrophils,
ATs

• PAMPs in the M.tb cell envelope recognized by macrophages,
DCs and other immune cells through different receptors.
• Mannose-containing molecules in the cell envelope promote

recognition and survival inside phagocytic cells. Host defense
and immunomodulatory roles.
• Efflux pumps correlated with development of drug resistance.
• ManLAM, TDM, and PDIM levels associated with arrest of

phagosomal acidification.
• Virulence and pathogenesis correlated with the strain’s ability to

invade ATs (protective intracellular niche).

• Increased expression of efflux pumps.
• Reprogramming of host macrophage metabolism (bypassing

the IL-1R1 pathway and inducing INF-β).
• Remodeling of host transcriptional profiling through epigenetic

manipulation.
• Altered cytokine/chemokine production in macrophages.
• Strains with low PDIM levels associated with low virulence.
• Increased adhesion and invasion of ATs: successful

dissemination.
• Altered levels of CD3, CD4, NKT, CD4/CD8 ratio, TNF levels in

serum: immune dysfunction.

Latent M.tb infection
Granuloma

• Preference toward metabolic pathways using free fatty acids.
• Dynamic remodeling of M.tb cell proteome and lipid metabolic

networks.
• Altered exporter function.
• DS-M.tb becomes phenotypically drug-resistant (cell wall

thickening).
• Overexpression of efflux pumps.

• Transient drug-tolerance and permanent drug-resistance
associated with trehalose-catalytic shift.
• Similar phenotype as DS-M.tb in the granuloma environment.

Reactivation/active TB
disease

• Increased production of mycolic acids, PDIM, SL-1, and PATs.
• Biofilm formation in cavities (extracellular matrix of free mycolic

acids).

• Currently unknown, although expected to have similarities to
the interactions specifically described for DS-M.tb strains at this
stage of the infection. It is at this stage when DR-M.tb is in
cavities supposedly exposed to multiple drugs during DR-TB
treatment and thus, DR-M.tb could also become resistant to
these drugs (Sharma et al., 2020).

DS-M.tb, drug-susceptible Mycobacterium tuberculosis; DR-M.tb, drug-resistant Mycobacterium tuberculosis; ALF, alveolar lining fluid; TDM, trehalose dimycolate; ATs,
alveolar epithelial cells; H-ALF, high-ALF; L-ALF, low-ALF; TMM, trehalose monomycolate; GLs, glycolipids; PDIM, phthiocerol dimycocerosate; PGL, phenolic glycolipids;
PAMPs, pathogen-associated molecular patterns; DCs, dendritic cells.
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Thus, M.tb exposed to ALF obtained from elderly people and
subsequently used to infect human macrophages shows altered
trafficking (e.g., decreased phagosome-lysosome fusion) and
increased M.tb intracellular growth (Moliva et al., 2019). This
phenomenon is also observed in vivo, when elderly ALF exposed
M.tb infected mice presented significantly higher bacterial
burden and tissue damage in their lungs (Moliva et al., 2019).
This increase in virulence when M.tb is exposed to elderly ALF
is further linked to surfactant protein-D (SP-D) dysfunctionality
in the lungs of elderly individuals (Moliva et al., 2019). In this
context, polymorphisms in SP-D are linked to TB susceptibility
(Azad et al., 2012; Hsieh et al., 2018). SP-D is shown to bind
and cluster M.tb bacilli, influencing uptake by macrophages and
intracellular killing by increased phagosome-lysosome fusion
(Ferguson et al., 1999, 2006). These studies demonstrate the
importance of the first M.tb interactions with soluble host
innate immune components and the host ALF composition and
functional status in dictating infection progression and disease
outcome (Ferguson et al., 1999; Torrelles et al., 2008a). Still,
the overall contribution of human ALF as an environmental
pressure determinant in the development of DR-TB is a relatively
unexplored research area. How M.tb changes its metabolism
in response to these initial ALF interactions is still largely
unknown, as well as which are the specific mycobacterial and
host determinants that play a role in establishing a successful
infection. Outcomes of M.tb infection after interacting with some
ALF components [e.g., complement component 3 (C3), mannose
binding lectin (MBL), SP-A, SP-D, etc., are described in detail
elsewhere (reviewed in Torrelles et al., 2008a; Torrelles and
Schlesinger, 2017; Garcia-Vilanova et al., 2019)].

The M.tb cell envelope surface composition plays a key role in
defining the interactions between M.tb and its surroundings, with
differences known to exist among M.tb clinical isolates (Torrelles
et al., 2008b). Indeed, differential glycosylation patterns observed
in membrane- and cell envelope-associated M.tb proteins, lipids
and lipoglycans might contribute to virulence and phenotypic
variability across M.tb lineages, including drug resistance
development (Birhanu et al., 2019). Although little is known
about the cell envelope composition of drug-resistant M.tb,
some studies observed differences in cell envelope thickness
between susceptible and resistant strains (Table 1). A study using
electron transmission microscopy (TEM) showed differences
of almost 2 nm and up to 4.6 nm in cell envelope thickness
between MDR and XDR strains, respectively, when compared
to susceptible isolates, with a denser peptidoglycan layer in
XDR-M.tb strains (Velayati et al., 2009a) (Figure 1B). Further,
XXDR-M.tb strains in exponential phase studied by atomic force
microscopy present alterations in cell morphology (increased
roughness and striations, with tubular extensions), probably
induced by drug treatment; where a subpopulation of XXDR-
M.tb bacteria (5–7%) had extraordinarily thick cell envelopes,
independent of strain genotype (Velayati et al., 2010). Little
information is provided about the drug-resistant strains tested
in these studies, and it is still unknown if this thicker cell
envelope is a general feature of all DR-M.tb strains; however,
these microscopy studies suggest that the M.tb cell envelope
composition is altered in these strains (Table 1).

