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Antimicrobial peptides (AMPs) or host defense peptides protect the host against
various pathogens such as yeast, fungi, viruses and bacteria. AMPs also display
immunomodulatory properties ranging from the modulation of inflammatory responses
to the promotion of wound healing. More interestingly, AMPs cause cell disruption
through non-specific interactions with the membrane surface of pathogens. This is most
likely responsible for the low or limited emergence of bacterial resistance against many
AMPs. Despite the increasing number of antibiotic-resistant bacteria and the potency of
novel AMPs to combat such pathogens, only a few AMPs are in clinical use. Therefore,
the current review describes (i) the potential of AMPs as alternatives to antibiotics, (ii)
the challenges toward clinical implementation of AMPs and (iii) strategies to improve the
success rate of AMPs in clinical trials, emphasizing the lessons we could learn from
these trials.

Keywords: antimicrobial peptide, clinical trial, resistance, infection, cytotoxicity, mechanism of action,
improvement strategies, peptide modifications

INTRODUCTION

Antibiotic resistance is a global concern in health care as (new) resistance mechanisms are emerging
and spreading globally. Resistant bacterial strains have been identified for various antibiotics
in clinical use. For example, shortly after the emergence of penicillin-resistant Staphylococcus
aureus in 1940 (Abraham and Chain, 1940), several pathogenic bacteria became resistant not
only to penicillin but also to semi-synthetic penicillin, cephalosporins and newer carbapenems
(Kumarasamy et al., 2010). In addition, the decline in the approval of new antibiotics by regulatory
bodies has further exacerbated this problem.

As alternatives to antibiotics, AMPs have been at the forefront of international efforts because
they are less likely to induce bacterial resistance (Wimley and Hristova, 2011). AMPs are a diverse
group of naturally occurring peptides of the innate defense system with activity against various
pathogens such as yeast, fungi, viruses and bacteria (Zasloff, 2002; Beisswenger and Bals, 2005).

Abbreviations: AMPs, antimicrobial peptides; BPI, bactericidal permeability-increasing protein; β-hCG, human β-chorionic
gonadotropin; FDA, Food and Drug Administration; GRAS, generally recognized as safe; hBD, human β-defensin; hLT-1-1,
human lactoferrin; HNP, human neutrophil; HPMC, hydroxypropyl methylcellulose; IL, interleukin; LPS, lipopolysaccharide;
LptD, lipopolysaccharide transport protein D; MDR, multi-drug resistant; STAMPS, specifically targeted antimicrobial
peptides; TFA, trifluoroacetic acid; TLR, toll-like receptors.
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To inactivate these pathogens, AMPs display a multi-hit,
non-specific and rapid action, resulting in the slow or
limited emergence of resistance (Wimley and Hristova,
2011). Additionally, some AMPs show synergistic interactions
with conventional antibiotics (Steenbergen et al., 2009; Wu
et al., 2020), which could decrease the selection of antibiotic
resistant bacteria.

Around the same time as the discovery of the first antibiotic
penicillin in 1928, the first AMP nisin was discovered in milk
(Zhang and Zhong, 2015). This AMP was approved by the
FDA of the United States as a food preservative in 1988 due
to its heat stability and tolerance of low pH (Delves-Broughton
et al., 1996; Cleveland et al., 2001). After the discovery of nisin,
several other AMPs such as gramicidin, tyrocidine, alamethicin,
purothionin, and defensins were isolated from bacteria, fungi,
plants, invertebrates and vertebrates (Van Epps, 2006; Bahar
and Ren, 2013). However, the clinical application of AMPs as
antimicrobials was limited due to toxicity considerations and
other problems, such as high production costs as compared to
antibiotics (Fry, 2018).

The renewed interest in AMPs as a consequence of the
increasing number of antibiotic resistant and tolerant bacteria
has resulted in the FDA approval of gramicidin and polymyxin
B as constituents in Neosporin R© in 1955, colistin (polymyxin
E) in 1962 and daptomycin in 2003 (Chen and Lu, 2020).
Several naturally occurring and synthetic AMPs have been
clinically investigated to combat pathogenic bacteria but since the
approval of daptomycin no new AMPs have been approved as
antimicrobials. To understand this innovation gap, we reviewed
the literature to describe the potential of AMPs as alternative
to antibiotics and the challenges toward clinical application of
AMPs. Additionally, we provide an overview of the strategies
that are currently available to facilitate the successful clinical
implementation of AMPs using examples from clinical trials.

FUNCTION OF AMPs

Physiological Role of AMPs in the Skin
The skin is not only a physical barrier to the external
environment. It is an active immune organ protecting the
host from harmful toxins and pathogenic organisms (Salmon
et al., 1994). The immune response of the skin involves
various resident cells in the epidermis such as keratinocytes,
melanocytes, Langerhans cells and γδ T cells, and in the
dermis such as dendritic cells, macrophages, fibroblasts, mast
cells, B and T cells, plasma cells and natural killer cells
(Zasloff, 2002; Ryu et al., 2014; Lacey et al., 2016). These skin
cells release several pro-inflammatory cytokines such as IL-
17 and IL-22 and produce AMPs, which act as the first line
of defense against microorganisms (Figure 1) (Liang et al.,
2006). AMPs display a broad-spectrum of antimicrobial activity
against yeast, fungi, viruses and bacteria. For example, the
human cathelicidin LL-37 shows activity against various Gram-
positive and Gram-negative bacteria, and antibiotic-resistant
bacterial strains (Dean et al., 2011; Shurko et al., 2018). The
same AMP also shows activity against fungi and some viruses

such as influenza and HIV. Bergman et al. (2007) showed
that LL-37 inhibits HIV-1 replication and suggested that this
AMP contributes to the protection against HIV-1 infection.
Furthermore, Luo et al. (2019) reported that LL-37 inhibits
Aspergillus fumigatus infection via direct antifungal activity and
reduction of excessive inflammation.

