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Anaerobic methane oxidizing archaea (ANME) mediate anaerobic oxidation of methane
(AOM) in marine sediments and are therefore important for controlling atmospheric
methane concentrations in the water column and ultimately the atmosphere. Numerous
previous studies have revealed that AOM is coupled to the reduction of different electron
acceptors such as sulfate, nitrate/nitrite or Fe(III)/Mn(IV). However, the influence of
electron acceptor availability on the in situ ANME community composition in sediments
remains largely unknown. Here, we investigated the electron acceptor availability and
compared the microbial in situ communities of three methane-rich locations offshore the
sub-Antarctic island South Georgia, by Illumina sequencing and qPCR of mcrA genes.
The methanic zone (MZ) sediments of Royal Trough and Church Trough comprised high
sulfide concentrations of up to 4 and 19 mM, respectively. In contrast, those of the
Cumberland Bay fjord accounted for relatively high concentrations of dissolved iron
(up to 186 µM). Whereas the ANME community in the sulfidic sites Church Trough
and Royal Trough mainly comprised members of the ANME-1 clade, the order-level
clade “ANME-1-related” (Lever and Teske, 2015) was most abundant in the iron-rich
site in Cumberland Bay fjord, indicating that the availability of electron acceptors has
a strong selective effect on the ANME community. This study shows that potential
electron acceptors for methane oxidation may serve as environmental filters to select
for the ANME community composition and adds to a better understanding of the global
importance of AOM.

Keywords: anaerobic oxidation of methane, marine sediment, anaerobic methane-oxidizing archaea, methane
hydrates, microbial community analysis, ANME-1-related, ANME-2a
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INTRODUCTION

Anaerobic oxidation of methane (AOM) is of major importance
to earth’s climate as it regulates the release of the methane
from marine sediments into the hydrosphere and eventually
into the atmosphere, where it can serve as a potent greenhouse
gas (e.g., Jørgensen and Boetius, 2007; Reeburgh, 2007). In
marine sediments, more than 90% of biogenic methane,
which accounts for 7–25% of the global methane production,
is oxidized to CO2 by AOM (Knittel and Boetius, 2009).
The process is generally linked to sulfate reduction (S-
AOM) producing a distinct sulfate-methane transition
(SMT) in sediment layers where downward diffusing sulfate
from seawater is reduced by upward diffusing methane
(e.g., Iversen and Jørgensen, 1985; Niewöhner et al., 1998;
Knittel and Boetius, 2009).

S-AOM is mediated by consortia of sulfate-reducing
bacteria (SRB) and anaerobic methanotrophic archaea (ANME)
(Boetius et al., 2000). ANME is a phylogenetically non-
monophyletic group within the class of Methanomicrobia,
consisting mainly of the order ANME-1 and the families
ANME-2a/2b/2c, as well as the ANME-3 group within the
order Methanosarcinales (Knittel and Boetius, 2009). Although
ANME remain uncultivated, highly enriched cultures comprising
candidate species of the family Methanoperedenaceae [formerly
ANME-2d group or AOM-associated archaea (AAA)] have
been obtained from freshwater sediments in bioreactors
fed with nitrate and methane (e.g., by Haroon et al., 2013).
These have been shown to link AOM not to sulfate but to
alternative electron acceptors such as nitrate or metal oxides,
i.e., Fe(III) (Candidatus “Methanoperedens nitroreducens,” Ettwig
et al., 2016; Ca. “Methanoperedens ferrireducens” Cai et al.,
2018) and Mn(IV) (Ca. “Methanoperedens manganireducens,”
Ca. “Methanoperedens manganicus,” Leu et al., 2020). Their
genomes encompass pathways for methane oxidation as well
as multiple multi-heme cytochromes (Ettwig et al., 2016),
which are generally regarded as an indicator for metal-oxide
reduction pathways in cultivated Fe(III) reducing bacteria,
e.g., Shewanella oneidensis and Geobacter metallireducens
(Weber et al., 2006; Shi et al., 2007). This suggests that
members of the Methanoperedenaceae can mediate metal
oxide dependent-AOM without bacterial partners such
as sulfate-reducing bacteria (e.g., Desulfobulbaceae and
Desulfobacteraceae) that are required for S-AOM (Knittel
and Boetius, 2009). Similarly, genome sequences of the
phylotypes ANME-1 and ANME-2a derived from marine
environments have been shown to contain the genetic blueprint
for iron oxide dependent AOM (Fe-AOM) or manganese
oxide dependent AOM (Mn-AOM) which encompasses
genes encoding multi-heme cytochromes (Wang et al., 2014;
McGlynn et al., 2015).

Multiple studies suggest that several marine sediment
environments could be active Fe-AOM and Mn-AOM sites,
based on the presence of geochemical prerequisites such as
large quantities of buried reactive Fe(III) and/or Mn(IV)
oxides as well as abundant methane (Hensen et al., 2003;

