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The use of metaproteomics for studying the human gut microbiota can shed light on
the taxonomic profile and the functional role of the microbial community. Nevertheless,
methods for extracting proteins from stool samples continue to evolve, in the
pursuit of optimal protocols for moistening and dispersing the stool sample and
for disrupting microbial cells, which are two critical steps for ensuring good protein
recovery. Here, we evaluated different stool sample processing (SSP) and microbial
cell disruption methods (CDMs). The combination of a longer disintegration period of
the stool sample in a tube rotator with sonication increased the overall number of
identified peptides and proteins. Proteobacteria, Bacteroidetes, Planctomycetes, and
Euryarchaeota identification was favored by mechanical cell disruption with glass beads.
In contrast, the relative abundance of Firmicutes, Actinobacteria, and Fusobacteria
was improved when sonication was performed before bead beating. Tenericutes and
Apicomplexa identification was enhanced by moistening the stool samples during
processing and by disrupting cells with medium-sized glass beads combined with or
without sonication. Human protein identifications were affected by sonication. To test
the reproducibility of these gut metaproteomic analyses, we examined samples from
six healthy individuals using a protocol that had shown a good taxonomic diversity and
identification of proteins from Proteobacteria and humans. We also detected proteins
involved in microbial functions relevant to the host and related mostly to specific taxa,
such as B12 biosynthesis and short chain fatty acid (SCFA) production carried out
mainly by members in the Prevotella genus and the Firmicutes phylum, respectively.
The taxonomic and functional profiles obtained with the different protocols described
in this work provides the researcher with valuable information when choosing the most
adequate protocol for the study of certain pathologies under suspicion of being related
to a specific taxon from the gut microbiota.

Keywords: metaproteomics, gut microbiota, sample preparation, cell disruption, human proteins, taxonomic
profiles

Frontiers in Microbiology | www.frontiersin.org 1 July 2021 | Volume 12 | Article 618566

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2021.618566
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2021.618566
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2021.618566&domain=pdf&date_stamp=2021-07-05
https://www.frontiersin.org/articles/10.3389/fmicb.2021.618566/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-618566 June 29, 2021 Time: 18:22 # 2

García-Durán et al. Human Gut Microbial Taxonomic Signatures

INTRODUCTION

The human gut microbiota is a complex community of
microorganisms that inhabit the human gastrointestinal tract.
The gut microbiota comprises nearly a thousand bacterial species,
in addition to archaea, fungi, parasites, and viruses (Alarcón et al.,
2016; Lloyd-Price et al., 2016). When this ecosystem is balanced
and shows high diversity, its close relationship with the host
provides beneficial effects, such as the digestion of indigestible
foods, defense against pathogens, immunomodulation, and
production of vitamins and other beneficial products (Jandhyala
et al., 2015). However, even with its great capacity for resilience,
the gut microbiota is influenced by many factors, including diet,
age, pollution, and the consumption of antibiotics, among others
(Jakobsson et al., 2010; David et al., 2014; Jin et al., 2017; Kim
and Jazwinski, 2018; Adak and Khan, 2019). These factors can
affect its composition and biodiversity, leading in some cases
to dysbiosis. Although it remains unclear whether dysbiosis is
a cause or consequence of host pathological states, the link
between pathological states and gut microbiota dysbiosis is a
proven fact. Gut microbiota dysbiosis was previously associated
with several disease states, including gastrointestinal diseases (Ni
et al., 2017; Saffouri et al., 2019), cancer (Wang et al., 2019),
Alzheimer’s disease (Kowalski and Mulak, 2019), and even autism
(Fattorusso et al., 2019). Furthermore, the microbiota-gut-brain
axis is the link between the gut microbiota and host pathologies
related to mental conditions (Wang and Wang, 2016). This link
illustrates the importance of the metabolic pathways carried out
by gut microbiota, which produce a high diversity of enzymes and
metabolites that perform several functions in different parts of the
body, not exclusively in the gastrointestinal tract.

Currently, metagenomics is the most common “omic”
approach for studying the microbiota, due to its ability to
provide valuable information about microbial complexity (Jovel
et al., 2016). Nevertheless, this strategy lacks the ability to
provide functional insights. In this context, metaproteomics is
a promising approach for studying the gut microbiota, both
from the taxonomic point of view and the functional point of
view. Indeed, metaproteomics can reveal the main metabolic and
functional roles played by the different microorganisms present
in gut microbiota (Zhang et al., 2016; Issa Isaac et al., 2019).
Moreover, this approach can provide information about proteins
that mediate the interactions between the gut microbiota and
the host (Blackburn and Martens, 2016). Thus, metaproteomics
can provide a better understanding of the functional roles of
the gut microbiota, compared to other “omics” approaches
(Zhang et al., 2019).

Despite advancements in metaproteomic techniques in
recent years (Zhang and Figeys, 2019), the complexity of the
microbiota samples, typically derived from stool samples, has
made it difficult to devise a suitable protocol for maximizing
microorganism recovery. First, microbial cells must be separated
and extracted from the fecal sample. Regarding this issue,
differential centrifugation has been found to provide good
results in the enrichment of the bacterial fraction (>90%),
revealing a low microbial cell retention by other fecal components
(Apajalahti et al., 1998). Tanca et al. (2015) also evaluated

the effectiveness of this process. In both works, and prior to
this differential centrifugation, the humectation of the fecal
sample in a tube rotator for several minutes was carried out. In
contrast, Zhang et al. (2018) substituted this several minutes tube
rotator humectation and dispersing step for vortexing the fecal
sample with large-sized glass beads saving time in the sample
processing. In addition, an optimal microbial cell disruption
method (CDM) is needed to ensure that protein identification
is as comprehensive as possible. Because protein extraction
methods can affect metaproteomics results (Zhang et al., 2018),
the protocol must be optimized to produce representative
taxonomic profiles and identify the most significant metabolic
roles carried out by gut microbiota. Regarding microbial cell
disruption, several techniques have been used in microbiota
studies by different authors using different lysis buffers and
different mechanical disruption methods. Concerning lysis
buffers, these studies pointed out SDS-containing buffer to be
the one that rendered the best results in protein yields in
comparison to other buffers tested (Zhang et al., 2018). Regarding
the mechanical disruption, bead-beating and sonication are the
two main options for this purpose and have been widely used
in different metaproteomics studies (Santiago et al., 2014; Tanca
et al., 2014; Zhang et al., 2016). As for bead-beating, the suitable
size of the beads to be used in gut microbiota studies is not well
defined yet. Small beads (<0.5 mm) (Wu et al., 2016; Zhang
et al., 2018; Schultz et al., 2020) have been normally used in this
type of studies, while bigger glass beads (>0.5 mm) are normally
used for yeast cell disruption (Pitarch et al., 2008). A mixture of
different sized beads has been proven to better extract proteins
from gram-positive bacteria and yeast (Hayoun et al., 2019). We
therefore wanted to test several human gut protein extraction
approaches using different sized-beads in combination or not
with an additional sonication step prior to bead-beating.

In addition to optimizing the extraction of microbial proteins
from a stool sample, bioinformatics is a crucial step in
the metaproteomics workflow. Different software for peptides
identifications are available, like MaxQuant (Cox and Mann,
2008) or X! TANDEM (Craig and Beavis, 2004). Moreover, there
are several tools that allow the functional characterization of the
identified peptides (Sajulga et al., 2020). There are also different
options available that combine both, peptides identification and
functional annotation, like the MetaProteomeAnalyzer (Muth
et al., 2015), Unipept (Mesuere et al., 2016), or MetaLab (Cheng
et al., 2017). These software are open-source and easy-to-use
tools. The use of these software has facilitated the analysis of
the huge amount of data generated in metaproteomics studies
of human gut microbiota. We have used the software MetaLab
for the bioinformatics analysis carried out in this work. This
software accesses a protein dataset that was created from more
than 1,000 human microbiota samples, which allows a high
number of peptide/protein identifications. As explained before,
the software also allows functional characteristics to be assigned
to the identified proteins at specific taxon levels.

In this study, we aimed to compare the isolation and
characterization of human gut microbiota by analyzing one
stool sample with different protocols combining different sample
processing and microbial CDMs. We assessed the effectiveness of
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one of these assayed protocols by characterizing and comparing
six human gut microbiome samples, according to their taxon
profiles and the functions of the identified proteins in each
individual sample.