Other studies attempted to analyze differences in lipid
profiles between susceptible and DR-M.tb strains, as well as to
study the role of surface lipids remodeling contributing to the
emergence of MDR-M.tb phenotypes. Using a high-throughput
mass spectrometry-based lipidomic approach, it is shown that
MDR-M.tb strains have increased levels of free fatty acids,
TDM, glycerophospholipids, altered glycerolipids, and unique
and distinct lipid signatures when compared to drug-susceptible
isolates (Pal et al., 2017) (Figure 1A and Table 1). Indeed, a
potential link between low PDIM and PGL levels in the M.tb
cell envelope with increased drug susceptibility has been reported
using a tesA (encoding a type II thioesterase) mutant strain of
Mycobacterium marinum (Chavadi et al., 2011). On the other
hand, a recent study used two genetically distinct M.tb clonal
pairs (laboratory and clinical drug-sensitive strains and their
derived isoniazid-resistant (INHr) mutants) to determine specific
in vitro changes related to the isoniazid-resistant phenotype
through proteomic and lipidomic analyses (Nieto et al., 2018).
These INHr isolates presented 26 proteins with altered levels,
which were mainly associated with energy metabolism and
respiration, but also with lipid metabolism, virulence, adaptation,
and cell envelope remodeling. These strains presented activation
of an alternative mycolic acid biosynthesis route, which is also
observed in DR-M.tb strains from other lineages (Singh et al.,
2015; Nieto et al., 2016b). Interestingly, of the two INHr mutants
studied, only the clinical INHr isolate presented low levels of
TDM, TMM (trehalose monomycolate) and PDIM, the latter
associated with reduced virulence of this strain (Nieto et al.,
2016a). This is in contrast with previous studies, indicating
that M.tb genetic background may play and important role in
determining the remodeling of the M.tb cell envelope protein and
lipid constituents after acquisition of drug resistance (Table 1).

How differently DR-M.tb strains interact with the human
alveolar environment is still unknown, and it is an active branch
of research in our laboratory. In this context, during infection
ALF soluble components could modify and shape differently the
DR-M.tb cell envelope, as well as different DR-M.tb strains could
have different metabolic responses to the alveolar environment,
being an unexplored contributing factor in the development of
drug resistance and/or persistence within the host (Table 1).
Further investigation of a larger number of DR-M.tb isolates
with resistance to different drugs is needed to support this
hypothesis of a generally thickened and altered cell envelope and
to determine interactions with ALF components.

Active TB Disease: Interaction With
Professional and Non-professional
Phagocytes and Other Immune Cells in
the Lung
After susceptible or DR-M.tb are bathed in immune soluble
components of the ALF for an undetermined period of time,
AMs are thought to be the first host cellular line of defense
against M.tb, participating in the pathogen elimination directly
or indirectly by activating host innate and adaptive immune
responses (Figure 1C). AMs are defined as alternative activated,
highly phagocytic cells with tightly regulated balance of pro-and
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anti-inflammatory responses that avoid the destruction of lung
tissue due to excessive inflammation (Evren et al., 2020). M.tb has
evolved to exploit AM resources as a strategy for host immune
evasion and survival (Guirado et al., 2013).

Pathogen-associated molecular patterns (PAMPs) present in
the M.tb cell envelope are recognized by macrophages and other
phagocytic cells like lung submucosal and interstitial dendritic
cells (DCs) directly or after being ALF-opsonized through
an array of phagocytic receptors [e.g., C-type lectin receptors
(CLRs), the mannose receptor (MR), Fc and complement
receptors (CRs), DC-specific intercellular adhesion molecule-
3-Grabbing non-integrin (DC-SIGN)], and signaling receptors
[e.g., Toll-like receptors (TLRs)], among others (Leemans et al.,
2003; Sasindran and Torrelles, 2011; Ishikawa et al., 2017;
Rajaram et al., 2017; Lugo-Villarino et al., 2018) (Figure 1C
and Table 1). After recognition and binding by a phagocytic
receptor, the internalization of M.tb will initiate a series
of trafficking and signaling cascades and the activation of
numerous cellular processes such as M.tb-containing phagosome
maturation, oxidative and inflammatory responses, antigen
processing and presentation, autophagy, and cellular apoptosis,
all essential phagocyte killing mechanisms and innate immune
responses leading to clearance of M.tb infection (Mortaz et al.,
2015) (Figure 1D). Although there are multiple scenarios of
interaction with phagocytic cells via different receptors, it is
unclear how M.tb uptake through these different phagocytic
routes will affect disease progression, or if alternative routes lead
to different outcomes.

Nevertheless, M.tb has learned to circumvent host defenses
(Kang et al., 2005; Singh et al., 2009; Barczak et al., 2017;
Cambier et al., 2017; Liu et al., 2018; Peterson et al., 2019),
even to limit its exposure to sub-lethal concentrations of
antimicrobial drugs potentially promoting the emergence of
drug resistance (Wu et al., 2019). Indeed, it is shown that M.tb
cell envelope surface mimics mammalian mannoproteins by
having terminal mannose-containing molecules (e.g., ManLAM,
higher-order PIMs, 19 kDa and 24 kDa mannoproteins, PstS-
1, Apa, etc.). It is suggested that some strains of M.tb use
these heavily mannosylated cell surface molecules to interact
with lung surfactant proteins such as SP-A (Ragas et al., 2007),
and phagocytic receptors including MR (Kang et al., 2005;
Torrelles et al., 2006; Torrelles and Schlesinger, 2010; Esparza
et al., 2015), Dectin-2 (Decout et al., 2018), and DC-SIGN
(Pitarque et al., 2005; Tailleux et al., 2005; Driessen et al.,
2009), providing a safe portal of entry for M.tb inside alveolar
host cells without driving inflammation and limiting tissue
pathology (Ehlers, 2010) (Table 1). In addition, collectins such
as mannose-binding lectin (MBL) promote M.tb phagocytosis
through bacterial opsonization by binding to ManLAM and
PIMs, resulting in establishment of the infection (Denholm et al.,
2010; Kalscheuer et al., 2019).