Riedinger et al., 2005, 2014, 2017; März et al., 2008; Sivan
et al., 2011; Egger et al., 2015, 2016a,b, 2017; Oni et al.,
2015; Rooze et al., 2016; Luo et al., 2020). Direct proof
for Fe-AOM in marine sediment by measuring rates has
recently been provided for methanic, iron oxide-rich sediments
of the North Sea using 14C-based short term incubations
with and without inhibition of sulfate reduction (Aromokeye
et al., 2020). Different ANME subtypes have been shown
to co-occur in marine sediments; however, they may appear
in distinct ecological niches (Knittel et al., 2005; Timmers
et al., 2015). For instance, the concentrations of certain
pore-water constituents apparently may act as environmental
controls on the ANME community facilitating the niche
formation. In cold seep sediments from the Norwegian
continental slope, ANME-2a and ANME-2b predominated
the upper sediments, which were low in sulfide (along with
low methane concentrations). In contrast, ANME-2c were
found to predominate in deeper sediments close to gas
hydrates, where methane and sulfide concentrations were
higher (Roalkvam et al., 2011). Moreover, several ANME
subtypes have been suggested to adapt to both S-AOM and
Fe-AOM, apparently depending on the availability of the
respective electron acceptor (Takeuchi et al., 2011; Wankel
et al., 2012; Aromokeye et al., 2020). In addition, electron
acceptor availability and temperature have been suggested
as crucial factors for shaping the microbial community
composition in terrestrial mud volcanoes in the Junggar Basin
(Ren et al., 2018). Furthermore, temperature, oxygen, sulfate
penetration and methane concentration have been suggested as
environmental controls for AOM in shallow marine sediments
in the Eckernförde Bay, Baltic Sea (Treude et al., 2005).
Despite recent progress, however, it remains uncertain to what
extent the electron acceptor availability impacts the ANME
community composition and how environmental factors shape
the community in deep marine sediments.

The island of South Georgia is part of the North Scotia
Ridge in the sub-Antarctic of the South Atlantic Ocean.
The relatively broad shelf of the island is characterized by
several large cross-shelf trough systems that likely formed
during glacials and served as glacial outlets (Graham et al.,
2017). The surrounding waters are characterized by large
annual phytoplankton blooms (e.g., Borrione and Schlitzer,
2013). A recent hydroacoustic survey identified the northern
shelf of South Georgia as an area of wide-spread active
methane seepage related to trough systems (e.g., Römer
et al., 2014). Here, we have investigated sediments from
three geographically distant sampling sites, each located in
a different trough/fjord system (Figure 1). We present a
comprehensive geochemical and microbiological analysis
revealing a potential Fe-AOM site in comparison with
two sites, at which S-AOM potentially extends beyond
the SMT into the MZ, of the methane-rich northern shelf
of the sub-Antarctic South Georgia Island. We aim to
identify specific ANME subgroups that are environmentally
filtered by the availability of electron acceptors at the
respective sites.
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FIGURE 1 | Map of South Georgia and sampling locations marked by diamonds. In west to east direction these are: Church Trough (GeoB22032-1), Cumberland
Bay (GeoB22043-1, PS81/284-1) and Royal Trough (GeoB22039-2). In the Cumberland Bay fjord the two cores PS81/284-1 and GeoB22043-1 were taken in close
proximity during two separate cruises as indicated by the black diamond.

RESULTS

Geochemical Characteristics of the
Three Sampling Sites in the South
Georgia Methane Seepage Area
Three sites were sampled by gravity cores (GC) in Church
Trough, Cumberland Bay fjord and Royal Trough during RV
METEOR cruise M134 in 2017 (Bohrmann et al., 2017) along
the northern shelf of South Georgia (Figure 1). Their main pore-
water constituents (sulfate, sulfide, dissolved Fe and Mn, ferrous
iron, and methane) were analyzed and compared (Figure 2).
It was found that all study sites were abundant in methane
(Figure 2A; Bohrmann et al., 2017) and dissolved inorganic
carbon (DIC) (Supplementary Figure 1). The sediments of Royal
Trough had abundant methane concentrations of up to 7 mM
below 760 cm core depth. The sediment pore-water was sulfidic
from 30 to 940 cm core depth (max. of 4 mM at 75 cm core
depth) and sulfide was not restricted to the SMT (500 to 550 cm

core depth) (Figure 2A). Both, sulfate and sulfide were present
throughout the entire core except for the uppermost depth
(10 cm, Figure 2A). Sulfate concentrations decreased downward
from 27 mM at the top of the core to 1.5 mM at the SMT
(475 to 550 cm) and varied between 0.3 and 1 mM in the MZ,
whereas the sulfide concentrations varied between 1 and 4 mM
throughout the entire core (Figure 2A). As both sulfide and
sulfate were abundant throughout the core, the potential for
S-AOM was not restricted to the SMT, but expanded into the
MZ in Royal Trough sediments. Dissolved iron and manganese
were only detected at 10 cm core depth where sulfide was absent
(max. 34 µM and 1 µM, respectively) and not in the MZ
(Supplementary Figure 2).

Both Church Trough and Royal Trough are located at the
outer Northern shelf of South Georgia (Figure 1) and are
characterized by highly sulfidic pore-water conditions. They are
thus referred to as “sulfidic sites,” subsequently. Dissolved sulfate
and sulfide were present over the entire core depth, however,
sulfide concentrations were up to 4-fold higher in Church Trough
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FIGURE 2 | Pore-water profiles reflecting the geochemical prerequisites for and products of AOM in South Georgia sediments. (A) Pore-water profiles of sulfate,
sulfide, and methane in the sediments of Cumberland Bay, Church Trough, and Royal Trough. (B) Pore-water profiles of ferrous iron, total dissolved iron and
manganese in sediments of Cumberland Bay. Gray bars indicate SMT.