The ability to modulate the immune responses has been
reported for several AMPs. LL-37 is a well-studied AMP with
such immunomodulatory properties in humans. It acts as a
chemoattractant for monocytes and promotes the production
and release of various cytokines and chemokines that may
direct the course and intensity of inflammation (Agier et al.,
2015). Among others, LL-37 can reduce the inflammatory
response via interaction with TLR. TLRs are widely expressed
receptors on immune cells that recognize pathogenic-associated
molecular patterns. LL-37 downregulates signaling through TLR4
by scavenging its ligand LPS (Larrick et al., 1995; Rosenfeld
et al., 2006) as well as by disrupting the receptor complex
function (Di Nardo et al., 2007; Brown et al., 2011). Furthermore,
LL-37 potentially elongates the lifespan of neutrophils via the
suppression of neutrophil apoptosis (Nagaoka et al., 2012),
thereby enhancing host immunity. Additionally, Carretero et al.
(2008) report that LL-37 activates and promotes angiogenesis
and migration of keratinocytes, which results in an improved
re-epithelialization and granulation tissue formation.

The antimicrobial and immunomodulatory effects of AMPs
are necessary to maintain homeostasis of the skin function.
Therefore, the production of AMPs is upregulated upon injury
and infection (Miller et al., 2005; Sørensen et al., 2006).
For example, in acne vulgaris several AMPs such as LL-37
and hBD-2 are upregulated by, e.g., keratinocytes in response
to the Propionibacterium acnes (Nagy et al., 2006). As the
P. acnes strains vary in their ability to stimulate inflammatory
responses, upregulation of AMPs could be beneficial due to
their antimicrobial and anti-inflammatory effects. In some skin
conditions, for example in diabetic foot ulcers, the upregulation
of AMPs such as hBD-2, 3, and 4 is often not sufficient to control
the inflammation and wound infection (Rivas-Santiago et al.,
2012). Therefore, such skin conditions require specialized care
for proper healing.

Structure and Mechanism of Action
Antimicrobial peptides are usually small, consisting of 12–50
amino acids. They are composed of hydrophilic, hydrophobic
and cationic residues (net charge +2 to +11). The cationicity
and hydrophobicity of AMPs are critical for bactericidal
activity. Together with the hydrophilic residues, the hydrophobic
residues form an amphipathic structure for insertion into
the bacterial membrane (Ebenhan et al., 2014). To form this
structure, some AMPs (i.e., α-helical peptides such as melittin)
undergo conformational changes upon interaction with bacterial
membranes, while others already have a rigid amphipathic
structure (i.e., β-sheet peptides such as β-defensins) to target
bacterial membranes (Ebenhan et al., 2014). The positive charge
of AMPs facilitates the initial binding of AMPs to the membrane
surfaces via electrostatic interactions. Bacterial membranes
consisting of negatively charged phospholipid headgroups
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FIGURE 1 | Physiological role of AMPs in the skin. AMPs are produced by different resident skin cells. They act as the first line of innate immune defense against
various pathogens such as bacteria, fungi, and viruses via direct and indirect antimicrobial activities and/or immunomodulatory effects. This illustration was created
with BioRender.com.

such as phosphatidylglycerol, cardiolipin, or phosphatidylserine
show high affinity for cationic AMPs (Matsuzaki, 1999).
Contrarily, mammalian cell membranes that are enriched with
zwitterionic phospholipids such as phosphatidylethanolamine,
phosphatidylcholine, or sphingomyelin show low affinity for
cationic AMPs due to their neutral net charge.

Most AMPs cause membrane disruption through non-specific
interactions with the membrane surface. They are suggested to
form micelles or pores, causing loss of membrane integrity and
consequently leakage of intracellular components, resulting in
cell death (Chan et al., 2006). Depending on the membrane
topology and geometry of pores, pores can be described by
three models, i.e., barrel-stave, toroidal and sinking-raft model
(Figure 2). In the sinking-raft model, AMPs lie on the membrane
surface and cause an increase in membrane curvature. Self-
aggregation of the peptide causes the AMPs to sink into the
membrane, creating transient pores (Brogden, 2005). In both
the barrel-stave pore and toroidal pore, the peptide has a
transmembrane topology. The main difference between these
two models is that the formation of barrel-stave pores is driven
by both hydrophobic and electrostatic interactions, whereas the
formation of toroidal pores is mainly driven by electrostatic
interactions (Bertelsen et al., 2012). As a result, toroidal pores
are covered by phosphate headgroups, initiating changes in
membrane curvature. The mechanism of action of AMPs that
form micelles is not well-understood. It is believed that these

AMPs act by a detergent-like mechanisms causing intrinsic
perturbations of the membrane (Li et al., 2017).

Membrane disruptive AMPs might also kill bacteria using
non-membrane disruptive pathways, and vice versa (Hale and
Hancock, 2007). Additionally, they could act independently
or in synergy with non-membrane disruptive AMPs. Non-
membrane disruptive AMPs are able to transverse membranes
to reach their intracellular target components. Such AMPs could
inhibit protein-folding, proteases, cell division, the synthesis
and metabolism of proteins, nucleic acids and cell walls (Le
et al., 2017). Previously, Edgerton et al. (2000) showed that two
AMPs with clearly different structures, i.e., histatin 5 and human
neutrophil (HNP)-1, act on similar pathways. The role of these
AMPs suggests that membrane and non-membrane disruptive
AMPs serve as equally important peptides of the innate defense
system to inactivate pathogens.