To date, multiple mycobacterial mannoproteins have been
identified, with potential roles in virulence, cell invasion, evasion
of host defense, and host immunomodulation, reviewed in
Mehaffy et al. (2019), Deng et al. (2020), and Tonini et al. (2020).
Many of these antigenic glycoproteins contain acyl groups and
are defined as lipoglycoproteins (Becker and Sander, 2016). This

is the case of the 19 kDa lipoglycoprotein LpqH, which has
been shown to have multiple immunomodulatory roles such
as: promoting the activation of neutrophils and CD4+ T cells,
acting as an adhesin and promoting phagocytosis through lectin
receptors, altering macrophage antigen presentation functions, or
favoring M.tb immune evasion and dissemination by promoting
TLR2-dependent macrophage apoptosis, among others (Parra
et al., 2017). Another example is the 24 kDa lipoglycoprotein
LprG, which binds and transports PIM and ManLAM to the
cell surface of M.tb, acts as an inhibitor of MHC-II antigen
processing in human macrophages in vitro (Gehring et al.,
2004), although evidence suggests that LprG-reactive T cells are
activated through TLR2 and glycosylation of specific MHC-II
restriction molecules in vivo (Sieling et al., 2008). LprG is also
associated with regulating TAG levels, M.tb growth rate and
virulence in combination with the efflux pump Rv1410 (Martinot
et al., 2016). Also, the 38 kDa mannosylated glycoprotein PstS-
1 acts as adhesin by binding to the macrophage MR, promoting
phagocytosis and intracellular survival (Esparza et al., 2015),
and glycosylated lipoprotein SodC (Sartain and Belisle, 2009), a
superoxide dismutase produced by M.tb, is known to act as a
B-cell antigen and contribute to M.tb virulence, with a potential
role in the defense against the oxidative burst produced in vivo
inside macrophages (Piddington et al., 2001).

Other groups of glycoproteins involved in M.tb–host
interactions are the ones belonging to the MCE family, MPT64,
or Apa, among others, involved in colonization and invasion
of host cells (Sonawane et al., 2012), as well as other proteins
such as Rv0227c, HtrA-like serine protease Rv1223, TatA,
GlnA1, and the disulfide oxidase DsbA-like enzyme Rv2969c,
recently described as mannosylated (Tonini et al., 2020). In
addition, GroEL2, a chaperone-like M.tb capsule-associated
glycoprotein, is shown to contribute to the suboptimal antigen
presentation during mycobacterial infection by modulating
macrophage and DC proinflammatory responses (Georgieva
et al., 2018), supporting the immunogenic role of M.tb cell
envelope-associated glycoproteins during M.tb infection. Other
strategies used by M.tb to counteract host defense mechanisms
are the blockade of phagolysosome biogenesis and phagosomal
acidification, where cell envelope components such as ManLAM
and TDM among others, play important roles (Fratti et al.,
2003; Vergne et al., 2004; Kang et al., 2005) (Table 1). A recent
study also showed that M.tb surface protein Rv1468c binds to
ubiquitin, triggering host xenophagy and promoting a controlled
persistent intracellular infection while restricting host immune
responses (Chai et al., 2019). Increased PIM expression is also
reported during in vitro macrophage infection, although its
involvement in M.tb virulence and intracellular survival is still
unclear (Glass et al., 2017). The presence of DIM/PDIM lipids
in the cell envelope is also associated with arrest of phagosomal
acidification and macrophage death (Quigley et al., 2017).

Another important group of cell envelope glycoproteins are
the ones associated with drug efflux pumps and mycobacterial
cell wall permeability, with key implications in the development
of drug resistance and M.tb persistence, especially when no
genomic mutations are involved [reviewed in Singh et al. (2020)].
A clear example is the MmpL family, a group of inner membrane
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proteins associated with the transport of cell envelope lipids such
as TMM, PDIM, sulfolipids, and TAG, among others (Melly
and Purdy, 2019). Several MmpL proteins also act as drug
efflux pumps, e.g., overexpression of MmpL5/S5 and MmpL7
increases mycobacterial resistance to clozafimine, bedaquiline,
azole drugs, and isoniazid (Rodrigues et al., 2012; Hartkoorn
et al., 2014). Indeed, antibiotic stress induces expression of efflux
pumps in clinical M.tb strains (Gupta et al., 2010), which can
contribute to the emergence of MDR-M.tb phenotypes. This is
evidenced by the significantly increased expression of multiple
efflux pumps, including Tap, among others, in MDR- and XDR-
M.tb isolates when compared to drug-susceptible strains such
as H37Rv (Li et al., 2015; Kardan-Yamchi et al., 2019; Liu et al.,
2019) (Table 1). Conversely, the outer membrane channel protein
CpnT that mediates efficient nutrient uptake during infection,
can act as a major drug susceptibility determinant for M.tb, where
mutations in cpnT appear to be associated with increased drug
resistance in M.tb clinical isolates (Danilchanka et al., 2015).
Other transporters involved in drug susceptibility/resistance
have been identified in M.tb (da Silva et al., 2011; Singh
et al., 2020). Overall, a systematic screening of cell surface-
exposed lipids and glycoproteins and their functions is key for
a better understanding of the pathogenesis and survival strategies
adopted by DR-M.tb strains, including the development of drug-
resistance in vivo.