MATERIALS AND METHODS

Stool Samples
To test the different protocols, a stool sample from a healthy
volunteer (from now on named H1) was used. To perform
the metaproteomic study, stool samples were collected from 6
healthy adult volunteers with their informed consent. The 6
samples belonged to 3 females and 3 males, aged between 31 and
52 and were named, S1 to S6. None of them had been under
antibiotics treatment during the previous year to sampling. Only
one subject reported gastrointestinal problems within 3 months
prior to sampling. Nutritional habits of the volunteers are
unknown. Feces were stored at −80◦C until processing.

Metaproteomic Analysis of Stool
Samples
We combined two different stool sample processing (SSP) and
three CDMs. All these protocols are schematized in Figure 1.
Each protocol was performed in triplicate.

Microbial Enrichment by SSP
SSP1 was modified from different works (Tanca et al., 2015;
Zhang et al., 2018). Briefly, 0.5 g of the stool sample were
resuspended in 10 mL ice-cold phosphate buffer (PBS), vortexed
and shaken in a tube rotator for 45 min at 4◦C. The hydrated
samples were subsequently subjected to low-speed centrifugation
at 500 × g, 4◦C for 5 min which favored the sedimentation
of particulate and insoluble material allowing the collection of
the supernatant (containing microbial cells). The supernatant
was then transferred to a new tube and kept at 4◦C while the
pellets were resuspended in 10 mL ice-cold PBS, repeating this
process two other times. Finally, the supernatants (∼30 mL)
were centrifuged at 14,000 × g and 4◦C for 20 min to pellet the
microbial cells. Pellet was then washed three times with PBS. The
washing step was performed by resuspension of cell microbial
pellet in ice-cold PBS followed by centrifugation at 14,000 × g
and 4◦C for 20 min. The resulting washed pellet was subjected to
protein extraction. SSP2 is a variation of SSP1 in which the 45 min
shaking step in the tube rotator was changed for a 5 min vortexing
step with 10 glass beads (2.5 mm).

Cell Disruption Method for Protein Extraction
Three different CDMs (1–3) were carried out for cell disruption
and protein extraction. CDM1 was modified from Zhang et al.
(2018). Briefly, the microbial pellet was resuspended in 500 µL
lysis buffer (4% SDS (w/v) in 50 mM Tris–HCl buffer pH 8.0)
followed by incubation in a Thermomixer Comfort (Eppendorf)
at 95◦C for 10 min with agitation. After cooling, the lysates were
transferred to a 2-mL screw-cap tube containing 0.3 g glass beads
(0.5–0.75 mm) (Retsch). Bead beating was carried out using a
FastPrep-24 machine (MP Biomedicals Inc., United States) at a

speed of 6.5 ms−1 for 90 s (3 rounds 30 s each with 5 min interval
on ice) in CMD1 for protocol A or for 150 s (5 rounds 30 s each
with 5 min interval on ice) for protocol D. Finally, cell debris and
beads were removed through centrifugation at 16,000 × g and
4◦C for 10 min. The supernatant was then transferred into a new
tube and centrifuged again at 16,000 × g and 4◦C for 10 min to
remove any remaining particulate debris. The final supernatant
was used for protein quantification and purification. CDM2 was
performed similarly to CDM1 but introducing two different sizes
of glass beads (0.15 g of 0.5–0.75 mm and 0.15 g of 0.125–
0.2 mm). CDM3 was modified from Zhang et al. (2017). Briefly,
the microbial pellet was resuspended in a 500 µL volume of 4%
SDS (w/v) lysis buffer followed by incubation in a Thermomixer
Comfort at 95◦C for 10 min with agitation. After cooling and
once the lysates had been transferred to a 2-mL screwcap tube,
4 sonications (30 s each with 1 min interval on ice) using Vibra
Cell Sonicator (Sonics & Materials Inc., United States) with an
amplitude of 40% were carried out. After sonication, bead beating
disruption was carried out under conditions (including beads
sizes, speed and rounds) described in CDM1. Combination of
the two different SSPs and three CDMs resulted in six protocols
named A–F (Figure 1).

Peptide Sample Preparation for Mass
Spectrometry
Proteins were precipitated using methanol/chloroform to remove
SDS, and then resuspended in 8 M urea for in-solution
trypsin digestion. The samples were quantified with Qubit
3.0 (Thermo Fisher Scientific) and 15 µg of each sample
were loaded and separated on an SDS-PAGE gel to confirm
protein concentration and protein pattern to check the sample
suitability for metaproteomic study. Subsequently, 50 µg of
proteins were reduced with 10 mM dithiothreitol (DTT) at
37◦C for 45 min and alkylated with 55 mM iodoacetamide
(IAA) at room temperature for 30 min in darkness. 1:25
trypsin (enzyme:protein) (Roche Molecular Biochemicals) was
added to each sample in 25 mM ammonium bicarbonate for
trypsin digestion at 37◦C overnight. The peptides from protein
digestions were desalted and concentrated with C18 reverse
phase chromatography (OMIX C18, Agilent technologies) being
later eluted with 80% acetonitrile (ACN)/0.1% trifluoroacetic
acid. The eluent was then freeze-dried in Speed-vac (Savant)
and resuspended in 12 µL 2% ACN/0.1% formic acid (FA).
Finally, peptides were quantified in Qubit fluorimeter (Thermo
Fisher Scientific) and 1 µg peptides were used for liquid
chromatography (LC)-mass spectrometry (MS)/MS analysis.

Liquid Chromatography-Tandem Mass
Spectrometry Analysis
For RP-nano-LC-ESI-MS/MS analysis, 1 µg peptides were
analyzed in a Q Exactive HF mass spectrometer coupled to an
EASY – nLC 1000 System (Thermo Fisher Scientific).

First, the peptides were loaded on-line onto a Acclaim PepMap
100 Trapping column (75 µm i.d. × 20 mm, 3 µm C18 resin
with 100 Å pore; Thermo Fisher Scientific) using buffer A (0.1%
FA) and then separated on a C18 resin analytical column (75 µm
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FIGURE 1 | (A) Workflow of the various SSP (stool sample processing) and CDM (cell disruption method) carried out with stool sample H1. (B) Schematic
representation of the different combinations of SSP and CDM carried out in each protocol (PA–PF). ∗ In CDM1, 3 rounds were performed for PA and 5 rounds for PD.

i.d. × 500 mm, 2 µm and 100 Å pore size; Thermo Scientific
Easy Spray Column) with an integrated spray tip. The flow rate
during the sample loading state was 250 nL/min. The peptides
were separated by a binary buffer system of 0.1% FA (buffer A)
and 0.1% FA in 100% ACN (buffer B). A 240 min gradient from 2
to 40% buffer B in buffer A was performed.

Data were acquired in a Full-MS data-dependent acquisition
(DDA) in a positive mode with Xcalibur 4.1 software in a
Q-Exactive HF hybrid quadrupole-Orbitrap mass spectrometer
(Thermo Fisher Scientific). MS scans were acquired at m/z range
of 350 to 2,000 Da followed by data-dependent MS/MS scan (with
a threshold of 0.01) of the 15 most abundance precursors with
charges of 2–5 in MS scans for high-energy collision dissociation
(HCD) fragmentation with a dynamic exclusion of 10 s and
normalized collision energy (NCE) of 20 and the corresponding
MS/MS spectra were acquired.

The mass spectrometry proteomics raw data have
been deposited to the ProteomeXchange Consortium1

via PRIDE partner repository with the database identifiers
PXD020786 and PXD025659.

Bioinformatics Analysis
For data processing, MetaLab version 2.0 was used (Cheng
et al., 2017). This software provides peptide and protein
identification and quantification, taxonomic profiling and
functional annotation. Briefly, the human gut microbial gene
catalog with 9,878,647 sequences2 is employed for generating
a reduced, sample-specific protein database (Li et al., 2014).
The resulting database is combined with a human database in

1 http://www.proteomexchange.org
2https://db.cngb.org/microbiome/genecatalog/genecatalog_human/
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order to also identify human proteins. This human database
was downloaded from Uniprot DB3 (UniProt Consortium, 2019)
restricted to human taxonomy (downloaded 02.18.2020 with
74,451 sequences). This combined database was used for peptide
characterization using the Andromeda search engine from
MaxQuant version 1.6.10.43 which is integrated in MetaLab.
Quantitative analysis is performed employing the maxLFQ
algorithm in MaxQuant. Proteins identified by the same set or a
subset of peptides are grouped together as one protein group. For
protein identification MetaLab software requires the detection of
one exclusive peptide thereof. The FDR is set as 0.01. Taxonomic
analysis of the generated peptide list is performed matching
peptides to the lowest common ancestor (LCA). Abundance
data of both peptides and taxa were provided according to the
LFQ intensities. The quantitative information of each taxon
was calculated summing up all the intensities belonging to all
distinctive peptides assigned to that taxon. For each taxon, this
value was then used to estimate its relative abundance within
all the taxa identified in the sample. The taxonomic results
were manually filtered to not retain human taxa and only taxa
identified with at least three peptides were considered.