CLINICAL TRIALS USING AMPs

The results from pre-clinical studies using AMPs revealed that
AMPs could be used for the prevention and treatment of various
clinical conditions. For example, peptide coating of catheters
using a novel peptide E6 prevented catheter associated infections
in mouse models (Yu et al., 2017). PXL150 demonstrated
efficacy against Pseudomonas aeruginosa in burn wounds in

Frontiers in Microbiology | www.frontiersin.org 3 February 2021 | Volume 12 | Article 616979

https://biorender.com/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-616979 February 18, 2021 Time: 15:38 # 4

Dijksteel et al. AMPs in Clinical Trials

FIGURE 2 | Membrane disruptive models of AMPs. Membrane disruptive AMPs form micelles or pores on the bacterial membrane, resulting in leakage of the
intercellular components and cell death. Membrane pores can be categorized by their membrane topology and geometry into the sinking raft, barrel stave and
toroidal models. AMPs that form barrel stave and toroidal pores display a transmembrane topology, whereas AMPs of the sinking raft model cause self-aggregation
to sink into the membrane, creating transient pores. AMPs that form toroidal pores are mainly driven by electrostatic interactions and as a result of these interactions,
the pores are covered by phosphate headgroups. AMPs forming micelles show a detergent-like mechanism of action, causing membrane perturbation. This
illustration was created with BioRender.com and Bahar and Ren, 2013.

mouse models (Björn et al., 2015). Both LL-37 and IDR-1
restored pulmonary function in mice with pneumonia (Hou
et al., 2013). Also, nisin demonstrated in vitro efficacy against
Clostridium difficile (Bartoloni et al., 2004). Furthermore, several
AMPs including LL-37 displayed anti-biofilm activity in vivo
(Chennupati et al., 2009; Segev-Zarko et al., 2015; Batoni et al.,
2016). Based on promising pre-clinical results, numerous AMPs
have been investigated in human clinical trials to demonstrate
efficacy and safety. Several of these trials are still ongoing, others
are completed, discontinued or approved. The successes and
flaws of these clinically investigated AMPs are described in the
following sections. Structural information, mechanism of action
and the intended target of AMPs in clinical trials is provided
in Table 1.

AMPs Approved for Clinical Use
Currently, nisin, gramicidin, polymyxins, daptomycin and
melittin are in clinical use as alternative to antibiotics because
of their antimicrobial potency (Figure 3A). Nisin, also known

as nisin A, is composed of 34 amino acids and consists of
dehydrated, unsaturated and thioether amino acids, forming
five lanthionine rings. It is naturally produced by lactic acid
bacteria such as Lactococcus lactis and shows a broad-spectrum
of bactericidal activity (Stevens et al., 1991; Severina et al.,
1998). L. lactis also produces nisin Z, F and Q, which differ
by up to 10 amino acids from nisin A resulting in differences
in physiochemical properties and antimicrobial activity (Piper
et al., 2011). Among others, nisins inhibit cell wall synthesis
through interactions with lipid II, a precursor molecule that is
essential for bacterial cell-wall bio-synthesis. Nisins also form
membrane pores causing cell lysis (Prince et al., 2016). Nisin
A is approved as a food preservative and is GRAS (Delves-
Broughton et al., 1996; Cleveland et al., 2001). In clinical trials,
the effect of nisin A has been investigated using probiotics, i.e.,
the consumption of live microorganisms (e.g., L. lactis) that
produce nisin A. The results of a systematic review of such trials
indicated that these probiotics reduce infectious complications
and may subsequently reduce intensive care unit mortality
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TABLE 1 | Clinical trial(s) of AMPs under investigation and in clinical use.

Peptide name Description Target Administration Phase Clinical Trial
ID

Mechanism MW
(g/mol)

Length Net
charge

References

Nisin Polycyclic lantibiotic Gram-positive bacteria Oral NCT02928042;
NCT02467972

Depolarization of cell
membrane

3354 34 4 Prince et al., 2016

Gramicidin Polycyclic peptide Infected wounds and
ulcers

Topical III NCT00534391 Membrane
disruption/immunomodulation

1882 16 0 David and
Rajasekaran, 2015

Polymyxin B Cyclic polypeptide Gram-negative bacteria Topical III NCTOO490477;
NCT00534391

Membrane
disruption/immunomodulation

1204 10 5 Morrison and
Jacobs, 1976

Polymyxin E
(Colistin)

Cyclic polypeptide A. baumannii/pneumonia Intravenous III NCT01292031;
NCT02573064

Membrane
disruption/immunomodulation

1155 10 5 Yu et al., 2015

Daptomycin Lipopeptide Skin
infection/bacteremia

Intravenous III NCT01922011;
NCT00093067;
NCT01104662;
NCT02972983

Membrane
disruption/immunomodulation

1621 13 0 Taylor and Palmer,
2016

LL-37 Human cathelicidin Leg ulcers Topical II EUCTR2012-
002100-41

Membrane
disruption/immunomodulation

4491 37 6 Brown et al., 2011

Melittin α-helical peptide Inflammation Intradermal I/II NCT02364349,
NCT01526031

Membrane
disruption/immunomodulation

2846.5 26 5 Lee and Bae, 2016

Friulimicin Cyclic lipopeptide MRSA/pneumonia Intravenous I NCT00492271 Membrane disruption 1303.5 12 −2 Schneider et al.,
2009

Murepavadin
(POL7080)

Analog of Protegrin P. aeruginosa, K.
pneumoniae

Intravenous II EUCTR2017-
003933-27-EE

Binding to LptD 1553.8 14 5 Srinivas et al., 2010

Neuprex R©

(rBPI21)
Derivative of BPI Pediatric

meningococcemia
Intravenous III NCT00462904 Membrane disruption ∼21000 193 Schultz and Weiss,

2007

Iseganan (IB-367) Analog of Protegrin Pneumonia/oral
mucositis

Topical III NCT00118781;
NCT00022373

Membrane disruption 1900.3 17 4 Orlov et al., 1805

Surotomycin
(CB-315)

Cyclic lipopeptide C. difficile Oral III NCT01597505 Membrane disruption 1680.8 13 −3 Alam et al., 2015

Pexiganan
(MSI-78)

Analog of Magainin Diabetic foot ulcers Topical III NCT00563394;
NCT00563433;
NCT01590758;
NCT01594762

Membrane
disruption/immunomodulation

2477.2 22 9 Gottler and
Ramamoorthy,
2009

XOMA-629
(XMP-629)

Derivative of BPI Impetigo/acne rosacea Topical III Immunomodulation 1158.4 9 3 Easton et al., 2009

Omiganan
(MBI-226)

Derivative of
Indolicidin

Antisepsis/catheter
infection

Topical III NCT00231153;
NCT00608959

Membrane
disruption/immunomodulation

1779.2 12 5 Rubinchik et al.,
2009

NVB-302 Lantibiotic C. difficile Oral I ISRCTN40071144 Inhibition of cell wall
synthesis