(max. of 19 mM at 39 cm core depth, Figure 2A) compared
to Royal Trough. The sulfate concentration decreased with
depth from 27 to 2 mM (Figure 2A). The core from Church
Trough (GeoB22032-1, Figure 1) comprised varying amounts of
irregularly dispersed methane hydrates (Bohrmann et al., 2017).
The gas hydrate saturation was high and reached a pore volume
of 7.5% below 120 cm core depth, therefore measurement of
dissolved methane was omitted (Bohrmann et al., 2017). Due to
the consistently high sulfide and sulfate concentrations as well as
methane saturation over the entire core depth, the depth of the
SMT could not be determined (Figure 2A).

In contrast, the pore-water samples of the sediments of
Cumberland Bay fjord revealed overall high dissolved iron and
manganese concentrations with max. concentrations of 186 µM
and 9 µM in the MZ, respectively (Figure 2B). Both dissolved

iron and manganese reached high concentrations in the MZ,
however, they were present also within the SMT around 250 cm
core depth (Figure 2B). Dissolved iron concentrations (filtered
via rhizon samplers of 0.15 µm average pore size) were between
2- and 70-fold higher than dissolved manganese concentrations
(Figure 2B). Dissolved iron largely consisted of reduced Fe2+

(Figure 2B). Sulfate decreased downward from the top of
the core into the SMT, and below detection limit in the MZ
(<50 µM, Figure 2A). Methane was abundant below the SMT
and reached a max. concentration of 13 mM at 935 cm depth
(Figure 2A). Free sulfide was not detected in the sediments of
the site in Cumberland Bay fjord due to the high dissolved iron
concentrations present throughout the core and particularly in
the MZ. Cumberland Bay fjord is hereinafter referred to as the
“iron-rich site.”
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Microbial Community Composition and
β-Diversity of Three Potential AOM Sites
In order to identify microorganisms potentially involved in
S-AOM at the sulfidic sites Church Trough and Royal Trough
or Fe/Mn-AOM at the iron-rich site Cumberland Bay fjord,
the in situ microbial community compositions were studied
at various sediment depths at all three sampling sites. In
addition to the three aforementioned GC sampled during RV
METEOR cruise M134 in 2017 (Bohrmann et al., 2017), a
GC sampled during RV POLARSTERN cruise PS81 in 2013
in Cumberland Bay fjord (Bohrmann, 2013) was analyzed for
the in situ microbial community composition. The bacterial
communities were investigated mainly for the presence of known
sulfate and iron reducing taxa among the Deltaproteobacteria.
Desulfarculales, Desulfobacterales, and Desulfobulbaceae were
present at all three sampling sites with max. relative abundances
at the top sediments decreasing with depth (Supplementary
Figures 3–5). Quantitative PCR of the dsrA gene confirmed
the trend observed with Illumina sequencing (Supplementary
Figure 6). The archaeal communities were most diverse with
respect to the ANME subgroup distribution. The highest
relative abundance of ANME 16S rRNA genes was found in
Church Trough with a max. percentage of 51% of the total
archaeal 16S rRNA gene sequences at 122 cm core depth
(Supplementary Figure 4B). In Royal Trough, ANME made up a
max. relative proportion of 30% of total archaeal 16S rRNA genes
(Supplementary Figure 5B).

The diversity of the ANME communities was examined in
more detail by sequencing of the functional marker gene mcrA
encoding the methyl coenzyme M reductase alpha subunit (Hales
et al., 1996; Luton et al., 2002) which is a specific marker for
methanogens and anaerobic methanotrophs (Luton et al., 2002;
Friedrich, 2005). Illumina sequencing of the mcrA gene revealed
that ANME-1 is the most abundant phylotype in both Church
Trough (max. 98% at 395 cm core depth, Figure 3B) and Royal
Trough (max. 99% at 425 cm core depth, Figure 3C) across most
of sediment depths (Figures 3B,C). The second most abundant
phylotypes in Church Trough were ANME-2b and ANME-2c
(Figure 3B). ANME-2c also dominated the lowermost depths of
Royal Trough sediments (Figure 3C). The abundance of ANME-
1 was confirmed with qPCR in both Church Trough and Royal
Trough (max. of 6 × 106 and 4 × 105 gene copies per gram wet
sediment; Figures 4B,C, respectively).

The archaeal community composition of Cumberland Bay
fjord sediments differed greatly from the two sulfidic sites.
Sequencing of the archaeal 16S rRNA gene revealed high relative
abundances of ANME in the MZ (up to 17%), but very
low in surface sediments (up to 0.1%) and SMT (up to 1%,
Supplementary Figures 3, 7). The “ANME-1-related” group
which is phylogenetically distinct from the canonical ANME-
1 clade (Figure 5) was the most abundant ANME phylotype
identified by mcrA sequencing (up to 97% at 875 cm core
depth, Figure 3A). ANME-2a was the second-most abundant
ANME phylotype (up to 60% at 575 cm core depth, Figure 3A).
Quantitative PCR confirmed the abundance of ANME-1-related
mcrA gene copies in the MZ (up to 3 × 105 gene copies

FIGURE 3 | Distribution of ANME phylotypes in South Georgia sediments.
Total sum scaling of relative abundances of the mcrA gene in (A) Cumberland
Bay (GeoB22043-1), (B) Church Trough (GeoB22032-1), and (C) Royal
Trough (GeoB22039-2).