Functional annotation for the identified proteins was also
assigned and automated generated from MetaLab to directly
obtain information about clusters of orthologous groups (COGs)
and kyoto encyclopedia of genes and genomes (KEGG). For deep
functional analysis, KEGG Orthology (KO) database information
(molecular functions as functional orthologs defined in the
context of KEGG molecular networks) was used (see text footnote
2). Taxon-function analysis was carried out using taxonomic
information of the enrichment analysis from iMetaLab platform4

in combination with KO database information.
KEGG pathway was downloaded from KEGG website5.

STRING analysis was done with the STRING program (version
11.0). Graphs were made with Infogram6.

Statistical Analysis
The Kolmogorov–Smirnov test and Shapiro–Wilk test were
applied to examine whether data followed a normal distribution.
The independent-samples Student’s t-test or Mann–Whitney U
test was used to evaluate the central tendencies of numeric
variables between two categorical independent groups, as
appropriate. One-way analysis of variance (ANOVA) with
post hoc Tukey’s test was applied to compare these tendencies
among multiple independent groups. Unsupervised principal
component analysis (PCA) was carried out to group the stool
samples from one selected healthy individual (H1) extracted with
the different established protein extraction protocols on the basis
of the similarities in their gut microbial taxonomic abundance
patterns observed from the metaproteomic data. The degree
of homology or relative similarity of these profiles among the
study groups was assessed with Mann–Whitney U test, whereas
their degree of homogeneity or relative variation within each

3www.uniprot.org
4http://shiny.imetalab.ca/
5http://www.kegg.jp
6https://infogram.com/

study group was evaluated by ANOVA. Unsupervised two-way
hierarchical clustering analysis (HCA) was performed to cluster
the stool samples extracted with the six protocols and different
identified (phylum, family, or genus) taxa simultaneously
according to the similarities in the gut microbial taxonomic
abundance profiles of each extraction method and the pattern of
each identified gut microbial taxon across all protein extraction
protocols, respectively. Relative abundance rates were normalized
by median centering the gut microbial taxonomic abundance
profiles for each protein extraction protocol and then by median
centering each abundance pattern of each identified microbial
taxon across the six protocols. Statistical analyses were carried
out using the GraphPad Prism and IBM SPSS Statistics programs,
as well as the Python SciPy and Seaborn packages. Statistical
significance was set at p < 0.05 (two-sided).

RESULTS AND DISCUSSION

Protein Extraction Protocol Effects on
Protein Yield and Identification
In metaproteomics, protein identification yield depends on the
method used for protein isolation and solubilization, particularly
in complex samples, such as stool samples (Zhang et al., 2018).
We used one stool sample from a healthy volunteer (H1) to
examine the effects of six different protein extraction protocols
(referred to as PA, PB, PC, PD, PE, and PF) for the metaproteomic
analysis of gut microbiota (Figure 1). These protocols included
two main steps: (i) SSP, which is needed to disperse the feces
to harvest the microbial cells, and (ii) a CDM for breaking up
microbial cells to isolate and solubilize their proteins. In PA,
PB and PC, the SSP was performed with three rounds of 45-
min shaking/low speed centrifugation (SSP1). In PD, PE, and PF,
a faster, easier SSP was devised by adding big glass beads and
vortexing for 5 min (SSP2). We also compared different CDMs
by testing different sizes of smaller glass beads (PB and PE) and
an additional sonication step (PC and PF).

First, we compared PA, PB and PC with protocols PD, PE and
PF which differed in the SSP (Figure 1). We observed that the
first group of protocols provided a higher number of peptide-
spectrum matches (PSMs) (Supplementary Table 1) and more
peptide and protein identifications than the latter ones (Figure 2
and Supplementary Table 1). These results indicated that the
longer treatment carried out in SSP1 with three 45-min shaking
rounds was important to disintegrate the stool sample correctly,
allowing the recovery of as many microbial cells as possible. To
test the effect of the use of beads with different sizes, we compared
PA with PB and PD with PE. In the group processed with the SSP1
(PA and PB) the addition of two different sized beads seemed
to negatively influence the protein and peptides identification
yield while in the second group (PD and PE) opposite trend
was observed (Figure 2). Nevertheless, there were no significant
differences in the number of identified proteins and peptides
depending on whether a combination of beads was used (PA vs.
PB or PD vs. PE, Figure 2). The most drastic effect in protein
recovery from the gut microbiota, reflected in the number of
PSMs, peptide and protein group identifications, was due to the
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FIGURE 2 | Bar plot representing the number of (A) protein groups and (B) peptides identifications achieved with the six different protocols tested (PA–PF).
∗p < 0.05.

addition of sonication in the CDM (Figure 2). The increase in
the number of peptide and protein identifications obtained when
using sonication reached statistical significance when compared
to protocols where cell disruption was carried out exclusively by
bead beating. Furthermore, PC that uses 45 min shaking (SSP1)
and sonication in the CDM step showed the highest number of
peptide and protein identifications within all protocols, but with
the disadvantage of being a more consuming process due to the
additional steps.

Impact of Protein Extraction Methods on
Taxonomic and Functional Profiles of
Human Gut Microbiota
Next, we explored the influence of the six protein extraction
protocols on the ability to identify the taxonomic composition
of the gut metaproteome in H1. It is worth mentioning that
unlike taxonomic metagenomic studies, which are based on
16S rRNA gene sequencing, metaproteomic analyses allow
the identification of human proteins. The identification of
these proteins could be advantageous in some dysbiosis-related
pathological conditions studies, mainly when the pathological
condition includes inflammation of the gastrointestinal tract
since inflammation related proteins could be tracked to check
the patient’s evolution. Interestingly, the detection of human
peptides was diminished in PC and PF (Supplementary Figure 1)
thus sonication seems to be unfavorable for human proteins
identification. Nevertheless, for microbial taxonomic purposes,
we filtered out the human proteins and focused exclusively on
non-human peptides.

Regarding the gut microbiota, the taxonomic profile at the
phylum, family, and genus levels revealed that the presence
of the main phyla, families, and genera displayed by the
different protocols were in general comparable among them

(Figure 3). However, PC and PF (including sonication) showed
several differences. They achieved a higher peptide and protein
identifications (Figure 2). These protocols also showed a
greater level of identification in the higher taxonomic levels
(superkingdom and phylum) (Figure 3 and Supplementary
Figures 1, 2). Nevertheless, the intensity of the peptides that
were assigned to lower taxonomic levels such as family and
genus were very similar or even slightly lower in protocols
including sonication (Figure 3 and Supplementary Figure 2).
Regarding taxa distribution, we also observed some clear
differences in PC and PF in comparison to the others such as an
increased proportion of Actinobacteria or a decreased abundance
in Bacteroidetes.

To further examine the global taxonomic profiles of human
gut microbiota derived from each protein extraction protocol
in H1 as a whole, an unsupervised PCA was performed on the
relative mean taxonomic abundance rates at the phylum, family
and genus levels. PCA revealed that the taxonomic abundance
patterns obtained with CDM based on bead beating were distinct
from those that included an additional sonication step before
bead beating (clusters BB and S; p = 0.004; Figure 4A). PCA
further highlighted that their individual variances also differed
between both groups (p ≤ 0.001), indicating that these profiles
were heterogeneous within these two CDM groups. Remarkably,
34.5–40.6% of the total variance of taxonomic compositions of
the gut metaproteome at the phylum, family and genus levels
in H1 was attributed to differences in CDM (i.e., among CDM1,
CDM2, and CDM3), while 22.0–26.5% of the dataset variance was
explained by dissimilarities in SSP (i.e., between SSP1 and SSP2),
as shown by the two first principal components (PC1 and PC2,
respectively). These data suggested that CDM had a markedly
higher impact on the taxonomic compositional changes in the
human gut metaproteome than SSP.
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FIGURE 3 | Taxonomic distribution revealed by each of the three replicates performed with every protocol (PA–PF) from stool sample H1. The intensity of each taxon
in the different taxonomic levels (A) phylum, (B) family, and (C) genus (directly related to its abundance) is represented as the sum of the intensities of all the
distinctive peptides assigned to that taxon.