At the end, the balance between macrophage capacity to
control intracellular replication and M.tb ability to escape
macrophage killing may dictate the outcome of the infection.
In this delicate interplay, both macrophage phenotypic and
functional heterogeneity, as well as M.tb genotypic and
phenotypic differences displayed by the infecting strain will play
important roles in disease progression (Guirado et al., 2013).
In this regard, a distinct CD11c+ CD11b+ AM subpopulation
with a unique inflammatory signature was shown to preferentially
harbor M.tb during infection (Lafuse et al., 2019). Conversely,
infection with different M.tb genotypes and strains induce
different cytokine production and immune responses in in vitro
and in vivo models (Lopez et al., 2003; Chacon-Salinas et al.,
2005; Sousa et al., 2020). Indeed, there are more than 2,000
genes differentially expressed by macrophages during infection
with a lineage 2 MDR-M.tb Beijing strain (Leisching et al.,
2016). Thus, the biological properties and the metabolic status
of infecting M.tb bacilli, as well as the surface composition
of their cell envelope, will determine how M.tb interacts and
activates AMs to respond to the infection (Torrelles et al., 2008b;
Kalscheuer et al., 2019).

Some evidence indicate that DR-M.tb strains may have a
different cell envelope thickness and composition than their
counterparts, drug-susceptible strains (Velayati et al., 2009a,
2010; Singh et al., 2015; Nieto et al., 2016b, 2018). These
potential differences in their cell envelope composition and
thickness might be further accentuated by host ALF hydrolases
and other host innate immune soluble components, differently
impacting the interaction of these strains with AMs and
subsequent infection progression. Indeed, MDR-M.tb isolates
are described to present morphological differences in their cell
envelope, that correlate with their selective advantage over other

circulatingM.tb isolates (Silva et al., 2013) (Table 1). Several high-
throughput transcriptomic, proteomic and lipidomic approaches
focused on the cell wall of rpoB mutant strains, showing
upregulation of enzymes involved in the biosynthesis of PDIM
(Bisson et al., 2012), decreased synthesis of fatty acids (du
Preez and Loots, 2012), and altered levels of sulfoglycolipids
and mycobactin (Lahiri et al., 2016). Other studies indicate
that the rpoB mutation H526D is associated with altered
cell wall physiology and resistance to cell-wall related stresses
(Campodonico et al., 2018), and defined rpoB mutations as
drivers of altered cytokine and chemokine production in
macrophages (Ravan et al., 2019) (Table 1). Recently, MDR
W-Beijing M.tb lineage 2 strains with rifampicin-conferring
mutations in the rpoB gene were shown to overexpress cell
envelope lipids such as PDIMs, bypassing the IL-1 receptor type
I (IL-1R1) pathway associated with M.tb control and inducing
INF-β that drives less effective aerobic glycolysis, ultimately
reprogramming the metabolism of host macrophages (Howard
et al., 2018; Howard and Khader, 2020) (Figure 1C and Table 1).
Still, global effects of rpoB mutations on M.tb metabolism and
cell envelope constitution, and subsequent interactions with host
immune cells are still not well characterized, and further studies
are needed to determine if the known effects are common to
all DR-M.tb strains. Finally, there are some clinical evidences
indicating that MDR-M.tb strains could be remodeling host
transcriptional programming through epigenetic manipulation
(Marimani et al., 2018; Crimi et al., 2020) (Table 1). Indeed,
some XDR-M.tb strains seem to promote aberrant epigenetic
modifications in macrophages, showing increased methylation
levels of inflammatory genes in the TLR2 signaling pathway
(Behrouzi et al., 2019).

Neutrophils are also key players in the host immune response
against M.tb, being one of the first recruited innate effector
cells to arrive at the infection site, found in large numbers
in the lung during active TB disease (Eum et al., 2010)
(Figure 1C). Upon M.tb contact, neutrophils can activate
different intracellular and extracellular killing mechanisms to
clear the infection, such as phagocytosis, production and release
of reactive oxygen intermediates, and secretion of neutrophil
extracellular traps (NETs) and granules containing hydrolytic
enzymes and antimicrobial peptides (Kroon et al., 2018). Despite
neutrophil’s protective role against M.tb, a regulation of how
many neutrophils migrate to the infection site is important.
Indeed, increased number of neutrophils in the alveolar space
is associated with lung pathology during active TB due to
excessive inflammation and tissue destruction, reviewed in
detail elsewhere (Dallenga and Schaible, 2016; Muefong and
Sutherland, 2020). Furthermore, neutrophil’s activity during M.tb
infection is influenced by the human lung mucosa. In this regard,
M.tb exposed to ALF enhanced the neutrophil’s innate capacity to
recognize and kill M.tb intracellularly by enhancing phagosome-
lysosome fusion events and producing higher levels of TNF
and IL-8, while limiting excessive extracellular inflammatory
responses and tissue damage by reducing oxidative burst,
apoptosis, and degranulation (Arcos et al., 2015). Conversely,
released M.tb cell envelope fragments after ALF exposure activate
neutrophils, leading to an increased local oxidative response
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and the production of inflammatory cytokines, which regulate
the activity of resting macrophages and thus, contribute to the
control of M.tb infection (Arcos et al., 2017; Scordo et al., 2017)
(Figure 1C). Thus, deciphering the effects of drug resistance in
the M.tb–neutrophil interactions is a research area that needs
further investigation.

ATs also play important roles in the early recognition and
internalization of M.tb in the alveolar compartment (Scordo
et al., 2016; Olmo-Fontanez and Torrelles, 2020). Upon M.tb
recognition, ATs uptakeM.tb and secrete cytokines, antimicrobial
peptides, nitric oxide, surfactant proteins and other soluble
components into the ALF, facilitating cell-to-cell crosstalk with
other alveolar compartment cells such as AMs and neutrophils,
and thus ATs are active players initiating the innate immune
response (Garcia-Perez et al., 2003; Boggaram et al., 2013;
Chuquimia et al., 2013; Reuschl et al., 2017; Gupta et al.,
2018) (Figure 1C). Evidence supports that M.tb can replicate
within ATs type II cells (ATII), localized inside late endosomal
vesicles, and in some instances, ATs can process and present M.tb
antigens via MHC class I, which are efficiently recognized by
IFN-γ CD8+ T cells (Harriff et al., 2014), defining also ATs as
contributors of the adaptive immune response initiation during
M.tb infection and TB disease.