per gram wet sediment; Figure 4A). The distinct microbial
communities of the three sites were visualized with Non-metric
Multi-Dimensional Scaling (NMDS) plots, which indicated site-
specific microbial community compositions (Figure 6 and
Supplementary Figure 8). The site-wise clustering in NMDS was
corroborated by PERMANOVA (P < 0.001) and by manyglm
(P < 0.005), which both revealed a significant influence of
the study site on the community structures. No significant
correlation between pore-water profiles of the environmental
parameters and individual members of the bacterial and archaeal
communities could be found. Our multi-pattern indicator species
analysis showed two different sets of typical microorganisms for
the sulfidic sites, Church Trough and Royal Trough, and the
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FIGURE 4 | Abundance of ANME phylotypes in South Georgia sediments. Quantitative PCR analyses of mcrA gene copy numbers of (A) ANME-1-related and
ANME-2a in Cumberland Bay, and mcrA copy numbers of ANME-1 and ANME-2c in (B) Church Trough and (C) Royal Trough.

iron-rich site Cumberland Bay fjord, respectively: ANME-1 was
indicative for the sulfidic sites, whereas ANME-1-related was
indicative for the iron-rich site (Supplementary Table 3).

DISCUSSION

Anaerobic oxidation of methane is an important filter mechanism
for methane in marine sediments representing a major global
methane sink (e.g., Niewöhner et al., 1998; Reeburgh, 2007;
Knittel and Boetius, 2009). Generally, S-AOM is restricted to the
SMT and performed by consortia of SRB and ANME (Boetius
et al., 2000; Knittel and Boetius, 2009). However, ANME can still
be present in MZ sediments below the SMT where they either
perform S-AOM when residual sulfate is present (e.g., Treude
et al., 2014) or utilize alternative electron acceptors such as Fe(III)
oxides (e.g., Aromokeye et al., 2020). Recent studies indicate
that ANME communities can be structured due to geochemical
parameters such as methane flow intensity (Niemann et al.,
2006) or sulfide concentrations (Roalkvam et al., 2011). Here, we
present the dominant ANME subgroups in sediments of an iron-
rich site located in a fjord setting (Cumberland Bay) in contrast
to two sulfidic sites (Royal Trough and Church Trough) located
on the outer Northern shelf of South Georgia.

Electron Acceptor Availability Shapes
the ANME Community Composition
The sediments of the northern shelf of South Georgia have
previously been described as an area characterized by widespread

active methane seepage, which has been attributed to high burial
rates of organic matter fueling microbial methane production
(Römer et al., 2014; Geprägs et al., 2016). The presence of high
methane concentrations could be confirmed for the sediments
at all sampling sites investigated here: Royal Trough and
Cumberland Bay fjord were characterized by high methane
concentrations and upward diffusive methane transport into
the SMT (Figure 2A), whereas the core of Church Trough
contained abundant methane hydrates below 120 cm core depth
and represented a site of advective methane flux (Bohrmann et al.,
2017). The main geochemical difference among the three sites, as
detected by the pore-water profiles, is the availability of different
electron acceptors.

The pore-waters retrieved at the Cumberland Bay fjord
site contained abundant dissolved iron which largely consisted
of Fe2+ (Figure 2B), a clear indication of a dominance of
Fe(III) reduction over sulfate reduction; here, sulfate was below
detection limit (<50 µM) below 425 cm core depth while
sulfide was not detected at all (Figure 2A). However, residual
sulfate concentrations were found below the SMT between 250
and 425 cm core depth (Figure 2A) which would be sufficient
to enable a potential background sulfate reduction potentially
coupled to AOM (Timmers et al., 2016) in addition to a potential
Fe-AOM. The co-production of sulfide and ferrous iron as
a result of concurrent Fe-AOM and S-AOM might explain
the comparably low dissolved Fe pore-water concentrations in
this zone. This is further supported by a kink in the pore-
water methane concentration profile occurring between 533 and
633 cm core depth which coincides with a steep increase of
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FIGURE 5 | Phylogeny of ANME subgroups. Maximum likelihood tree (RAxML, 1000 Bootstraps) based on in-house mcrA gene database. OTU sequences of South
Georgia were implemented with ARB parsimony. The ANME subgroups relevant to this study are highlighted: ANME-1-related (purple), ANME (light blue), ANME-2a
(marine), and ANME-2c (green).

dissolved Fe concentrations, indicating that Fe(III) reduction
becomes a more important electron accepting process with depth
compared to sulfate reduction (Figure 2B). Due to the fact
that dissolved Fe and not sulfide was present at all depths,
we suggest Fe(III) reduction as the primary electron accepting
process in the MZ of Cumberland Bay sediments, whilst both
Church Trough and Royal Trough are likely dominated by sulfate
reduction due to high sulfate values accompanied by high sulfide
concentrations (Figure 2A).

In the MZ of Church Trough and Royal Trough sediments
the presence of sulfide below the SMT could either be a result
of downward diffusion or indicate ongoing sulfate reduction
(Figure 2A). Sulfate reduction in the MZ can occur at low rate,
for example, when the sulfate pool is fueled by Fe(III)-driven

re-oxidation of sulfide as observed in Aarhus Bay (Holmkvist
et al., 2011) or sediments of the Nankai Trough (Riedinger
et al., 2010). In the sediments of the sulfidic outer shelf
sites of South Georgia, however, the concurrence of abundant
sulfate and methane in the MZ allows for S-AOM, which
may explain the high abundance of ANMEs (Figures 3, 4 and
Supplementary Figures 4, 5). In Church Trough, where ANME
represent up to 50% (at 122 cm core depth) of all archaeal 16S
rRNA sequences (Supplementary Figure 4), S-AOM should be
considered a dominant process. S-AOM in the MZ has been
previously described for the Beaufort Sea, where simultaneous
methanotrophic and sulfate-reducing activities were detected
below the SMT and sulfate concentration was low (30–500 µM;
Treude et al., 2014). Therefore, S-AOM is potentially not only an
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FIGURE 6 | Site-specific β-diversity patterns of Cumberland Bay, Church Trough and Royal Trough. NMDS ordination of abundant OTUs (>1000 sequences) based
on sequencing of the (A) bacterial 16S rRNA gene, (B) archaeal 16S rRNA gene, and (C) mcrA gene.