Consistent with the PCA results, an unsupervised two-
way HCA unveiled two major clusters of highly correlated
taxonomic abundance profiles of the gut metaproteome in H1
that differentiated between CDM based on only bead beating
(PA, PB, PD, and PE) and sonication plus bead beating (PC and
PF) at the phylum, family, and genus levels (clusters BB and
S; Figure 4B). In turn, cluster BB integrated two subclusters
of more strongly correlated taxonomic abundance patterns that
segregated bead beating-based CDM in two groups, BB1 and BB2,
related to SSP1 (PA and PB) and SSP2 (PD and PE), respectively.

Hierarchical clustering analysis further uncovered specific gut
microbial taxonomic signatures at the phylum level that were
associated with the different SSP and CDM used for the six
protein extraction protocols (Figure 4B). The CDM3-associated
taxonomic signature (subcluster A) included the bacterial phyla,
Firmicutes, Actinobacteria and Fusobacteria (p = 0.006). This
finding showed the effect of an additional sonication step before
mechanical cell disruption with medium-sized glass beads. Thus,
PC and PF (CDM3) facilitated gut microbial protein extractions
from Gram-positive bacteria (Firmicutes and Actinobacteria),
which are more difficult to lyse than Gram-negative bacteria
(Dridi et al., 2009; Salonen et al., 2010; Zhang et al., 2018).
In addition, PC and PF enhanced protein extractions from
Fusobacteria, which is a phylum of Gram-negative bacteria that
has intriguingly been shown to share more traits with Gram-
positive Firmicutes than with other Gram-negative bacteria
(Robinson et al., 2020). The SSP2-associated taxonomic signature
(subcluster B) comprised the bacterial phylum Synergistetes
(p = 0.04). This result suggested that SSP based on beating
with big-sized glasses (PD, PF, and to a lesser extent, PE) could
facilitate protein extractions of this rare phylum from the human
gut microbial community. In contrast, the taxonomic signature
associated with SSP1, mostly with PA and PC (subcluster C),
encompassed the bacterial phylum, Tenericutes, as well the

unicellular eukaryotic parasite phylum, Apicomplexa (p = 0.02).
These data highlighted that the gentle SSP1 (PA, PC, and to a
lesser extent, PB) could be a crucial step for protein extractions
of these low abundant phyla of microorganisms lacking cell
walls (i.e., without mechanical support and strength) from the
human gut microbiota.

The BB-associated taxonomic signature (subcluster D)
comprised the Gram-negative bacterial phyla, Proteobacteria,
Bacteroidetes, and Planctomycetes, and displayed a significantly
higher proportion of the archaeal phylum, Euryarchaeota
(p = 0.002). In particular CDM1 (PA and PD) enhanced
protein extractions of Proteobacteria, supporting the notion that
medium-sized glass beads for cell disruption could favor protein
extractions from these Gram-negative bacteria in the human gut
microbial community (p = 0.03). CDM2 (PB and PE) improved
gut microbial protein extractions of Euryarchaeota (p = 0.02).
These findings revealed that the combination of small and
medium-sized glass beads added during intensive mechanical cell
disruption could enhance protein extractions of hard-to-lyse gut
microbiota members, such as methanogenic archaea and some
Gram-positive bacteria, consistent with findings in previous
studies (Dridi et al., 2009; Salonen et al., 2010; Zhang et al., 2018).
BB1 (PA and PB) recovered a high proportion of Planctomycetes
(p = 0.04), supporting the role of SSP1 on its protein extraction
by bead beating from the gut microbial communities. In contrast,
the PB and PD-associated taxonomic signature (subcluster
E) integrated the bacterial phylum, Spirochaetes (p = 0.02).
These data indicated that protein extractions of these Gram-
negative bacteria, which have a unique cell envelope due to
their endoflagella, from the human gut microbiota could be
improved by gentle SSP followed by mechanical disruption with
small and medium-sized glass beads (PB) or by the combination
of SSP with big-sized glasses with CDM with medium-sized
glass beads (PD).
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FIGURE 4 | Unsupervised (A) PCA and (B) HCA of the taxonomic profiles of the gut metaproteome of H1 isolated with different microbial protein extraction
protocols. Asterisks show the degree of homology of taxonomic abundance profiles of human gut microbiota of H1 between the study groups, whereas daggers
indicate their degree of homogeneity within each study group.

Even though some works have avoided the preprocessing
of the stool sample performed by differential centrifugation,
carrying out a shortened and faster workflow using phenol
extraction (Heyer et al., 2019) or adding directly the lysis buffer
to the sample (Zhong et al., 2019), we have observed that

this step provides an enrichment in diversity and a higher
number of identifications, and it also reduces the information
of non-microbial peptides, such as those derived from food
remains that can affect the study (Tanca et al., 2015). Thus, we
agree with other authors, that also observed a variation in the
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proportions of the microbial community with this preprocessing
(Tanca et al., 2015), to consider this step relevant for this kind of
studies even though it increases the whole workflow time (Zhang
and Figeys, 2019). We have evaluated two different differential
centrifugations, one comprising a faster 5-min vortexing method
(SSP2) used in recent works (Zhang and Figeys, 2019) and
another one using a more time-consuming process including
a 45 min disintegrating process in a rotator tube (SSP1).
Differences, both in protein and peptide identification as well as
in taxonomics profiles, were observed. Moreover, both processing
(SSP1 and SSP2) could be separated by PCA. SSP1 protocols
showed, in general, higher peptide identifications. Furthermore,
this slower processing was associated with a better identification
of lower abundant microbiota taxa that are rarely observed in gut
microbiota studies (Figure 4B).

Out of the three protocols using SSP1 (PA, PB, and
PC), PC allowed a higher number of peptides and protein
identifications with higher intensity in the identified peptides
assigned to phylum level. However, regarding taxa distribution
at family or genus levels, PA rendered better results providing
also a greater number of identified human peptides relevant
for the analysis of host-microbial interactions. The higher
number of protein and peptide identifications using sonication
had been previously described (Zhang et al., 2018), however,
in our study, we have observed a reduction in peptide
intensities assigned to low taxonomic levels. It had also been
suggested in previous works that a mix of different sized
beads could be a key factor for a good recovery of gut
microbiota microorganisms (Hayoun et al., 2019), however, we
did not observe statistical significance when this combination
(CDM2) or just medium-sized beads (CDM1) were used
(Figure 2). Nevertheless, we have found specific taxonomic
signatures attached to this different CDM using bead beating,
being Euryarchaeota related to CDM2, and Proteobacteria to
CDM1 (Figure 4B).

Regarding time consuming of the different protocols, even
if a more time consuming SSP1 is used, the overall time
effort of the workflow is not greatly affected. To process one
sample, nearly 48 h are required. Some studies reduce this
period to a 24-h workflow, allowing the translation to clinics
by means of a direct extraction of proteins from stool samples.
This approach certainly shortens the time and can result in
high benefit when it comes to detect specific proteins already
defined as biomarkers of a particular disease (Heyer et al., 2019).
Nevertheless, the human gut microbiome is among the most
complex samples in terms not only of microorganisms but also
in their diversity. Taking into account our results, to obtain a
taxonomic profile from stool samples it is highly recommended
a previous step of microbial enrichment, despite the increase of
the time consumed.

In order to compare the functional profile obtained from the
same sample with the six protocols carried out, the identified
proteins were linked to their annotated function according to
COG database. To assess the abundance of each function (COG
category) we calculated the total intensity associated to that
function by adding the intensity of every peptide assigned to it.
The general functional profile was similar within all protocols,

being able to detect the same COG categories, but the use
of sonication in CDM3 (PC and PF) decreased the intensity
of proteins lacking function assignment (blank) (p < 0.0001)
while increasing the intensity of proteins assigned to major
COG categories (those with the greater intensity) such as
“translation, ribosomal structure and biogenesis” (J) (p < 0.0001),
“carbohydrate transport and metabolism” (G) (p < 0.0001) and
“energy production and conversion” (C) (PC p < 0.001, PF
p < 0.015) (Supplementary Table 2).