1754.0 19 0 Crowther et al.,
2013

OP-145 Derivative of LL-37 Chronic middle ear
infection

Ear drops I/II ISRCTN84220089 Membrane
disruption/immunomodulation

3093.8 24 6 Malanovic et al.,
2015

P113 (PAC-113) Fragment of
Histatin-5

Oral candidiasis Mouth rinse II NCT00659971 Membrane
disruption/immunomodulation

1564.8 12 5 Woong et al., 2008
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TABLE 1 | Continued

Peptide name Description Target Administration Phase Clinical Trial
ID

Mechanism MW
(g/mol)

Length Net
charge

References

LTX-109 Synthetic tripeptide MRSA/impetigo Topical I/II NCT01803035;
NCT01158235

Membrane disruption 788.1 3 2 Isaksson et al.,
2011; Sivertsen
et al., 2014

EA-230 Oligopeptide Sepsis Intravenous II NCT03145220 Immunomodulation 415.5 4 0 Van Groenendael
et al., 2018

SGX942
(Dusquetide)

Analog of IDR-1 Oral mucositis Oral rinse III NCT03237325 Immunomodulation 553.7 5 2 Kudrimoti et al.,
2016

hLF1-11 Fragment of human
lactoferrin

Bacterial/fungal
infections

Intravenous I/II NCT00430469 Membrane
disruption/immunomodulation

1373.7 11 4 Nibbering et al.,
2001; Welling et al.,
2018

C16G2 Synthetic peptide Streptococcus mutans Mouth wash II NCT03004365 Membrane disruption 4077.4 35 10 Guo et al., 2015

Novexatin
(NP213)

Cyclic Cationic
peptide

Fungal nail infection Topical II NCT02933879 Membrane disruption 1093.3 7 7 Mercer et al., 2020

Ramoplanin
(NTI-851)

Glycolipodepsipeptide C. difficile, VRE Oral III Inhibition of cell wall
synthesis

2568.1 17 2 Fulco and Wenzel,
2006

p2TA (AB103) Synthetic peptide Necrotic tissue infection Intravenous III Immunomodulation 1037.2 8 −1 Bulger et al., 2014

D2A21 Synthetic peptide Burn wound infections Topical III Membrane disruption 2775.4 23 9 Muchintala et al.,
2020

Melamine Chimeric peptide Contact lenses
microbials

Topical II/III Membrane disruption 2786.6 29 15 Yasir et al., 2019,
2020

Mel4 Derivative of
melamine

Contact lenses
microbials

Topical II/III ACTRN1261500072556Membrane disruption 2347.8 17 14 Yasir et al., 2020

LFF571 Semisynthetic
thiopeptide

C. difficile Oral II NCT01232595 Inhibition of protein
synthesis

1366.6 Leeds et al., 2012

Delmitide
(RDP58)

Derivative of HLA Inflammatory bowel
disease

Topical II ISRCTN84220089 Immunomodulation 1228.6 10 2 Travis et al., 2005

DPK-060 Derivative of
Kininogen

Acute external otitis Ear drops II NCT01447017 Membrane
disruption/immunomodulation

2503.2 20 7 Håkansson et al.,
2019

GSK1322322
(Lanopepden)

Synthetic hydrazide Bacterial skin infection Oral II NCT01209078 Peptide deformylase
inhibitor

479.3 Peyrusson et al.,
2015

PXL01 Analog of
Lactoferrin

Postsurgical adhesions Topical II NCT01022242 Immunomodulation 3061.6 25 5 Edsfeldt et al.,
2017

AP-214 Derivative of
α-MSH

Post-surgical organ
failure

Intravenous II NCT00903604 Membrane
disruption/immunomodulation

2433.9 19 7 Doi et al., 2008

PMX-30063
(Brilacidin)

Defensin mimetic Acute bacterial skin
infection

Intravenous II NCT01211470;
NCT02052388

Membrane
disruption/immunomodulation

936.9 Mensa et al., 2014

XF-73
(Exeporfinium
chloride)

Derivative of
porphyrin

Staphylococcal
infection

Topical II NCT03915470 Membrane disruption 765.8 Ooi et al., 2009
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(Petrof et al., 2012). Minor but possible side effects of nisin A
are itching (pruritus) and flushing of the skin, and nausea or
vomiting. The safety profile together with the broad-spectrum
of bactericidal activity, indicated that the application of nisin
could extend beyond food-related bacteria (Blay et al., 2007; Shin
et al., 2015). Applications of nisins in humans include dental-
care and pharmaceutical products such as for the treatment
of stomach ulcer and colon infections (Sakamoto et al., 2001;
Mitra et al., 2019).

Gramicidin or gramicidin D is a mixture of gramicidin A, B
and C making up 80, 6, and 14% of the mixture, respectively.
These AMPs are hydrophobic linear polypeptides composed of 15
amino acids (Meikle et al., 2016). They are naturally produced by
Gram-positive Brevibacillus brevis commonly found in soil (Van
Epps, 2006). Gramicidins form ion-channels within the bacterial
membrane, allowing the passive diffusion of Na+ and K+ along
their concentration gradient (David and Rajasekaran, 2015). This
results in membrane depolarization, osmotic swelling and lysis of
bacterial cells. Gramicidin is effective against a variety of Gram-
positive bacteria and is clinically used for ophthalmic purposes
as a constituent in Neosporin R©. In a clinical trial, patients
suffering from hordeolum who received the ophthalmic solution
containing gramicidin (Neosporin R©) reported a comparable pain
score as those who received a placebo treatment (Hirunwiwatkul
and Wachirasereechai, 2005). Additionally, the duration of
cure of these treatment groups was not statistically different
(p = 0.988). The authors of this study suggested that the lack
of statistically significant differences between the placebo and
peptide-treated group could be due to the small sample size of
14 patients in each group (Hirunwiwatkul and Wachirasereechai,
2005). In another clinical study using a larger sample size
of 91 patients, the effect of this ophthalmic solution on the
duration of cure of bacterial-positive corneal ulcers was reported
(Bosscha et al., 2004). An average of 12.5 days was required
for complete re-epithelialization of these ulcers. This was more
favorable compared to the duration of cure of ulcers treated
with ofloxacin (13.7 days) and ciprofloxacin (14.4 days) (Prajna
et al., 2001). These findings suggest that Neosporin R© containing
gramicidin could be used as an alternative to conventional
antibiotics for such ophthalmic purposes. Another AMP in
Neosporin R© is polymyxin B.