Frontiers in Microbiology | www.frontiersin.org 8 April 2021 | Volume 12 | Article 617280

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-617280 April 8, 2021 Time: 15:44 # 9

Schnakenberg et al. Electron Acceptors Influence ANME Communities

important metabolic process in the SMT but also in the MZ of
both Royal Trough and Church Trough sediments.

The potential for AOM in Cumberland Bay fjord sediments
(station PS81/284-1; GeoB22043-1) was previously demonstrated
(Geprägs et al., 2016). Fe(III) reduction linked to AOM has
been suggested to occur in the MZ of various iron-rich marine
sediments (e.g., Riedinger et al., 2014; Egger et al., 2015, 2016a,b,
2017; Oni et al., 2015; Rooze et al., 2016; Aromokeye et al.,
2020; Luo et al., 2020). In addition, Fe-AOM has been shown
to contribute to the accumulation of dissolved iron in the pore-
water of the MZ in North Sea sediments (Aromokeye et al., 2020).
The presence of dissolved iron and absence of sulfide in the
MZ of Cumberland Bay fjord sediments suggests that a potential
AOM in the sediments below the SMT would be rather iron-
than sulfate-dependent (Figure 2). AOM is generally performed
by various subtypes of ANME (Boetius et al., 2000; Knittel and
Boetius, 2009), therefore, we analyzed the microbial community
by sequencing of the marker gene mcrA in addition to bacterial
and archaeal 16S rRNA gene sequencing. In Cumberland Bay
MZ sediment samples, ANME-1-related was the most abundant
phylotype followed by ANME-2a, as revealed by sequencing of
the mcrA gene (Figure 3A). ANME-1-related form a distinct
clade (Figure 5) that appears to be rather versatile. It has recently
been shown to grow in Fe-AOM performing sediment slurry
incubations (Aromokeye et al., 2020), but it was also previously
reported to be associated with S-AOM (Takeuchi et al., 2011).
Despite this apparent versatility, ANME-1-related mcrA genes
were far less abundant in the sulfidic sites with max. relative
abundances of 1% (at 100 cm core depth and 312 cm core
depth) in Church Trough and 15% (at 375 cm core depth)
at Royal Trough (Figures 3B,C). ANME-2a were abundant in
Cumberland Bay fjord with a max. relative abundance of 69%
at 750 cm core depth (Figure 3A). This clade has been closely
associated with Fe-AOM (Tu et al., 2017; Aromokeye et al., 2020)
as well as S-AOM (Boetius et al., 2000) and is thought to be
sensitive to high sulfide concentrations (Timmers et al., 2015).

In contrast, ANME-1 was the dominant ANME phylotype
at both Church Trough and Royal Trough, followed by
ANME-2c (Figures 3B,C). Both clades have been associated
with S-AOM in multiple previous studies (e.g., Knittel et al.,
2005; Roalkvam et al., 2011; Timmers et al., 2015) and have
additionally been shown to tolerate high sulfate and sulfide
concentrations (Timmers et al., 2015) which also characterize
the deep sediments in Church Trough and Royal Trough. In
addition, in an in situ community analysis, ANME-1 and ANME-
2c have been shown to dominate the archaeal community in
presence of high sulfide concentrations and close to gas hydrates
(Roalkvam et al., 2011). The mrcA gene copy numbers of
the respective ANME phylotypes were quantified with qPCR
(Figure 4 and Supplementary Figure 6). In both Royal Trough
and Church Trough, mcrA gene copies of the specific phylotypes
co-occurred with dsrA gene copies over the entire core depth
(Supplementary Figure 6). The concurrent presence of ANME-
1 mcrA gene copies and dsrA gene copies could indicate a
microbial potential for S-AOM that expands from the SMT
into the MZ in both sulfidic sites of South Georgia. However,
sediments from Cumberland Bay fjord also exhibit considerable