Metaproteomics Analysis of Gut
Microbiota From Healthy Adults
We next carried out the metaproteomic analysis of gut microbiota
from six healthy adults (S1–S6). For this analysis, we chose PA
which includes the longer pre-treatment in a tube rotator already
discussed to enhance microbial cells enrichment. Regarding
CDM and protein extraction, even though PC showed a higher
total number of peptides and protein identifications (Figure 2),
this increase affected mainly at phylum level with a greater
identification of Firmicutes, but without statistical difference
at genus level compared to other protocols (Supplementary
Figure 2). On the other hand, PA showed a higher abundance
of Proteobacteria (Figures 3, 4) which is an important phylum in
disease states, but their members are present in low abundance
in the natural human gut microbiota. Moreover, Proteobacteria
can serve as a potential diagnostic microbial signature of gut
microbiota dysbiosis and disease risk (Shin et al., 2015). Finally,
PA favored the detection of human proteins that could shed
light on potential beneficial or detrimental relationships between
the microbiota and the host (Supplementary Figure 1). We
have summarized the main differences between PA and PC in
Table 1.

Upon characterizing microbial biodiversity, we focused on
the contribution of each taxon to the metabolic processes and
cell functions involved in the human gut environment, which
could be linked to specific states of the host. In total, we
identified 154,246 PSMs, 37,080 peptide sequences, and 10,686
protein groups. Among the 6 samples, the means were 25,503
PSMs, 11,712 peptide sequences, and 4,253 protein groups
(Table 2). Considering only microbial proteins with at least 3

TABLE 1 | Summary table comparing PA and PC.

PA PC

Number of peptide/proteins

Number of taxa

Firmicutes abundance

Bacteroidetes abundance

Actinobacteria abundance

Proteobacteria abundance

Human peptide abundance

Major functions*

Red color indicates better result.
*Major functions include three COG categories: “translation, ribosomal structure,
and biogenesis,” “carbohydrate transport and metabolism,” and “energy
production and conversion.”
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TABLE 2 | Metrics of metaproteome analysis of healthy adult stool samples
(S1–S6).

S1 S2 S3 S4 S5 S6 Mean

PSM identified 20,915 28,240 25,146 29,509 22,374 28,062 25,503

154,246*

PSM identified (%) 15 20 18 20 16 20 18

Peptide sequences 10,198 12,866 10,975 13,222 10,544 12,855 11,712

37,080*

Protein groups 3,926 4,602 3,732 4,525 4,110 4,722 4,253

10,686*

*Total number of PSM, peptides sequences or protein groups identified in the study.

distinctive peptides, the identified proteins corresponded to 11
phyla, 19 classes, 25 orders, 34 families, 53 genera, and 105
species (Supplementary Table 3). We could not assign 17%
of the identified peptides to any phylum. However, among all
identified peptides, 27% could be assigned to species level. The
percentage of peptides that could be assigned to superior taxon
levels increased as the level increased: we assigned 54% at the
genus level, 56% at the family level, 71% at the order level, and
72% at the class level.

Taxonomic Analysis of Gut Microbiota
Bacteria was the most abundant superkingdom in the human
gut microbiome; we found that it represented 96–99% of the
microbiome, consistent with previous studies (Kolmeder et al.,
2016; Tanca et al., 2017). In agreement with other works
(Arumugam et al., 2011; Kolmeder et al., 2012, 2016; Tanca et al.,
2017; Zhang et al., 2017; Zhong et al., 2019), the four most
abundant phyla in our 6 samples were Firmicutes, Bacteroidetes,
Proteobacteria, and Actinobacteria (Figure 5A). The dominant
phylum was Firmicutes, except in S3, where Bacteroidetes was the
principal phylum.

In the fungi kingdom, we found the Ascomycota phylum,
but it was only present in 3 out of the 6 samples, and its mean
abundance was 0.01% (Supplementary Table 3).

The most abundant genera were Faecalibacterium (phylum
Firmicutes) and Bacteroides (phylum Bacteroidetes) (Figure 5B).
Ruminococcus, another genus from Firmicutes, was highly
abundant in S1 and S4. S1, S4, and particularly S3, were
enriched in the genus Prevotella (phylum Bacteroidetes), which
represented more than 8% in S1 and S4, and up to 27% in
S3. A reciprocal pattern was reported for the abundances of
Prevotella and Bacteroides (both from phylum Bacteroidetes)
(Hoffmann et al., 2013), consistent with our results. The
high abundance of Prevotella has been associated with a high
consumption of fiber (David et al., 2014), and Bacteroides was
linked to the Western diet, based on the relatively high meat
consumption (Wu et al., 2011). Therefore, these differences
in abundance among the samples could be partly explained
by differences in diet among the corresponding individuals.
In S3, we found Akkermansia, present at an abundance of
0.04% (Supplementary Table 3), consistent with a previous
study (Kolmeder et al., 2012). A species of Akkermansia genus,
A. muciniphila, is a mucin degrading bacteria. This species is

gaining interest, because it induces several host responses, due
to its proximity to the mucus layer. Indeed, A. muciniphila was
associated with glucose control, inflammation, and improving
the gut barrier (Everard et al., 2013). In the Actinobacteria
phylum, Bifidobacterium was the main genus in our six samples;
the average abundance was below 4%, consistent with previous
studies (Riviere et al., 2016). Depending on the sample studied,
we observed different compositions of taxa in the Proteobacteria
phylum. This phylum is normally associated with disease states
and gut microbiota dysbiosis (Rizzatti et al., 2017). The role of
this phylum in abnormal physical states has been widely studied,
but its contribution to normal conditions is less well known.
The main genus in most of the samples was Sutterella. Sutterella
spp. have been related to several gastrointestinal disorders,
but it is thought that they only have a mild-proinflammatory
capacity. However, they keep the immune system alert, due
to their ability to adhere to intestinal epithelial cells (Hiippala
et al., 2016). In this genus, the Bilophila wadsworthia was
the only species which was identified in our study. This
bacterium was associated with fat-rich diets and intestinal
inflammation. Emerging studies have suggested that limiting
the prevalence of B. wadsworthia in the gut microbiome could
have a therapeutic effect on metabolic diseases and intestinal
inflammation (Natividad et al., 2018).

At the species level (Figure 5C), consistent with previous
studies (Kolmeder et al., 2012; Zhang et al., 2017; Lin et al.,
2018), we found that the main species was Faecalibacterium
prausnitzii (8–14%), except in S3, where Prevotella copri had an
abundance of 14%. Previous studies showed that F. prausnitzii
displayed beneficial effects against different alterations in the
gastrointestinal tract (Bjørkhaug et al., 2019), and it had anti-
inflammatory properties (Debyser et al., 2016). In the other
hand, the role of P. copri in human health remains unclear.
The presence of this species in the gut (more common in
non-westernized populations) varies largely between individuals
(Tett et al., 2019), but when it is present, it is normally the
most abundant species (Arumugam et al., 2011), consistent
with our findings.

Functional Characterization of Microbial Proteins
Focusing on a functional analysis, we used MetaLab to obtain
information about the different functional assignments of the
identified proteins (Cheng et al., 2017). In this metaproteomic
approach, 89.5%, 64.7%, and 61.5% of the proteins identified
could be assigned to entries from the COG, KEGG, and KO
databases, respectively. We first calculated the total protein
intensity that corresponded to a specific function, by summing
the intensities of all proteins associated with the function. Then,
we estimated the percentage of each function, when the total
intensities of all identified proteins were set to 100%.

An enrichment analysis showed that the main core
COG category functions in all 6 samples were: “translation,
ribosomal structure and biogenesis,” “carbohydrate transport
and metabolism,” and “energy production and conversion”
consistent with previous studies (Debyser et al., 2016). These
functions represented nearly 40% of the total protein intensity
(Figure 6). This microbiota carbohydrate metabolism could
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FIGURE 5 | Taxonomic distribution of gut microbiota detected in stool samples from six healthy adults (S1–S6). (A) Phylum, (B) genus, and (C) species levels.
Abundance of each phylum/genus/species is correlated to the percentage of peptide intensity ([sum intensity of peptides of the phylum]/[total intensity of sample]).
Only those taxon categories with > 1% of abundance are represented in the graphs. The rest are included in the “other” category.

facilitate the host exploitation of different food sources that
would otherwise be indigestible. For example, S1 showed a high
abundance of Ruminococcus: nearly 98% of all glycosidases
identified in this sample belonged to members of this
genus. This finding was consistent with the great capacity
of Ruminococcus in carbohydrate degradation described
previously (La Reau et al., 2016). We also found that other
functions were highly represented in only some samples; for
example, “cell motility” was highly represented in S5, and
“coenzyme transport and metabolism” was highly represented in
S3 (Supplementary Table 4).