Mycobacterium tuberculosis–ATs interactions can occur
during: the very first initial stages of primary infection when
M.tb reaches the alveolar space or after M.tb is exposed to soluble
host factors present in the lung mucosa (Scordo et al., 2019)
(Figure 1C), following M.tb release from dying necrotic infected
cells in advanced disease stages, and/or following release from
granulomas during TB reactivation. The role of ATs might differ
based on the stage of infection, although most of the studies
are focused on initial M.tb–AT interactions and little is known
about the other potential scenarios. Still, it is postulated that
invasion of ATIIs could be beneficial for M.tb, as these cells
constitute a protective intracellular niche optimal for undetected
M.tb growth and replication, in part due to M.tb-containing late
endosomes in ATs that fail to acidify, while evading recognition
and clearance by professional alveolar phagocytes (Scordo et al.,
2016). Indeed, virulence and pathogenesis of M.tb is correlated
with their ability to infect ATs (McDonough and Kress, 1995),
and differences in the M.tb cell envelope composition, pre-
determined by the nature of host ALF, might be modulating
M.tb–ATs interactions (Table 1). Supporting this, a M.tb mce1
mutant strain accumulating mycolic acids in its cell envelope
can bypass the TLR-2-mediated pro-inflammatory response
in ATs (Sequeira et al., 2014). Studies also show that during
infection, different M.tb genotypic strains induce different
immune responses and gene expression patterns and activated
pathways in ATs (Mvubu et al., 2016, 2018). Specifically,
XDR-M.tb strains show increased adhesion and invasion of
ATs compared to other genotypes, including drug-susceptible
virulent M.tb H37Rv and attenuated H37Ra strains, suggesting
that successful dissemination of DR-M.tb strains might be related
to their interaction with the alveolar epithelium (Ashiru et al.,
2010) (Table 1). We are just beginning to understand the role
of ATs during M.tb infection and thus, it still remains unclear
the differential adaptation of DR-M.tb strains to this alveolar

cellular environment and its impact in M.tb infection and TB
disease progression.

Differences in MDR-M.tb cell envelope and physiology may
lead to different interactions with phagocytic and other immune
cells, promoting characteristic host immune responses that might
be different than the ones induced by susceptible M.tb strains.
Indeed, several studies defined an array of different immune
responses correlated to DR-M.tb strains. For example, a case-
control study showed that MDR-TB patients had higher levels
of CD3 and CD4 cells, as well as IgM, when compared to
drug-susceptible TB patients (Sun et al., 2017). Another study
showed that MDR-TB patient’s dendritic cells stimulated with
MDR-M.tb antigens can mediate a significant higher production
of IFN-γ by T cells when compared to DCs from uninfected
individuals (Hadizadeh Tasbiti et al., 2018), although this study
did not address how this MDR-M.tb induced immune responses
compare to drug-susceptible M.tb stimulation. In this regard,
another study showed that individuals infected with MDR-M.tb
Haarlem strains had higher levels of IL-17+ IFN-γ− CD4+ T
cells through an IL-23 and TGF-β-dependent mechanisms when
compared to latently TB-infected and uninfected individuals
(Basile et al., 2017). Other host immune correlates have been
associated with MDR- and XDR-TB patients when compared to
both drug-susceptible TB and uninfected individuals: decreased
levels of CD4, CD3/HLA-DR+ and Fas+ T cells, and increased
levels of NKT and γδ T cells (Kiran et al., 2010); altered
CD4/CD8 ratio and higher TNF levels in serum (Song et al.,
2018); and low plasma concentrations of human neutrophil
peptides (HNP1-3) (Zhu et al., 2011). T-regs might be also
contributing to immune dysfunction and M.tb persistence in
XDR-TB, although it is not clear whether this response is
specific to XDR-TB or if it is actually associated with treatment
failure independent of the strain’s drug resistance profile
(Davids et al., 2018).

Overall, these data suggest that DR-M.tb strains induce
different host immune responses (Table 1), and thus; there is a
need of more robust clinical studies in order to establish whether
the alteration of the host immune responses is an effect or a cause
of DR-TB development.

Latent TB: Granuloma Environment
After M.tb infection, host innate and adaptive immune responses
are mounted, resulting in bacterial clearance, active TB disease
or establishment of a latent M.tb infection (LTBI), the
latter characterized by persistent M.tb bacilli contained inside
complex structures called granulomas, a highly heterogeneous
and dynamic cellular environment in the lung (Ehlers and
Schaible, 2012; Guirado and Schlesinger, 2013) (Figure 1D).
Depending of the granuloma stage (formation, maintenance,
maturation, disruption leading to M.tb reactivation), these
can be studied in vitro (Guirado et al., 2015) and in vivo
using animal models such as mouse, Guinea pigs, rabbit and
non-human primate models (NHPs) (Bucsan et al., 2019).
Granulomas are composed of immune host cells including AMs,
interstitial macrophages, foamy macrophages, monocytes, multi-
nucleated giant cells, epithelial-like cells, DCs, NK cells, and
neutrophils, surrounded by B and T cells, which tightly control
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M.tb replication and dissemination (Torrelles and Schlesinger,
2017; Muefong and Sutherland, 2020) (Figure 1D). Host
determinants such as TNF, IL-6 and complement are important
for cellular recruitment and granuloma maintenance (Dutta and
Karakousis, 2014). Further, laser microdissection of individual
granulomas, followed by confocal microscopy and proteomics,
indicated that the granuloma’s center is a pro-inflammatory
environment constituted of antimicrobial molecules, ROS and
pro-inflammatory eicosanoids, whereas the tissue environment
surrounding the granuloma possesses an anti-inflammatory
profile (Marakalala et al., 2016).