quantities of dsrA gene copy numbers (Supplementary Figure 6).
Potential dsrA harboring taxa, i.e., Desulfobulbaceae and
Desulfobacterales, were abundant at all three sampling sites
(Supplementary Figures 3–5). These comprise both Fe(III)-
and sulfate-reducing (Lovley, 2013) organisms rendering the
dsrA quantification inconclusive. The ANME-1 and ANME-
2a/b/c phylotypes have been related to S-AOM in consortia
with SRB in previous studies, though predominantly located
in the SMT (Knittel and Boetius, 2009; Beulig et al., 2019).
ANME-1 has been reported as the dominant archaeal group
where they likely perform S-AOM in methane hydrate related
biofilms in Arctic sediments (Gründger et al., 2019), and cold
seep sediments (Vigneron et al., 2019). ANME-1 might perform
methanogenesis based on phylogenetic assessments (Lloyd et al.,
2011; Kevorkian et al., 2021), enrichments (Bertram et al., 2013),
and their potential involvement in cryptic methane cycling in
the SMT of Aarhus Bay sediment (Beulig et al., 2019). Given
the high abundances of ANME-1 and near-absence of typical
methanogens (e.g., Methanosarcina spp.) in the MZ of the
sulfidic sites Royal Trough and Church Trough (Figure 3 and
Supplementary Figures 4, 5), involvement of ANME-1 in both,
methanogenesis and AOM is feasible. Nevertheless, other studies
have demonstrated that methanogenesis during AOM occurs as
an intrinsic back flux, but does not serve as an energy conserving
reaction for ANME (Holler et al., 2011; Yoshinaga et al., 2014;
Wegener et al., 2016). If this hypothesis holds true, ANME-
1 in Royal Trough and Church Trough sediments are more
likely to perform S-AOM which is supported by the presence of
sulfate and sulfide in the pore-water (Figure 2). Consequently,
methanogenesis as an energy conserving reaction would be
restricted to deeper sediment layers (i.e., below 10 m core depth)
and supposedly be performed by known methanogens.

Analyses of the β-diversities of the operational taxonomic
units (OTU) generated by sequencing of the bacterial and
archaeal 16S rRNA gene as well as the mcrA gene revealed the
site-specific influence on the community composition (Figure 6).
The ANME community of the sulfidic sites Church Trough
and Royal Trough were dominated by ANME-1 and ANME-2c
(Figures 3B,C, 4B,C and Supplementary Table 3) in contrast
to the iron-rich site Cumberland Bay, where ANME-1-related
and ANME-2a were the most abundant ANME phylotypes
(Figures 3A, 4A and Supplementary Table 3). Thus, it is highly
likely that the electron acceptor availability might heavily impact
ANME community composition.

ANME-1-Related and ANME-2a Mediate
Potential Fe-AOM in Cumberland Bay
In the sediments at the Cumberland Bay fjord site, potential
Fe-AOM might be mediated by ANME-1-related or ANME-
2a, or in consortia with bacterial iron reducers, e.g., members
of the Desulfuromonadales as indicated previously (Oni and
Friedrich, 2017; Aromokeye et al., 2020). Nevertheless, the
Desulfuromonadales as potential bacterial partners in Fe-AOM
were found at low abundance (<2%) at all sites (Supplementary
Figure 3) only. Other potential bacterial partners might be
members of the Desulfobacterales, which are also known to use
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ferric iron as electron acceptor (Lovley, 2013), albeit their relative
abundance was similar across sites. A deeper characterization
of the physiological role of ANME-2a requires enrichment
(or pure) cultures, which are however, notoriously difficult to
obtain. Further investigations would therefore be required to
determine the true potential of Fe(III) reducing bacteria in South
Georgia. ANME-2a are closely related to Methanoperendenaceae
(or ANME-2d; Figure 5) of which many members have been
shown to mediate Fe-AOM or Mn-AOM (Ettwig et al., 2016;
Cai et al., 2018; Shen et al., 2019; Leu et al., 2020). Generally,
Fe-AOM associated ANME phylotypes such as Candidatus
“Methanoperedens nitroreducens” (Haroon et al., 2013; Ettwig
et al., 2016) and Candidatus “Methanoperedens ferrireducens”
of the family Methanoperendenaceae (Cai et al., 2018), the
ANME-2a group (Wang et al., 2014) or the ANME-1 group
(Meyerdierks et al., 2010) and Mn-AOM associated ANME
phylotypes such as Candidatus “Methanoperedens manganicus”
and Candidatus “Methanoperedens manganireducens” (Leu et al.,
2020) possess several multi-heme cytochrome encoding genes
typically associated with dissimilatory Fe(III) and Mn(IV)
reduction in bacteria (Lovley, 2013; McGlynn et al., 2015;
Wegener et al., 2015; Vigneron et al., 2019). The ANME-1-related
archaea form a distinct order-level lineage apart from ANME-
1 (Figure 5; Takeuchi et al., 2011; Lever and Teske, 2015). So
far, their metabolism remains largely elusive; Takeuchi et al.
(2011) concluded that ANME-1-related archaea mediate S-AOM,
although the addition of sulfate did not stimulate AOM activity in
all their incubations in which ANME-1-related archaea were the
most abundant ANME group. However, in MZ sediments from
the North Sea ANME-1-related cell numbers strongly correlated
with the dissolved iron pore-water profile (Aromokeye et al.,
2020). In our study, we could not find such a correlation of pore-
water iron concentration and ANME-1-related mcrA gene copy
numbers. Nonetheless, ANME-1-related and ANME-2a OTUs
were characteristic for the sediments at the Cumberland Bay fjord
site as determined by multi-pattern indicator species analysis
(Supplementary Table 3). In contrast, ANME-1 and ANME-2c
OTUs were indicative for the sulfidic sites, Royal Trough and
Church Trough (Supplementary Table 3).

The abundance of potentially Fe-AOM mediating ANME
phylotypes such as ANME-1-related and ANME-2a coincides
with a potential for AOM in MZ sediments of Cumberland Bay
fjord (Geprägs et al., 2016). In our analyses of the pore-water
constituents, however, we detected dissolved iron but no sulfide
at this depth (Figure 2). This demonstrates a dominance of iron
reduction over sulfate reduction in the MZ of Cumberland Bay
sediments suggesting that iron reduction below the SMT may
be either fueled by methane or organic matter oxidation. Since
ANME-1-related and ANME-2a are the most dominant ANME
phylotypes, they are the most promising candidates for potential
Fe-AOM in the MZ sediments of the Cumberland Bay fjord site.