The most abundant protein observed in our 6 samples was the
glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase
(Supplementary Table 5). In addition, glutamate dehydrogenase,
which was the most abundant intestinal protein in another
study (Kolmeder et al., 2012), was in the top 30 proteins
found in our samples.

From data obtained from MetaLab software we can match
taxonomy with the functionality of each identified protein.
Therefore, we could assign specific functions to specific taxa. As
expected, a general analysis based on COG information, showed
that proteins involved in the main functions belonged to the more
abundant phyla. However, some specific functions were linked to
a specific phylum (Figure 7). For example, “lipid transport and
metabolism” was mostly represented by Firmicutes proteins. In
contrast, functions like “inorganic ion transport and metabolism,”
“coenzyme transport and metabolism,” “intracellular trafficking,
secretion, and vesicular transport,” “extracellular structures,” and
“cell cycle control, cell division, and chromosome partitioning”
were mostly linked to Bacteroidetes. The high number of
functions associated with Bacteroidetes could be due to its
taxonomic diversity.

The function “inorganic ion transport and metabolism”
was mostly represented by proteins involved in iron uptake.
Iron is a key element in metabolism, and its availability
influences the composition of gut microbiota (Yang et al.,
2020). Therefore, iron uptake might confer an advantage to
Bacteroidetes growth and survival.

A large proportion of the protein intensity (68–80%)
associated with “intracellular trafficking, secretion and vesicular
transport” was related to biopolymer transport (ExbB and ExbD).
The ExbB and ExbD membrane proteins, along with a third
one, form the TonB system that facilitates active transport
of specific substances (in this case, biopolymers) across the
membrane (Simon et al., 2007). In recent years, biopolymers have
gained attention due to their applications in different industries
and their role in bacterial pathogenicity. Biopolymers allow
bacteria to grow under unfavorable conditions, because they
can provide protection, energy storage, or biofilm components
(Moradali and Rehm, 2020).

In the Proteobacteria phylum, most proteins were associated
with the functional category “cell wall/membrane/envelope
biogenesis.” We detected three types of proteins related
to this category: (i) “opacity proteins and related surface
antigens,” (ii) “outer membrane protein (porin),” and (iii)
“outer membrane protein OmpA and related peptidoglycan-
associated lipoproteins.” These are outer membrane proteins
and have pathogenic functions; they act as virulence factors
and are very immunogenic (Avidan et al., 2008). In S6, opacity
proteins were associated with Enterobacteriaceae. Porins, which
are associated with Sutterella, were identified in all samples.
OmpA was highly represented in S3, where it comprised
nearly 65% of the protein intensity associated with the “cell
wall/membrane/envelope biogenesis” functional category and it
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FIGURE 6 | Circle plot representation of the abundance of COG functional entries displayed by the identified gut microbiota proteins from six healthy adults.
Abundance in each sample is calculated as the percentage resulting from summing up all intensities belonging to proteins annotated to a specific COG category in
this sample/total intensity of all proteins annotated to any COG category in this sample. The mean of the COG category abundance of the six samples is represented.

was attributed to the species B. wadsworthia. When dysbiosis
occurs, the Proteobacteria phylum tends to establish itself as
the main phylum in the gut community, due in part to its
broad adaptability. Further study on the role of Proteobacteria
in different health stages might allow us to prevent its spread and
avoid the associated health problems.

It is remarkable that, when analyzing each sample individually,
we found that some functions were linked to only a few
or even a single species. For example, in S3, we observed a
strong link between proteins related to “coenzyme transport and
metabolism” and the Prevotella genus. Of note, this function
displayed a protein intensity 2–5 times greater in S3 than
in the other samples (Supplementary Table 4). Indeed, over
80% of this COG category was represented by Prevotella
proteins (Figure 8). The most abundant species in S3, was
P. copri, which was the principal species related to this COG
functional category. Moreover, 80% of the protein intensity
associated to “coenzyme transport and metabolism” was related
to cobalamin (vitamin B12) metabolism. The behavior of
P. copri largely depends on the strain (De Filippis et al.,
2019). Strains from Western individuals were associated with
the synthesis of different B vitamins (De Filippis et al., 2019),
consistent with our results. Most human gut taxa require
B12, but most of these taxa lack de novo B12 synthesis.
Therefore, most of these bacteria rely on cobalamin-uptake

mechanisms to acquire sufficient B12 (Degnan et al., 2014a).
It has been hypothesized that microbial communities might be
manipulated to promote health by changing vitamin intake,
due to the high competition for cobalamin (Degnan et al.,
2014b). Members of Firmicutes and Actinobacteria phyla harbor
complete B12 biosynthetic pathways (Rowley and Kendall,
2019). In contrast, Bacteroidetes, which lacks de novo B12
biosynthetic genes, encodes several cobalamin transporters
(Degnan et al., 2014a), which could be detected among the
identified proteins. Interestingly, the cobalamin biosynthesis
protein, Cbik (COG4822), which is one of the first proteins
that participates in de novo cobalamin synthesis, was related to
Firmicutes. In contrast, an outer membrane cobalamin receptor
protein (COG4206) was associated with Prevotella. Additionally,
some proteins required for the activation of B12 synthesis
were associated with Bacteroides (e.g., cobalamin biosynthesis
protein CobN; COG1429) and Prevotella (e.g., cobalamin
adenosyltransferase; COG2096). Furthermore, vitamin B12
consumption has been related to an increase in the relative
abundance of Prevotella over Bacteroides (Carrothers et al., 2015),
which might potentially explain the high abundance of the
Prevotella genus observed in S3.

This example is consistent with the premise that in each
individual different biological functions are linked to specific
taxa that contribute to specific host-microbiota interactions. This
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FIGURE 7 | Bar plot representing the contribution of each phylum to the COG category analyzed. The last bar represents the taxonomic distribution of these phyla in
the gut microbiota samples. Each phylum’s contribution in each sample is calculated as the sum intensity of proteins of this phylum annotated to the COG category.
This bar plot represents the mean abundance of the six samples. G, Carbohydrate transport and metabolism; J, translation, ribosomal structure and biogenesis; C,
energy production and conversion; O, post-translational modification, protein turnover, chaperones; E, amino acid transport and metabolism; I, lipid transport and
metabolism; M, cell wall/membrane/envelope biogenesis; P, inorganic ion transport and metabolism; N, cell motility; K, transcription; H, coenzyme transport and
metabolism; V, defense mechanisms; U, intracellular trafficking, secretion, and vesicular transport; W, extracellular structures; D, cell cycle control, cell division,
chromosome partitioning.

principle should be kept in mind, particularly in the field of
personalized medicine and nutrition (Mills et al., 2019).

Another important function of the gut microbiota in
human physiology is the synthesis of short chain fatty acids
(SCFAs) through the fermentation of different non-digestible
carbohydrates. SCFAs are recognized by G-coupled receptors
that trigger the secretion of intestinal peptides (Cani, 2018). The
main SCFAs are butyrate, propionate, and acetate. Each of these
SCFAs plays important roles in human health, such as regulating
the epithelial barrier integrity, providing anti-inflammatory
effects, and serving as the primary nutrient for colonocytes
(Morrison and Preston, 2016; Yamamura et al., 2020). Butyrate is
the most important energy source for colonocytes. Moreover,
it influences the microbial environment and ecology, and it

prevents the expansion of pathogens (Cani, 2018). Due to current
interest in the beneficial roles that SCFAs perform in the intestine
(Riviere et al., 2016), we analyzed SCFA production by Firmicutes
in all 6 samples. Nineteen KOs were associated with the KEGG
pathway involved in “butanoate metabolism” (Supplementary
Table 6). Firmicutes proteins represented 62% of the total
butyrate pathway protein intensity, and the main genus
was Faecalibacterium (a member of Ruminococcaceae), which
comprised 25% of the intensity. These results were consistent
with previous studies that showed that members of the Firmicutes
phylum were the main butyrate producers, which highlighted the
role of Ruminococcaceae family in butyrate production (Louis
et al., 2009; Morrison and Preston, 2016; Yamamura et al., 2020).
The KOs identified in butyrate production from acetyl-CoA were
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FIGURE 8 | Proteins associated with coenzyme transport and metabolism in
S3 at genus level. Contribution of each genus is represented as the
percentage of protein intensity of the genus assigned to each COG category.

all assigned to the Firmicutes phylum. The KOs related to SCFA
production that were assigned to Bacteroidetes were not directly
involved in the biosynthetic pathway, instead, they were related
to acetyl-CoA production from pyruvate and the interconversion
of succinate-fumarate (Supplementary Figure 3).