Indeed, the granuloma environment has been characterized by
low pH, hypoxia, oxidative stress, and nutrient starvation, where
persisting bacilli are found in a metabolically adapted and non-
replicating state (Keren et al., 2011; Eoh et al., 2017; Peterson
et al., 2020). Using the in vitro granuloma model, M.tb is known
to undergo metabolic changes, including having a preference
toward using free fatty acids as energy source, in detriment of
using carbohydrates (Guirado et al., 2015) (Table 1). Induction
of the DosR regulon is also observed as a contributing factor in
response to starvation and adaptation to other environmental
stresses, suggesting a relevant role for the DosR regulon on the
adaptation and persistence of M.tb within granulomas (Mehra
et al., 2015; Zheng et al., 2020). Indeed, a proteome-wide study
shows a highly dynamic remodeling of the M.tb proteome during
exponential growth, dormancy and resuscitation (Table 1),
where the stress-induced DosR regulon contributes 20% to
cellular protein content during dormancy (Schubert et al.,
2015). Remodeling of the M.tb cell envelope composition
during dormancy seems to depend on phosphorylation by
serine/threonine protein kinases (STPKs), which modulate lipid
biosynthetic enzymes through altered exporter function (Table 1)
(described in detail in Stokas et al., 2020).

Several in vitro models of hypoxia/nutrient depletion have
also been used to study the cell wall of M.tb during forced
dormancy [e.g., using media with no detergent or exogenous
lipids, or M.tb cultured in the Hampshire model chemostat under
gradual nutrient depletion in an oxygen-controlled environment
(Galagan et al., 2013; Bacon et al., 2014)]. When compared
to exponentially growing M.tb, dormant M.tb has a thicker
cell envelope with increased content of TAGs, free mycolic
acids, and lipoglycans, in detriment of having less TDMs,
TMMs, and PDIMs, but keeping its infectivity and pathogenesis
intact in a guinea pig model (Galagan et al., 2013; Bacon
et al., 2014). Conversely, in vitro lipidomic studies using a
modified Wayne’s model comparing exponentially grown M.tb
in normoxic conditions vs. hypoxia-induced dormant M.tb
(Gopinath et al., 2015) pointed a decrease in mycolic acids
production and degradation of cell envelope-associated and
cytoplasmic lipids during dormancy, which was attributed to
a late onset of dormancy achieved in this model compared to
previous studies. This lipid depletion was reversed to normal
levels after bacterial re-aeration/resuscitation (Raghunandanan
et al., 2019). Based on this model, reduction of mycolic acid
content during dormancy could explain why M.tb is unable to
elicit an appropriate host immune response and clearance during
its dormancy state.

Granulomas also provide a protective environment for M.tb
against anti-TB drugs, and delivery of drugs inside the core
of the granuloma becomes challenging (Grobler et al., 2016).
M.tb adaptation to the granuloma environment is also related
to the thickening of the M.tb cell envelope (Cunningham
and Spreadbury, 1998), where originally drug-susceptible M.tb
bacillus become phenotypically drug-resistant (Deb et al., 2009;
Rodriguez et al., 2014) or persisters (Figure 1D and Table 1).
Further studies also showed M.tb overexpressing several efflux
pumps within granulomas, contributing to M.tb drug tolerance
during latency (Adams et al., 2011; Smith et al., 2013) (Table 1). In
addition, stresses associated to the granuloma microenvironment
(inflammation, hypoxia, starvation, among others) are correlated
with increased M.tb mutation rates and the generation of drug
resistance-conferring mutations in the M.tb genome, which have
important implications in the emergence of DR-M.tb phenotypes
in vivo. For example, host immune-mediated M.tb DNA damage
suggests a potential role of error-prone DNA repair synthesis
in the generation of chromosomally encoded drug resistance
mutations, and emergence of persister populations might be
associated to an altered metabolic state mediated by the (p)ppGpp
alarmone system (Warner and Mizrahi, 2006). Actually, a study
based on mathematical modeling estimated that the prevalence
of latent MDR-TB is increasing worldwide, where one in every
83 individuals with latent TB is harboring an MDR-M.tb strain
(Knight et al., 2019). Even though the increased cell envelope
thickness observed in DR-M.tb strains resembles the appearance
of dormant M.tb bacilli within granulomas, it is still unclear
how DR-M.tb strains adapt to the granuloma environment,
although transient drug tolerance and permanent drug resistance
is associated with the bacterial trehalose-catalytic shift using an
M.tb persister-like bacilli (PLB) model (Lee et al., 2019) (Table 1).
Further research is needed in this area in order to develop novel
anti-DR-TB strategies.

Finally, other type of host cells associated with granulomas
are the mesenchymal stem cells. These host cells are reported
to dampen the immune response to M.tb infection in tissues
surrounding granulomas and thus, can provide a protective
intracellular niche for M.tb replication during chronic stages of
the infection, sheltering M.tb bacilli from anti-TB drugs and
inflammatory cytokines, via increased PGE2 host signaling (Jain
et al., 2020) (Figure 1D).

LTBI can persist for decades and thus, it is important to
understand the balance between the host cells and M.tb creating
this immune-controlled environment, especially in the case
of DR-TB. When the host immune control is lost due to a
variety of intrinsic (e.g., TNF blockade treatments) and external
factors (e.g., malnutrition), which are still poorly understood,
granulomas fail to contain M.tb, and latent infection reactivates
and progresses to active TB disease (Figure 1E), with the
formation of necrotic granulomas, extracellular M.tb growth
and tissue destruction resulting in lung cavities and M.tb
dissemination and/or escape to the upper airways to propagate
the infection elsewhere. Decreased levels of TNF might be
associated with this process, as well as T cell exhaustion or
impaired functions (Lin et al., 2007; Garcia-Vilanova et al., 2019),
although bacterial and other host factors leading to reactivation
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TABLE 2 | Next generation sequencing (NGS) strategies for drug-resistant Mycobacterium tuberculosis.