CONCLUSION

The methane-abundant and methane seepage-associated
sediments on the northern shelf of South Georgia Island display

a wide array of ANME subgroups in varying abundance. We
find that ANME communities are likely influenced by the
availability of different electron acceptors. ANME-1-related
and ANME-2a are the most abundant ANME groups in the
iron-rich sediments of the Cumberland Bay fjord site, whereas
ANME-1 and ANME-2c are the most abundant ANME groups
in the sulfidic sediments of the outer shelf sites Church Trough
and Royal Trough. Although we do not exclude the possible
impact of other selective factors such as community competition
and dispersal, our study indicates that the electron acceptor
availability has a strong selective effect on the ANME community
in South Georgia sediments.

MATERIALS AND METHODS

Sampling Sites and Sampling Procedure
The northern shelf of South Georgia Island, Scotia Sea, South
Atlantic Ocean, is characterized by widespread occurrence of
active methane seepage (Römer et al., 2014; Geprägs et al.,
2016). Sediment and pore-water samples were taken from
three sampling locations around South Georgia by means of
gravity coring: GeoB22032-1 (Church Trough, water depth:
369.0 m), GeoB22039-2 (Royal Trough, water depth: 227.0 m)
and GeoB22043-1 (Cumberland Bay fjord, water depth: 254.0 m)
sampled during the R/V METEOR cruise M134 in 2017 and
PS81/284-1 (Cumberland Bay fjord, water depth: 274.6 m)
during RV POLARSTERN cruise PS81 in 2013 (Figure 1 and
Supplementary Table 1). The geology and geochemistry of
the northern shelf and fjords were extensively studied during
these cruises (Bohrmann, 2013; Bohrmann et al., 2017). All
GC positions are characterized by their location within a
trough and their proximity to an active methane seep site.
The cores GeoB22039-2 from Royal Trough and GeoB22032-
1 from Church Trough have previously been characterized as
sites with high sulfide concentrations (Bohrmann, 2013). In
addition, GC GeoB22032-1 from Church Trough was shown to
contain methane hydrates and methane at saturation, whereas
the sediments at the site in Royal Trough had only dissolved
methane in the MZ.

Pore-water samples were retrieved by filtering through rhizon
samplers (average pore size 0.15 µm; Seeberg-Elverfeldt et al.,
2005) and sediment samples for CH4 analyses were taken as
described in Pape et al. (2014). Concentrations of pore-water
constituents of core GeoB22032-1 (Church Trough) are likely
somewhat diluted due to the dissolution of the gas hydrates
during core retrieval. Sediment samples for DNA extraction were
taken in a sterile manner and stored at −20◦C immediately as
described in Aromokeye et al. (2020).

Geochemical Analyses
Measurements of pore-water sulfate (detection limit of 50 µM)
and sulfide were performed as described by Oni et al. (2015).
CH4 measurements were performed as described by Pape et al.
(2014). DIC was measured with a flow injection system according
to Hall and Aller (1992). Dissolved iron and manganese were
measured with inductively coupled plasma optical emission
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spectrometry (ICP-OES) as described in Aromokeye et al.
(2020). In addition, pore-water Fe2+ concentrations were
determined with a Ferrozine based photometric essay directly
after retrieval of pore-water onboard. 1 ml pore-water aliquots
were transferred into cuvettes pre-filled with 50 µl of Ferrozine
solution immediately after pore-water retrieval on board. Fe2+

concentrations were measured photometrically at a wavelength
of 565 nm.

Nucleic Acid Extraction
DNA was extracted from 0.5 g of sediment per depth in technical
triplicates with the phenol-chloroform-isoamyl alcohol-method
(Lueders et al., 2004). The DNA in the triplicates was pooled
during elution with 50 µl diethyl pyrocarbonate (DEPC) treated
water and stored at −20◦C until further use. Single extracts
per sampling depth were used for subsequent sequencing
and qPCR analyses.

Illumina Sequencing of 16S rRNA Genes
Illumina of 16S rRNA genes was performed as described
previously (Aromokeye et al., 2020). Briefly, amplification
was performed using KAPA HiFi DNA polymerase (KAPA
Biosystems, Germany) with barcoded versions of the primer pair
Bac515F (5′-GTGYCAGCMGCCGCGGTAA-3′) (Parada et al.,
2016) and Bac805R (5′-GACTACHVGGGTATCTAATCC-
3′) (Herlemann et al., 2011) for targeting bacteria, and
barcoded versions of the primer pair Arc519F (5′-
CAGCMGCCGCGGTAA-3′) (Ovreås et al., 1997) and Arc806R
(5′-GGACTACVSGGGTATCTAAT-3′) (Takai and Horikoshi,
2000) were used for targeting archaea. Purified and quantified
PCR products were sequenced on an Illumina Sequencing HiSeq
4000 (2 × 150 bp) platform (GATC Biotech GmbH, Germany)
and analyzed using SILVA database v.1.32 (Quast et al., 2012) in
a QIIME environment (Caporaso et al., 2010, 2011).