Human Proteins Detected in Proteomic Studies of
Stool Samples
The MetaLab program allows the identification of human
proteins that are present in stool samples. We identified up
to 92 human proteins throughout the 6 human samples.
Interestingly, although human peptides only accounted for 2%
of the total identified peptides, the intensities of these peptides
represented up to 13% of the total peptide intensity in S1.
This difference between the abundance of identified peptides
and their intensity was consistent with findings in a previous
study (Zhang et al., 2017). The most abundant proteins were
chymotrypsin C, trypsin 2, phospholipase A2, and alpha amylase.
Alpha amylase, a starch degradation protein, is produced
by two genes, in saliva and mammary gland or in the
pancreas that is secreted into the duodenum in digestive juices
(Groot et al., 1989).

A group of 35 human proteins that were found in all
stool samples at high abundance (Figure 9 and Supplementary
Table 7) were selected for STRING analysis. These proteins
represented over 80% of the total intensity of identified human
proteins. Most of these selected proteins were also found
in previous studies on the microbiome (Zhang et al., 2017;
Zhong et al., 2019), including intestinal mucin proteins

(MUC2, MUC5B, and MUC13) and digestive enzymes, like
chymotrypsinogen B2 and carboxypeptidases. MUC2 is the
predominant mucin type in the stomach mucus layer. Intestinal
mucus provides a protective, lubricating barrier against particles
and infectious agents, and it interacts with microorganisms. For
example, microbiota can feed on mucin glycans and convert them
into SCFAs that supply colonocytes and other gut epithelial cells
with energy (Ouwerkerk et al., 2013). Interestingly, MUC13 is
abundant in many adenocarcinomas (Sheng et al., 2019), where
it serves as a potential prognostic factor (Filippou et al., 2018).

When we analyzed the selected 35 human proteins with the
STRING program (version 11.0), only one protein (Mucin 2)
did not match in the STRING database. The other proteins
showed significant protein-protein interactions (p = 1.0 × 10−16,
Figure 9). The antimicrobial humoral response was the most
significant enrichment process (p = 3.10 × 10−7), followed
by proteolysis (p = 7.32 × 10−6), and immune system-
related processes, including neutrophil-mediated immunity
(p = 7.32 × 10−6), neutrophil degranulation (p = 3.35 × 10−5),
granulocyte migration (p = 3.4 × 10−5), and immune effector
process (p = 4.84 × 10−5).

We found that the enrichment of the antimicrobial
humoral response process was due to the high number of
antimicrobial peptides identified in the samples, consistent
with other metaproteomics studies (Zhong et al., 2019). These
antimicrobial peptides or proteins, like defensin-5, lysozyme c,
and phospholipase A2, accomplish important roles in the defense
against bacteria (Zhong et al., 2019). Apart from antimicrobial
peptides, we identified other proteins like Interlectin 1, S100A9,
S100A8, and galectin 3, which are related to the antimicrobial
humoral response. Interlectin 1 is a lectin that binds microbial
glycans and is used by the immune system to discriminate
human cells from microbes (Wesener et al., 2015). S100A9 and
S100A8 can induce neutrophil chemotaxis and adhesion, and
they are found as a complex (S100A8/A9) called calprotectin.
High levels of calprotectin have been observed in inflammatory
bowel disease and other gastrointestinal disorders (Lehmann
et al., 2019), and thus, it was proposed as a marker (Fukunaga
et al., 2018). Galectin 3 is a lectin involved in neutrophil
activation and adhesion. Galectin 3 plays an important
role in inflammation and is associated with several diseases
(Sciacchitano et al., 2018).

Proteolysis was also highly represented in the STRING
results. Proteases play important roles in gastrointestinal
disorders (Antalis et al., 2007). Enteropeptidase is responsible for
activating the conversion of pancreatic trypsinogen to trypsin,
which activates other proenzymes (e.g., chymotrypsinogen,
procarboxypeptidases, and others). Trypsin is also involved
in processing defensins. The most significantly enriched
functions were metallopeptidase activity, hydrolase activity,
and peptidase activity (p = 5.23 × 10−9). We identified
the metalloprotease, meprin A (alpha and beta subunits),
which is implicated in inflammation and tissue remodeling
(Kaushal et al., 2013).

We also observed a cellular component enrichment. Proteins
related to the extracellular space (p = 3.59 × 10−19) and
extracellular regions (p = 5.40 × 10−18) were the most
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FIGURE 9 | (A) STRING map protein-protein interaction network of the 35 more abundant human proteins identified in this study. Line thickness indicates the
strength of data support. The colors represent different processes; red: antimicrobial humoral response, green: neutrophil mediated immunity, blue: proteolysis and
yellow: neutrophil degranulation. (B) Table of these proteins ordered according to decreasing abundance.

significantly enriched. This finding was consistent with the fact
that these extracellular proteins might have been dragged through
the human intestine during fecal sampling.

CONCLUDING REMARKS

In this study, we designed and evaluated different SSP methods
for the metaproteomic study of gut microbiota. We found
that a 45-min processing of the fecal sample prior to protein
extraction was critical for good protein recovery and peptide
identification. Furthermore, the cell breaking method determined
the number of peptides that could be identified and, more
interestingly, the particular taxa that would be enriched in the
metaproteomic taxonomic profile. A sonication procedure prior
to bead-beating in microbial cell disruption raised the numbers
of proteins and peptides identified. However, bead-beating alone
increased the number of Proteobacteria proteins identified.
This method could be more informative for studies related to
diseases, because Proteobacteria phylum was associated with
different dysbiosis stages, which facilitated the differentiation of
healthy and unhealthy stages. These results are relevant to future
metaproteomic studies on the human gut microbiota, because
they inform the selection of the best protocol, based on the
specific interest in a particular taxon-related disease.

The metaproteomic studies enabled the profiling of protein
functions in the microbiota from 6 healthy individuals. We found
interesting correlations between specific microbial functions
relevant to the host and the main taxa involved. For example,

vitamin B12 process was mainly produced by proteins in the
Prevotella genus. This could be particularly interesting when
searching for links between certain taxon-related proteins and
specific beneficial or detrimental host stages in future health-
disease metaproteomic studies. Finally, we also detected 92
human proteins, which were mostly of them related to the
antimicrobial humoral response.

The newly described protocols for enriching specific taxa can
facilitate the functional analysis of both microbial and human
proteins in the human gut. This information can improve the
design of future metaproteomic studies on gut microbiota and
open up new prospects in the field of host–pathogen interactions
in different diseases.
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Kekkonen, R. A., et al. (2010). Comparative analysis of fecal DNA extraction
methods with phylogenetic microarray: effective recovery of bacterial and
archaeal DNA using mechanical cell lysis. J. Microbiol. Methods 81, 127–134.
doi: 10.1016/j.mimet.2010.02.007

Santiago, A., Panda, S., Mengels, G., Martinez, X., Azpiroz, F., Dore, J., et al. (2014).
Processing faecal samples: a step forward for standards in microbial community
analysis. BMC Microbiol. 14:112. doi: 10.1186/1471-2180-14-112

Schultz, D., Zühlke, D., Bernhardt, J., Francis, T. B., Albrecht, D., Hirschfeld,
C., et al. (2020). An optimized metaproteomics protocol for a holistic
taxonomic and functional characterization of microbial communities from
marine particles. Environ. Microbiol. Rep. 12, 367–376. doi: 10.1111/1758-2229.
12842

Sciacchitano, S., Lavra, L., Morgante, A., Ulivieri, A., Magi, F., De Francesco, G. P.,
et al. (2018). Galectin-3: one molecule for an alphabet of diseases, from A to Z.
Int. J. Mol. Sci. 19, 379. doi: 10.3390/ijms19020379

Sheng, Y. H., Wong, K. Y., Seim, I., Wang, R., He, Y., Wu, A., et al. (2019). MUC13
promotes the development of colitis-associated colorectal tumors via β-catenin
activity. Oncogene 38, 7294–7310. doi: 10.1038/s41388-019-0951-y

Shin, N. R., Whon, T. W., and Bae, J. W. (2015). Proteobacteria: microbial signature
of dysbiosis in gut microbiota. Trends Biotechnol. 33, 496–503. doi: 10.1016/j.
tibtech.2015.06.011

Simon, M. I., Crane, B., and Crane, A. (2007). Two-Component Signaling Systems,
Part B. San Diego, CA: Elsevier Science Publishing Co Inc.