Polymyxins (A, B, C, D, and E) are a group of cyclic
polypeptides naturally produced by Gram-positive Paenibacillus
polymyxa. They show activity against MDR Gram-negative
bacteria such as P. aeruginosa and Escherichia coli (Zavascki
et al., 2007). Polymyxins bind to the lipid A component
of LPS on the outer membrane of Gram-negative bacteria
(Morrison and Jacobs, 1976), which contributes to the insertion
of the AMPs into the membrane. They can increase cell-
permeability via a detergent-like mechanism, which causes cell
death (Schroder et al., 1992). Polymyxins in clinical use are
polymyxin B and E, which differ only by one amino acid from
each other (Li et al., 2005; Falagas et al., 2006; Kwa et al.,
2007). Polymyxin B is prescribed to treat eye infections, whereas
polymyxin E is used to treat wound infections. These AMPs are
recognized as crucial but last-resort treatment options because
of their ability to induce adverse events. Nephrotoxicity and
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FIGURE 3 | Chemical structure of AMPs in clinical use. (A) A few α-helical (gramicidin and melittin) and cyclic AMPs (nisin A, polymyxin and daptomycin) have been
approved for clinical use. (B) Despite the physiochemical similarities of the cyclic AMP friulimicin B with daptomycin, the Phase I clinical trial of friulimicin B was
terminated due to unfavorable pharmacokinetics. ChemDraw version 19 was used to draw the chemical structure of AMPs.

neurotoxicity are the most common adverse events reported
for polymyxins (Falagas and Kasiakou, 2006; Cisneros et al.,
2019). To optimize the clinical use of polymyxins without
such severe adverse effects, clinical trials are currently being
executed, e.g., in combination with different antimicrobial
agents. Minor side effects, such as blurred vision, watery eyes,
and sensitivity to light, have been reported for Neosporin R©

containing two AMPs, gramicidin and polymyxin B, and an
aminoglycoside antibiotic neomycin. Thus, not one agent but the
mixture of three antimicrobial agents are responsible for these
minor side effects.

Daptomycin is a cyclic lipopeptide consisting of 13 amino
acids, which is naturally produced by the bacterium Streptomyces
roseosporus (Ball et al., 2004). It shows bactericidal activity
against Gram-positive bacteria, including antibiotic resistant
strains (Jorgensen et al., 2003). Daptomycin inhibits cell
wall synthesis, causes membrane depolarization and forms
membrane pores, eventually causing cell death. A daily
treatment of 4-6 mg/kg daptomycin is recommended in
critically ill patients. For the treatment of bacteria with
reduced susceptibility high dosages of 10 mg/kg can be
prescribed, which are also well tolerated. In a phase I clinical
trial, 2 of 5 healthy volunteers who received 4 mg/kg
per 12 h of daptomycin (8 mg/kg per day) developed
reversible myopathy (Dvorchik et al., 2003). Nonetheless,
the number of incidence and the severity of myopathy
were substantially decreased in healthy volunteers when the
total dose of 8 mg/kg was administered once daily. Other
studies reported that the development of myopathy was not
related to the administration of daptomycin but to other
factors such as concomitant medications, comorbidities and

the number of surgical interventions (Galar et al., 2019).
In a Phase IV clinical trial, the effect of daptomycin on
the resolution of skin infections was compared to that of
the standard of care, i.e., cloxacillin, nafcillin, oxacillin,
flucloxacillin or vancomycin (Arbeit et al., 2004). The success
rate of the daptomycin-treated patients was 71.5%, which
was clinically and statistically comparable to the standard
treatments with a success rate of 71.1%. In another clinical
study, efficacy of daptomycin was demonstrated in a
placebo-control trial. All patients also received a β-lactam
therapy. In this study, the daptomycin treatment resulted
in faster clearance of bacteremia than the control treatment
(placebo + β-lactam therapy) (Cheng et al., 2018). Hence,
combination therapy using daptomycin can improve the
clinical success rate.

Melittin is the predominant (40–48%) component of venom
from the European honeybee Apis mellifera. It is composed
of 26 amino acids and adopts an α-helical conformation
upon interaction with the membrane surface (Terwilligert and
Eisenbergg, 1982). It possesses anti-inflammatory properties (Lee
and Bae, 2016) and is therefore approved by the FDA for
relieving pain and swelling associated with rheumatoid arthritis,
tendinitis, bursitis and multiple sclerosis (Son et al., 2007; Alves
et al., 2011). Melittin also forms membrane toroidal pores
to inactivate pathogens. This was shown in several in vitro
and animal experiments using cancer cells (Gajski and Garaj-
Vrhovac, 2013), viruses (Memariani et al., 2020) and (resistant)
bacteria (Park et al., 2006; Van Den Bogaart et al., 2008; Choi
et al., 2015). Hence, similar to nisin, the clinical application of
melittin could extend beyond the FDA-approved purposes. Side
effects of melittin are redness and swelling of the skin at the side
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of administration, itching, trouble breathing, nausea, sleepiness
and low blood pressure.