Illumina Sequencing of mcrA Genes
Illumina of mcrA genes was performed as described previously
(Aromokeye et al., 2020). Briefly, amplification was performed
using ALLin RPH (high Qu) polymerase kit (Thermo Fisher
Scientific, Germany) with barcoded versions of the primer
pair mlasF (5′-GGTGGTGTMGGDTTCACMCARTA-3′,
Steinberg and Regan, 2008) and ME2mod (5′-
TCATBGCRTAGTTNGGRTAGT-3′, Mori et al., 2012). Purified
and quantified PCR products were analyzed on an Illumina
Sequencing MiSeq (2 × 300 bp) platform (MR DNA, Molecular
Research LP, Shallowater, TX, United States).

Quantitative PCR of Bacterial and
Archaeal 16S rRNA Genes, dsrA and
Total mcrA Genes
Quantitative PCR of bacterial and archaeal 16S rRNA genes
was performed using MESA BLUE qPCR MasterMix Plus for
SYBR R© Assay Low ROX (Eurogentec, Seraing, Belgium) and the
respective primer pairs (Supplementary Table 2). DNA extracted
from in situ sediment samples was quantified using Quant-
iT PicoGreen dsDNA assay kit (Invitrogen-Thermo Fischer

Scientific, Steinheim, Germany) and diluted to 0.5 ng/µL. 2 µL
of diluted DNA was used as template for all qPCR assays. qPCR
assays were run using the following program: 95◦C: 10 min; 40
cycles at 95◦C: 30 s, 58◦C or 60◦C: 20 or 30 s, 72◦C: 40 s. A post
amplification melting curve analysis was performed in order to
confirm the absence of PCR by-products by detecting change in
fluorescence every 0.5◦C from 60 to 95◦C. Detailed information
on qPCR primers, assay conditions, efficiencies and standards is
provided in Supplementary Table 2.

Quantification of mcrA Genes
Quantitative PCR of mcrA genes was performed as described
previously (Aromokeye et al., 2020). Detailed information on
qPCR primers, assay conditions, efficiencies and standards is
provided in Supplementary Table 2.

Analysis of 16S rRNA and mcrA Gene
Sequences
Sequence analysis was performed on the QIIME 1.9 platform
(Caporaso et al., 2010) based on the analysis pipeline as
recommended (Pylro et al., 2014) with modifications. To analyze
mcrA gene sequences, barcodes were extracted and sequences
were reoriented starting with the forward primer sequence.
Reoriented reads were joined using a minimum overlap of 50
bases. Joined reads were demultiplexed with a filter quality of
Q0 (Caporaso et al., 2011). Demultiplexed sequences were quality
filtered using USEARCH 11 (expected error value of 0.5) (Edgar,
2010). At this step, all sequences were truncated to a length of
352 bp. USEARCH 11 was further used to dereplicate sequences,
sort them by their abundances and subject them to remove
singletons. OTU clustering and chimera removal was done using
the UPARSE-OTU algorithm (Edgar, 2013) to create an OTU
database. Chimeric sequences were checked and discarded by the
UPARSE-OTU algorithm during this step. The truncated, non-
dereplicated reads were mapped back to the OTU database to
create an OTU table. OTUs were classified for their taxonomy
using uclust and an in-house mcrA gene database which was
created by acquisition of long (>1000 bp) gene sequences
of cultured and published methanogenic, methanotrophic and
hydrocarbon degrading archaea (from https://www.ncbi.nlm.nih.
gov/nucleotide/) that were manually aligned in ARB 6.02 (Ludwig
et al., 2004) as described in Aromokeye et al. (2020). The
taxonomic assignment was done on the family level at a sequence
identity of 0.7 (Yang et al., 2014). Using the RAxML algorithm
in ARB, a phylogenetic tree was constructed, to which shorter
mcrA gene sequences were added using the ARB Parsimony tool.
The OTU table and taxonomy assignment files were merged
together using a set of “biom” commands (McDonald et al.,
2011) to obtain a tab-delimited text file useful for downstream
analysis. A few modifications of the above pipeline were done
to analyze 16S rRNA gene sequences. Only forward reads were
used to analyze the community composition. After extraction of
barcodes, forward reads were de-multiplexed, quality filtered and
their lengths were truncated to 143 bp. Taxonomic assignment
was done on clustered OTUs against the 16S rRNA gene SILVA
database (Release 132 for QIIME) (Quast et al., 2012).
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Statistical Analysis
Analyses and figures (except Figure 5) were made within the
R environment v. 3.3.2 (R Core Team, 2019). Community
analyses were performed with the package vegan (Oksanen et al.,
2018). The variation of microbiological communities between
the three GCs based on bacterial 16S rRNA gene, archaeal 16S
rRNA gene and mcrA gene sequencing was visualized with Non-
metric Multi-Dimensional Scaling (NMDS) based on Bray-Curtis
dissimilarities. To further elucidate the association between
ANME organisms and our three study sites (individually and
in combination), we carried out a multipattern indicator species
analysis using the multipatt function in the indicspecies package
under default parameters with 999 permutations (De Cáceres
and Legendre, 2009). We conducted PERMANOVA with Bray
Curtis distances under 999 permutations in vegan (function
“adonis2”; Oksanen et al., 2018) to account for the influence
of the study site (Cumberland Bay, Church Trough, and Royal
Trough) on the community structure. In addition, we used the
function ‘manyglm’ (package mvabund; Wang et al., 2012) with
300 Monte-Carlo permutations and the Wald test to account for
the influence of the study site on the community structure.
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