NGS approaches and applications Advantages Limitations

WGS
• Species/strain identification.
• Epidemiological studies.
• TB diagnostics.
• Molecular determinants of DR-M.tb.

• Nucleotide-level resolution: identification of single
DR-M.tb conferring mutations.
• Sequence directly from clinical samples (e.g.,

sputum).
• Reveals M.tb genomic diversity and drug resistance

microevolution events within the host.

• Only describe the genetic basis of DR-TB.
• Limited information regarding DR-M.tb adaptation

during disease progression and/or interactions with
the host immune system.

RNA-Seq
• Study DR-M.tb responses to drug treatment.
• Study DR-M.tb metabolic/physiologic changes in

different environment/conditions.

• Unbiased whole transcriptome approach.
• High-throughput and relatively cost-effective.
• Higher sensitivity and specificity compared to other

gene expression approaches.

• Unable to distinguish DR-M.tb expression profiles
of different strains in mixed infections.
• Transcriptomic profile of either host or DR-M.tb in

infected cells/tissues.

Dual RNA-seq
• Study transcriptomic changes of both host and

DR-M.tb simultaneously in infected cells/tissues.

• Global approach to study both host and DR-M.tb.
• Establish causal host and DR-M.tb interactions:

genome-wide association studies.

• Needs previous pathogen enrichment, and/or;
• Increased sequencing depth to capture bacterial

transcriptome (higher costs)

scRNA-seq
• Study transcriptional responses of individual host

cells or DR-M.tb bacillus during different
physiological states (e.g., infection and disease
progression).
• Study DR-M.tb persister bacilli subpopulations

during drug treatment.
• Characterize individual responses in mixed

infections.

• Unprecedented level of resolution and technological
innovation (ability to barcode transcripts from a
single cell).
• Study host cell or DR-M.tb bacillus population

heterogeneity.
• Identify rare host cell or DR-M.tb bacillus

populations.
• Better understanding of tissue architecture.

• Lower throughput.
• Requires effective isolation of viable M.tb bacilli or

host cells.
• Study either the host cell or M.tb, but mostly

optimized for eukaryotes.
• Need to overcome extra challenges in M.tb

scRNA-seq [e.g., efficient lysis of the thick M.tb cell
envelope, capture non-poly(A) mRNA].
• Complex bioinformatics analyses.
• High sequencing costs.

Dual scRNA-seq
• Study simultaneously host and pathogen at a

single-cell resolution.

• Combined advantages of dual and scRNA-seq.
• Define spatial-time relationships between host and

pathogen. populations during different stages of the
infection.

• Same as dual RNA-seq and scRNA-seq.
• Difficult to extract enough bacterial information due

to the low coverage and DR-M.tb bacilli:host ratio.
• Complex interpretation of results.

Single-cell multi-Omics
• Global understanding of complex DR-M.tb and

host interactions through the integration of
different “Omics” strategies, at a single-cell
resolution.

• Systematic approach.
• Dissect complex biological networks within a

single-cell.
• Integrate information from numerous “Omics.”
• Highest level of information.

• Need for optimized and standardized protocols and
bioinformatics approaches.
• Difficult to integrate and interpret the data.
• Single-cell resolution not easily achievable for some

“Omics” approaches.

DR-M.tb, drug-resistant Mycobacterium tuberculosis; scRNA-seq, single-cell RNA sequencing; TB, tuberculosis; WGS, whole-genome sequencing.

remain to be elucidated. It is suggested that during reactivation,
M.tb increases the production of mycolic acids and other
cell envelope components such as PDIM, SL-1, and pentaacyl
trehaloses (PATs), increasing cell envelope hydrophobicity and
subsequent transmission (Garcia-Vilanova et al., 2019) (Table 1).
It is also shown that M.tb can form biofilms in vitro by creating
a type of highly hydrophobic extracellular matrix composed of
free mycolic acids (Ojha et al., 2008), which might shield the
bacterium against host immune responses and high dose of TB
drugs in necrotic areas such as cavities in the lungs (Orme,
2011, 2014), allowing bacterial persistence and transmission
(Figure 1E and Table 1).

CONCLUDING REMARKS

The emergence of DR-TB may be worsened by the current
COVID-19 pandemic, exacerbating the global health crisis
and undermining TB prevention and control strategies.
The development of NGS technologies in the past 20 years

has revolutionized our understanding of pathogen–host
interactions in the infectious disease field, providing genome-
wide information in an increasingly time- and cost-effective
manner. Thus, whole-genome sequencing (WGS) has been
used to gain better insight of M.tb biology and TB disease,
including epidemiologic investigations, strain identification, TB
transmission dynamics, pathogen–host interactions, and as a
fast point-of-care (POC) diagnostic test (Wlodarska et al., 2015;
Dookie et al., 2018; Brown et al., 2019) (Table 2). In this regard,
numerous studies demonstrate the value of WGS in predicting
DR-M.tb phenotypes from the M.tb genome sequenced directly
from clinical specimens (e.g., sputum) (Groschel et al., 2018;
Cohen et al., 2019b) (Table 2). Importantly, WGS has provided
new insights into the complex underlying molecular mechanisms
of M.tb drug resistance thanks to its nucleotide-level resolution
(Gonzalez-Escalante et al., 2015; Yu et al., 2015; Coll et al., 2018)
(Table 2). Of interest, studies of M.tb clinical isolates collected
from the same patient at a single time point (parallel isolates)
or at a different time points (serial isolates) during active TB
disease progression and/or drug treatment, revealed within-host
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M.tb genomic diversity and microevolution events (O’Neill et al.,
2015; Ley et al., 2019; Vargas et al., 2020). This observation
was associated to M.tb drug resistance genes, lipid synthesis
and regulation, and host innate immunity regulation. Thus,
studying within-host M.tb diversity may assist in identifying
novel adaptation strategies to drug and immune pressures in the
different lung microenvironments (Nimmo et al., 2020).