Flaws of Some AMPs
Some clinical trials using AMPs were discontinued or terminated
due to various reasons. For example, the Phase I clinical
trial of friulimicin B in healthy volunteers was terminated
due to its unfavorable pharmacokinetic profile. The nature of
these unfavorable findings remains unknown and unexpected.
Friulimicins (A, B, C, D, and E) are a group of naturally
occurring peptides produced by Actinoplanes friuliensis and like
daptomycin, they are cyclic lipopeptides (Figure 3B). Friulimicin
B was clinically investigated and demonstrated efficacy in various
murine infection models (Endermann et al., 2007). It has
similar physiochemical properties and mechanism of action as
daptomycin (Schneider et al., 2009) but has been found to
trigger different stress responses in Bacillus subtilis as compared
to daptomycin (Wecke et al., 2009). This might be related
to differences in the pharmacokinetic profiles of these AMPs.
Another AMP, Murepavadin (POL7080) failed unexpectedly in
advanced clinical trials. Murepavadin is a 14 amino acid cyclic
peptide that targets the LPS transport protein D (LptD) on the
bacterial membrane to form pores (Srinivas et al., 2010). It was
demonstrated to be safe in Phase I clinical trials in healthy
volunteers and in subjects with an impaired renal function
(Martin-Loeches et al., 2018). Safety and efficacy of murepavadin
were demonstrated in Phase II clinical trials in patients with acute
exacerbation of non-cystic fibrosis bronchiectasis or ventilator-
associated bacterial pneumonia due to P. aeruginosa (Martin-
Loeches et al., 2018). However, Phase III clinical trial of this AMP
in patients with nosocomial pneumonia was prematurely ended
due to higher than expected acute kidney injuries, i.e., 56% for
the murepavadin plus ertapenem treated group versus 25–40%
for the meropenem treated control group and according to the
literature (BioSpace, 2019).

Besides pharmacokinetic and safety issues, several AMPs
have failed Phase III clinical trials because of lack of clear
efficacy or lack of superiority over conventional treatments.
A clear example is demonstrated for the AMP Neuprex R© (rBPI21)
which is a recombinant α-helical peptide consisting of the first
193 amino acids of the N-terminus of BPI. Clinical studies
showed that patients with meningococcemia or hemorrhage due
to trauma who received Neuprex R© had no toxic side effects
and showed a trend toward improved outcomes, i.e., reduced
bone marrow aplasia and deaths (Demetriades et al., 1999;
Guinan et al., 2011). However, Neuprex R© failed to show clear
efficacy (p = 0.07) as compared to the placebo-treated group
(Giroir et al., 2001). Similar to Neuprex R©, at least five AMP
that have completed advanced clinical trials, failed to show
clear efficacy (i.e., iseganan and XOMA-629) or superiority
over conventional treatments (i.e., surotomycin, pexiganan, and
omiganan) (Gordon et al., 2005). Nevertheless, the latter AMPs
could be potential alternatives to conventional antibiotics due to
their favorable safety profile and low or limited ability to induce
bacterial resistance. Since antibiotics are no longer routinely
used to treat bacterial infections as a consequence of resistance
development, the ability of AMPs to induce bacterial resistance,

is a more important parameter to consider during clinical
trials. Hence, instead of superiority trials, equivalence or non-
inferiority trials in which AMPs cause a similar effect as the
standard treatment, should become more common (Committee
for Proprietary Medicinal Products, 2001). In two equivalence
trials with systemic ofloxacin as the comparator, efficacy of
topical pexiganan was determined in patients with diabetic foot
ulcers (Lipsky et al., 2008). The combined results of these trials
demonstrated that pexiganan was clinically comparable to this
antibiotic. However, equivalence to ofloxacin was not acceptable
as main evidence of efficacy and FDA approval of pexiganan.
Additional clinical trials were required to demonstrate efficacy
superior to a topical placebo cream plus standard treatment for
diabetic foot ulcers. Of note, clinical trials are often not designed
using placebo treatment only as control due to ethical reasons. In
the additional trials, pexiganan plus standard treatment failed to
meet the primary outcome, i.e., resolution of infection (Genetic
Engineering, and Biotechnology News, 2016). Failure of AMPs
in such trials may arise from stability issues, inappropriate drug
administration or unknown interactions between the peptide and
the standard treatment. Currently, the developers of pexiganan
continue to evaluate the data to consider this peptide for the
treatment of other clinical indications.

Challenges Toward Clinical Application
of AMPs
The development of AMPs for clinical use is accompanied by
several challenges such as high development and production
costs, cytotoxic issues, reduced activity in clinically relevant
environments and the emergence of bacterial resistance, despite
the initial claims that they may not induce resistance. To
begin with, the manufacturing costs of antibiotics are relatively
inexpensive. For example, aminoglycoside production costs $0.80
per gram as compared to $50–400 per gram of amino acid
for AMPs by solid phase synthesis (Marr et al., 2006). As
a consequence, alternative methods are required to promote
commercial-scale production.

Furthermore, AMPs acting on membranes are not completely
selective to microbial cells and may be toxic for eukaryotic
cells as well. Several AMPs cause hemolytic and/or cytotoxic
effects at antimicrobial concentrations, limiting their wider
utilization (Laverty, 2014; Bacalum and Radu, 2015). Polymyxins
are an example of such AMPs: they are crucial antimicrobials
to eradicate MDR Gram-negative bacteria but they may cause
nephrotoxicity and neurotoxicity at antimicrobial concentrations
(Falagas and Kasiakou, 2006).

Another drawback for the clinical implementation of AMPs is
the low antimicrobial activity in clinically relevant environments.
AMPs may lose their bactericidal activity under physiological
salt conditions due to loss of electrostatic interactions between
AMPs and cell membranes (Falanga et al., 2016; Mohamed et al.,
2016). In the presence of serum, AMPs may bind to proteins such
as albumin (Sivertsen et al., 2014; Li et al., 2017). Additionally,
AMPs can be susceptible to proteolytic degradation (Perona and
Craik, 1997; Thwaite et al., 2006; McCrudden et al., 2014). Also,
Starr et al. (2016) suggested that host cells can interfere with
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the activity of AMPs in a way similar to serum protein binding.
This reduces the effective concentration of available AMPs to
eradicate bacteria.