Tanca, A., Abbondio, M., Palomba, A., Fraumene, C., Manghina, V., Cucca, F., et al.
(2017). Potential and active functions in the gut microbiota of a healthy human
cohort. Microbiome 5:79. doi: 10.1186/s40168-017-0293-3

Tanca, A., Palomba, A., Pisanu, S., Addis, M. F., and Uzzau, S. (2015).
Enrichment or depletion? The impact of stool pretreatment on metaproteomic

characterization of the human gut microbiota. Proteomics 15, 3474–3485. doi:
10.1002/pmic.201400573

Tanca, A., Palomba, A., Pisanu, S., Deligios, M., Fraumene, C., Manghina, V., et al.
(2014). A straightforward and efficient analytical pipeline for metaproteome
characterization. Microbiome 2:49. doi: 10.1186/s40168-014-0049-2

Tett, A., Huang, K. D., Asnicar, F., Fehlner-Peach, H., Pasolli, E., Karcher, N.,
et al. (2019). The Prevotella copri complex comprises four distinct clades
underrepresented in westernized populations. Cell Host Microb. 26, 666–
679.e667. doi: 10.1016/j.chom.2019.08.018

UniProt Consortium (2019). UniProt: a worldwide hub of protein knowledge.
Nucleic Acids Res. 47, D506–D515. doi: 10.1093/nar/gky1049

Wang, H.-X., and Wang, Y.-P. (2016). Gut Microbiota-brain Axis. Chin. Med. J.
129, 2373–2380. doi: 10.4103/0366-6999.190667

Wang, Z., Wang, Q., Zhao, J., Gong, L., Zhang, Y., Wang, X., et al. (2019). Altered
diversity and composition of the gut microbiome in patients with cervical
cancer. AMB Express 9:40. doi: 10.1186/s13568-019-0763-z

Wesener, D. A., Wangkanont, K., McBride, R., Song, X., Kraft, M. B., Hodges,
H. L., et al. (2015). Recognition of microbial glycans by human intelectin-1.
Nat. Struct. Mol. Biol. 22, 603–610. doi: 10.1038/nsmb.3053

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.-Y., Keilbaugh, S. A.,
et al. (2011). Linking long-term dietary patterns with gut microbial enterotypes.
Science 334, 105–108. doi: 10.1126/science.1208344

Wu, J., Zhu, J., Yin, H., Liu, X., An, M., Pudlo, N., et al. (2016). Development of an
integrated pipeline for profiling microbial proteins from mouse fecal samples
by LC-MS/MS. J. Proteome Res. 15, 3635–3642. doi: 10.1021/acs.jproteome.
6b00450

Yamamura, R., Nakamura, K., Kitada, N., Aizawa, T., Shimizu, Y., Nakamura, K.,
et al. (2020). Associations of gut microbiota, dietary intake, and serum short-
chain fatty acids with fecal short-chain fatty acids. Biosci. Microbiota Food
Health 39, 11–17. doi: 10.5281/zenodo.1439555)

Yang, Q., Liang, Q., Balakrishnan, B., Belobrajdic, D. P., Feng, Q. J., and Zhang,
W. (2020). Role of dietary nutrients in the modulation of gut microbiota: a
narrative review. Nutrients 12:381. doi: 10.3390/nu12020381

Zhang, X., Chen, W., Ning, Z., Mayne, J., Mack, D., Stintzi, A., et al. (2017). Deep
Metaproteomics approach for the study of human microbiomes. Anal. Chem.
89, 9407–9415. doi: 10.1021/acs.analchem.7b02224

Zhang, X., and Figeys, D. (2019). Perspective and guidelines for metaproteomics
in microbiome studies. J. Proteome Res. 18, 2370–2380. doi: 10.1021/acs.
jproteome.9b00054

Zhang, X., Li, L., Butcher, J., Stintzi, A., and Figeys, D. (2019). Advancing functional
and translational microbiome research using meta-omics approaches.
Microbiome 7:154. doi: 10.1186/s40168-019-0767-6

Zhang, X., Li, L., Mayne, J., Ning, Z., Stintzi, A., and Figeys, D. (2018). Assessing
the impact of protein extraction methods for human gut metaproteomics.
J. Proteom. 180, 120–127. doi: 10.1016/j.jprot.2017.07.001

Zhang, X., Ning, Z., Mayne, J., Moore, J. I., Li, J., Butcher, J., et al. (2016). MetaPro-
IQ: a universal metaproteomic approach to studying human and mouse gut
microbiota. Microbiome 4:31. doi: 10.1186/s40168-016-0176-z

Zhong, H., Ren, H., Lu, Y., Fang, C., Hou, G., Yang, Z., et al. (2019). Distinct gut
metagenomics and metaproteomics signatures in prediabetics and treatment-
naive type 2 diabetics. EBiomedicine 47, 373–383. doi: 10.1016/j.ebiom.2019.08.
048

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 García-Durán, Martínez-López, Zapico, Pérez, Romeu, Arroyo,
Hernáez, Pitarch, Monteoliva and Gil. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 18 July 2021 | Volume 12 | Article 618566

https://doi.org/10.1021/pr501246w
https://doi.org/10.1038/s41467-018-05249-7
https://doi.org/10.1038/s41467-018-05249-7
https://doi.org/10.1038/nrgastro.2017.88
https://doi.org/10.1016/j.bpg.2013.03.001
https://doi.org/10.1007/978-1-60327-210-0_19
https://doi.org/10.1007/978-1-60327-210-0_19
https://doi.org/10.3389/fmicb.2016.00979
https://doi.org/10.3389/fmicb.2016.00979
https://doi.org/10.1155/2017/9351507
https://doi.org/10.1371/journal.ppat.1007479
https://doi.org/10.1038/s41467-019-09964-7
https://doi.org/10.1371/journal.pone.0241503
https://doi.org/10.1016/j.mimet.2010.02.007
https://doi.org/10.1186/1471-2180-14-112
https://doi.org/10.1111/1758-2229.12842
https://doi.org/10.1111/1758-2229.12842
https://doi.org/10.3390/ijms19020379
https://doi.org/10.1038/s41388-019-0951-y
https://doi.org/10.1016/j.tibtech.2015.06.011
https://doi.org/10.1016/j.tibtech.2015.06.011
https://doi.org/10.1186/s40168-017-0293-3
https://doi.org/10.1002/pmic.201400573
https://doi.org/10.1002/pmic.201400573
https://doi.org/10.1186/s40168-014-0049-2
https://doi.org/10.1016/j.chom.2019.08.018
https://doi.org/10.1093/nar/gky1049
https://doi.org/10.4103/0366-6999.190667
https://doi.org/10.1186/s13568-019-0763-z
https://doi.org/10.1038/nsmb.3053
https://doi.org/10.1126/science.1208344
https://doi.org/10.1021/acs.jproteome.6b00450
https://doi.org/10.1021/acs.jproteome.6b00450
https://doi.org/10.5281/zenodo.1439555)
https://doi.org/10.3390/nu12020381
https://doi.org/10.1021/acs.analchem.7b02224
https://doi.org/10.1021/acs.jproteome.9b00054
https://doi.org/10.1021/acs.jproteome.9b00054
https://doi.org/10.1186/s40168-019-0767-6
https://doi.org/10.1016/j.jprot.2017.07.001
https://doi.org/10.1186/s40168-016-0176-z
https://doi.org/10.1016/j.ebiom.2019.08.048
https://doi.org/10.1016/j.ebiom.2019.08.048
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Distinct Human Gut Microbial Taxonomic Signatures Uncovered With Different Sample Processing and Microbial Cell Disruption Methods for Metaproteomic Analysis
	Introduction
	Materials and Methods
	Stool Samples
	Metaproteomic Analysis of Stool Samples
	Microbial Enrichment by SSP
	Cell Disruption Method for Protein Extraction

	Peptide Sample Preparation for Mass Spectrometry
	Liquid Chromatography-Tandem Mass Spectrometry Analysis
	Bioinformatics Analysis
	Statistical Analysis

	Results and Discussion
	Protein Extraction Protocol Effects on Protein Yield and Identification
	Impact of Protein Extraction Methods on Taxonomic and Functional Profiles of Human Gut Microbiota
	Metaproteomics Analysis of Gut Microbiota From Healthy Adults
	Taxonomic Analysis of Gut Microbiota
	Functional Characterization of Microbial Proteins
	Human Proteins Detected in Proteomic Studies of Stool Samples


	Concluding Remarks
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