Importantly, during infection, DR-M.tb encounters very
different human lung microenvironments, modifying its
metabolism to adapt and persist in the human host. Evidence
suggests that the initial M.tb–host interactions in the alveolar
space, such as ALF exposure, play a decisive role in the
establishment of M.tb infection. Indeed, ALF-derived changes
in the M.tb cell envelope drive interactions with host innate
immune cells, modulating the immune response and infection
outcome. Although only a few studies have focused on the
in vitro and in vivo pathogenesis and adaptation of DR-M.tb
strains, a differential host response to DR-M.tb when compared
to drug-susceptible strains is reported, which might be due, in
part, to an altered M.tb envelope composition leading to M.tb
clearance, active TB disease or latent M.tb infection.

In order to develop new strategies to combat the emergence
of DR-M.tb clinical isolates, it is imperative to decipher
how DR-M.tb navigates through the different lung tissue
microenvironments, adapting its metabolic status to persist.
Transcriptomic approaches allow us to better understand the
mode of action of particular drugs (Table 2), as well as
mechanisms of drug tolerance and, in particular, those associated
to bacterial metabolic/physiologic changes and to the host
immune response, reviewed in detail elsewhere (Liu et al., 2016;
Singhania et al., 2018; Briffotaux et al., 2019; Li et al., 2020). In
the last decade, dual RNA sequencing has been investigated as
an unbiased and global strategy to simultaneously characterize
the transcriptional profiling of host and pathogen in infected
cells/tissues (Avraham et al., 2016; Westermann et al., 2016,
2017) (Table 2). In this regard, dual RNA-Seq of M. bovis BCG-
infected macrophages showed upregulation of mycobacterial
cholesterol degradation and iron acquisition pathways, and
recycling of mycolic acids, while host cells upregulated de novo
cholesterol biosynthesis likely to compensate for the loss of
this metabolite due to bacterial catabolism (Rienksma et al.,
2015). Further, dual RNA-seq in M.tb infected macrophages
isolated from mice show that the growth advantage of M.tb
in AMs compared to interstitial macrophages (IMs) is a direct
consequence of the metabolic interplay between M.tb and AMs
(Pisu et al., 2020). A similar strategy could be applied to
study how DR-M.tb strains adapt to the lung environment in
comparison to drug-susceptible M.tb strains, and clearly define
transcriptional profiles during infection that could be used in
DR-TB diagnostics and/or therapy.

Single-cell RNA sequencing (scRNA-seq) has also gained
popularity in recent years as a means to study individual
transcriptional responses of different host cell populations during
altered physiological states (e.g., infection) at an unprecedented
level of resolution (Hosokawa et al., 2017; Kolodziejczyk and
Lonnberg, 2018; Vegh and Haniffa, 2018; Hashimoto et al.,
2019) (Table 2). Thanks to its ability to amplify hundreds to

thousands of individual cells in a single preparation, it allows
the identification of rare cell populations that otherwise might
go undetected in bulk RNA-seq (Tirosh et al., 2016). However,
only a few studies have been conducted in the TB field (Gierahn
et al., 2017), due to numerous challenges associated with the
single-cell isolation and cell wall disruption of M.tb, capturing
M.tb non-polyadenylated mRNA, and amplifying the low amount
of prokaryotic starting material [reviewed in detail (Chen et al.,
2017; Zhang et al., 2018)] (Table 2). Several methods are being
developed in order to overcome these microbial scRNA-seq
issues (Sheng et al., 2017; Blattman et al., 2020; Imdahl et al.,
2020). In this context, scRNA-seq would be critical to study
M.tb persisters within granulomas, where a small fraction of
the total bacterial population is able to survive drug exposure
and killing, likely due to different metabolic/physiological state
leading to DR-M.tb.

Paired dual scRNA-seq, which combines the dual
transcriptional profiling of host and pathogen in infected
tissues with the high resolution of single-cell analysis, represents
the next level in the study of complex host–pathogen interactions
(reviewed in Penaranda and Hung, 2019) (Table 2). To date,
only one study has attempted to simultaneously characterize the
transcriptomes of both host and pathogen at a single-cell level
in macrophages infected with Salmonella typhimurium (Avital
et al., 2017), although it was difficult to extract meaningful
biological information due to the low bacterial coverage,
plus interpretation of results becomes increasingly complex
(Table 2). Although there is still much to accomplish in this
area, this methodology will become invaluable to study the
adaptive capabilities of M.tb to drug treatments, as well as to
study M.tb-ALF and M.tb-host cell responses during infection.
We would be able to respond questions such as why during
the same infection some M.tb bacterial subpopulations enter
drug tolerant states during treatment and others don’t, why
some M.tb bacilli but not others are cleared by the same
host cell type during infection, and/or what is the spatial-
time relationship between M.tb and the host cell defining the
infection outcome.

Ultimately, we expect that single-cell multimodal ‘Omics’
approaches will be the future for dissecting the complex biological
networks within each cell, providing a systematic and global
picture by analyzing and combining multiple modalities such as
genomics, transcriptomics, epigenomics, proteomics, lipidomics,
and glycomics, among others (Khan et al., 2019; Zhu et al.,
2020) (Table 2). Indeed, metabolomics and dual RNA-seq data
from M.tb-infected macrophages were collected using a multi-
omics approach to identify metabolic sub-networks regulated
during early M.tb infection, showing that M.tb consumes up to
33 different host-derived substrates to establish its intracellular
niche (Zimmermann et al., 2017).

These novel NGS strategies, including scRNA-seq, dual RNA-
seq, and single-cell multi-Omics could provide systematic and
global approaches to fully understand the complex DR M.tb-
host interplay and dynamics during the different stages of the
infection, and to uncover regulatory networks critical for DR-
M.tb survival in the host that could potentially be exploited as
novel anti-DR-TB strategies.
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