Although AMPs do not seem to induce bacterial resistance,
resistance to AMPs has been reported. AMPs that require specific
recognition molecules such as LPS, Lipid A, Lipid I/II and
LptD, on the membrane surface of bacteria most likely develop
resistance. For example, resistance to nisin involves mutations
in bacterial cells that induce changes in membrane and cell
wall composition and eventually prevents the binding of nisin
to lipid II (Kramer et al., 2008). Alternatively, bacteria may
inactivate nisin using dehydropeptide reductase, also known as
nisinase (Bastos et al., 2015). Resistance to polymyxins and cross-
resistance to AMPs have also been reported (Li and Nation, 2006;
Valencia et al., 2009; Arcilla et al., 2016; Dobias et al., 2017).
Resistance to polymyxins is mediated by the mrc-1 gene encoding
a phosphoethanolamine modification in lipid A, which prevents
the initial binding of polymyxins to the bacterial membranes
(Liu et al., 2016). This gene was initially isolated from Chinese
livestock animals and has been identified in the human fecal
microbiome, indicating that polymyxin resistance is horizontally
transferable (Arcilla et al., 2016). Moreover, Li et al. (2007)
reported that the aps AMP sensor/regulator system is important
for S. aureus virulence in vivo. They show that AMPs may
induce resistance mechanisms in MRSA via this system, which
involves the D-alanylation of teichoic acids, the incorporation of
lysophosphatidylglycerol in the bacterial membrane, the increase
of lysine biosynthesis and AMP transport systems (Arcilla
et al., 2016). Although the impact of bacterial resistance on
the minimal inhibitory concentration of the AMPs (2–30-fold
increase) is less dramatic than for antibiotics (100–1000-fold
increase) (Andersson et al., 2016), the risk of bacterial resistance
should be carefully investigated.

IMPROVEMENT STRATEGIES

The majority of the AMPs under clinical evaluation are positively
charged analogs of naturally occurring AMPs and are limited to
topical or intravenous applications for an effective bio-available
concentration of the peptides. Importantly, the route of drug
administration could markedly affect the efficacy of AMPs as
efficacy is dependent on the bio-distribution and stability of the
peptides (Benet, 1978). Analogs of naturally occurring AMPs
have been prepared to overcome the challenges associated with
high production costs, low bio-availability and efficacy, and
cytotoxic effects of AMPs (Figure 4). Strategies to improve the
performance of AMPs are described in the following sections.

Ultra-Short and/or Truncated AMPs
Efforts to reduce production costs include alternative peptide
synthesis methods and the production of ultra-short and/or
truncated AMPs. The latter has been pursued by several
companies. The AMPs OP-145 (Nell et al., 2006), P113 (Woong
et al., 2008), LTX-109 (Midura-Nowaczek and Markowska, 2014),
and EA-230 (Van Groenendael et al., 2018) all consist of a lower
number of amino acids as compared to their “original” peptide

LL-37, histatin-5, bovine lactoferrin and loop-2 of β-hCG,
respectively. Beside truncation of AMPs, the synthesis of ultra-
short AMPs such as the 5-amino acid linear peptide SGX942
further reduces the production costs of AMPs (Kudrimoti
et al., 2016). Alternatively, solution phase synthesis or by
chemoenzymatic methods could be used for production of small
AMPs (Bray, 2003). This remains challenging for large peptides
and therefore a biotechnological approach is often considered,
i.e., the production of AMPs in microorganisms (Ingham and
Moore, 2007). Magainin, hBD-3, melittin and other AMPs have
been synthesized using calmodulin as carrier protein (Ishida
et al., 2016; Boto et al., 2018). This protein protects the producing
bacterial cells, e.g., E. coli from the toxic effects of the AMPs and
prevents degradation of the AMP during the production process.
Alternative approaches to obtain AMPs from plants or bacterial
ribosomes have been reviewed by Montesinos and Bardají (2008),
and Rogers and Suga (2015), respectively.

Delivery Systems
To improve the bio-availability of AMPs, delivery systems can
be used to administer the peptides. Nisin is readily degraded by
enzymes in the gastrointestinal tract (Heinemann and Williams,
1966). To target C. difficile, a bacterium that can infect the
colon (Le Lay et al., 2016), nisin requires a delivery vehicle
to reach the colon without being digested and absorbed by
the upper gastrointestinal tract. To achieve this, nisin has been
encapsulated in pectin/HPMC compression coated tablets to
form an enzymatically controlled delivery system (Ugurlu et al.,
2007). Alternative systems such as liposomes, nanoparticles, and
nisin-controlled gene expression in Lactobacillus gasseri have also
shown to be successful delivery systems (Neu and Henrich, 2003;
Taylor et al., 2007; Khan and Oh, 2016). Colon-specific delivery
approaches such as pro-drugs and conjugates have been reviewed
by Fang et al. (2017) and Mishra et al. (2017). These approaches
have also been used to improve the in vivo bio-availability of
different AMPs, for example Polymyxin E, which is administered
as an inactive pro-drug that undergoes hydrolysis to release the
active AMPs. Polymyxin E was also successfully integrated into
hydrogels for the treatment of burn wound infections (Zhu et al.,
2017). Please note that such delivery systems, may not only
improve the bio-availability of the AMPs but may also improve
the efficacy and reduce cytotoxicity, as a consequence of increased
solubility and specificity, respectively (Mahlapuu et al., 2016; Kim
et al., 2017; Nordström and Malmsten, 2017).

Chemical Modifications
The order and position of amino acids were found to play
an important role in the biological activity of the hLT-1-1
peptide, according to its structure-activity relationship (Welling
et al., 2018). Also, the α-helical content, the hydrophobicity and
amphipathicity of AMPs may affect their bactericidal activity and
cytotoxicity. Schmidtchen et al. (2014) reported that an increase
in the hydrophobicity might induce hemolytic activity of AMPs.
Another group showed that a reduction in the net positive charge
of AMPs may not affect the bactericidal efficacy of AMPs but may
reduce cytotoxic effects (Jiang et al., 2008). For higher bactericidal
activity and less cytotoxic effects, the introduction of arginine was
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FIGURE 4 | Improvement strategies. Several strategies have been developed to reduce production costs and cytotoxic effects and to improve bio-availability and
efficacy of AMPs. Short and/or truncated AMPs have been pursued by several companies to reduce the production costs, whereas the development of a delivery
system and the introduction of chemical modifications are more common to improve the bio-availability and efficacy of AMPs in vivo. STAMPS, combination therapy
with conventional antibiotics and the selection of a counter ion during the final step of peptide synthesis might not only improve efficacy but may also reduce
cytotoxic effects of AMPs. This illustration was created with BioRender.com.

found to be superior to lysine for providing the positive charge
of AMPs (Yang et al., 2018). To improve proteolytic stability,
different approaches have been used such as the introduction
of D-amino acids, cyclization, amidation or acetylation of the
terminal regions (Strömstedt et al., 2009; Gentilucci et al., 2010;
Chu et al., 2013). To increase the salt and serum stability of AMPs,
tryptophan or β-naphthylalanine end-tagging of the terminal
regions of AMPs could be considered (Chu et al., 2013; Pfalzgraff
et al., 2018).

Specifically Targeted AMPs (STAMPS)
Due to the broad-spectrum activity and non-specific mechanisms
of action of AMPs, these peptides may induce cytotoxic effects
as well. To reduce these effects, STAMPS have been designed
(Eckert et al., 2012). STAMPS selectively target and kill a
specific pathogenic species without affecting the normal flora
(Eckert et al., 2006). They consist of at least two regions, i.e.,
one or multiple targeting regions and a killing region linked
by a spacer. The targeting region improves the activity of
the AMPs by enhancing the initial binding of the peptide to
the specific pathogenic determinants on the membrane (He
et al., 2010). Using two are more targeting regions reduces the
likelihood of bacterial resistance and improves efficacy (Sarma
et al., 2018). Currently, C16G2 which is a synthetic AMP
or STAMP, is under clinical investigation for the treatment
of tooth decay by Streptococcus mutans. The N-terminus of
C16G2, is the targeting region for S. mutans and the C-terminus
is the killing region or AMP G2 (Kaplan et al., 2011).
C16G2 demonstrated a strong safety profile and efficacy against
S. mutans (Todd and Pierre, 2015).

Combination Therapy
To improve treatment outcomes, two or more antibiotics are
often used in clinical practice. The same could be done for
novel AMPs as many peptides show synergistic interactions
with conventional antibiotics. This could not only reduce the
amount of peptide needed for effective treatment and thus reduce
costs but may also extend the lifetime of current antibiotics
(Phee et al., 2015; Kampshoff et al., 2019). There are numerous

examples of AMPs demonstrating synergism (Rand and Houck,
2004; Oo et al., 2010; Dosler et al., 2016; Alni et al., 2020).
The combination of polymyxins with carbapenems or rifampicin
suppresses the development of polymyxin resistance (Rodriguez
et al., 2010; Lenhard et al., 2016). Also, Polymyxin B is used in
combination with gramicidin and neomycin in Neosporin R© due
to their synergistic interactions, resulting in reduced resistance
development and less cytotoxic effects (Booth et al., 1994;
Tempera et al., 2009).

Counter-Ion Selection
The final step of AMP synthesis, which involves the cleavage
and deprotection of the peptide chain with, e.g., TFA should
be investigated to improve efficacy and reduce cytotoxicity.
Counter-ions such as TFA anions are able to interact with
positively charged AMPs and affect the hydrogen-bonding
network along with the secondary structure (Blondelle et al.,
1995; Gaussier et al., 2002). Also, TFA was shown to be cytotoxic
for mammalian cells (Cornish et al., 1999). Previously, Sikora
et al. (2018) studied the effect of three counter-ions, i.e., TFA
anions, acetate and chlorides, on the bactericidal efficacy and
cytotoxicity of a set of AMPs. They found that the peptide salts
of acetate and chlorides seemed to be more potent antimicrobials
than trifluoroacetates. However, trifluoroacetates have greater
ability to promote α-helix formation in, e.g., LL-37 (Johansson
et al., 1998). Additionally, acetate counter-ions seemed to be
associated with high hemolytic activity (Sikora et al., 2018).
In contrast, pexiganan acetate showed less cytotoxicity in cell
viability assays and was the most stable salt for pexiganan (Desai,
2013; Sikora et al., 2018). Hence, superiority of one salt over
another is peptide-dependent and should be taken into account.

CONCLUSION AND PERSPECTIVES

As a result of the increasing number of antibiotic resistant
bacteria, there has been a renewed interest in AMPs as
a potential alternative to conventional antibiotics. AMPs
display clear advantages over conventional antibiotics
to combat various infectious diseases. In particular,
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(i) their broad spectrum of activity, (ii) multi-hit, non-specific
and rapid mode of action, which results in limited emergence
of resistance, (iii) the potential immunomodulatory properties
and (iv) synergistic interactions with conventional antibiotics
could eliminate the threat of MDR bacteria. Yet, until now, only
a few AMPs (e.g., nisin, gramicidin, polymyxins, daptomycin,
and melittin) have reached the clinic. Challenges toward clinical
application of AMPs include cytotoxic effects, production costs,
and problems related to peptide bio-availability and efficacy. To
overcome these challenges, several strategies have been designed
such as the preparation of ultra-short/truncated AMPs, delivery
systems and STAMPS, chemical modifications and the careful
selection of a counter-ion in the final step of AMP synthesis.
Although not all AMPs in the clinical pipeline will reach the
market, these strategies could improve the success rate of AMPs
in clinical trials. Nonetheless, several AMPs in clinical trials
have failed due to lack of clear efficacy or superiority over
conventional antibiotics, while showing a trend toward improved
clinical outcomes. Therefore, practical strategies should also be
considered in future clinical testing of AMPs as we have learned
the following lessons:

(1) The application of AMPs can extend beyond FDA-
approved clinical indications;

(2) Defining the most optimal dose and administration
regimen might reduce cytotoxic effects of AMPs;

(3) Efficacy of AMPs can be demonstrated in equivalence or
non-inferiority trials with an antibiotic as comparator;

(4) Bacterial resistance development should be included as
one of the primary outcome parameters in clinical trials
of AMPs;

(5) The bio-availability and efficacy of AMPs can be improved
using delivery systems and,

(6) The combination AMPs with conventional antibiotics
or other compounds (e.g., AMPs) might result in an
improved antimicrobial effect in clinical trials.

Taking these lessons into consideration, an increasing number
of AMPs could reach the market as multi-functional, potent and
long-lasting antimicrobials against various infectious diseases.
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