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Marine particulate organic matter (POM) largely derived from phytoplankton is a primary
food source for upper trophic consumers. Their biochemical compositions are important
for heterotrophs. Especially, essential amino acids (EAAs) in phytoplankton are well
known to have impacts on the survival and egg productions of herbivorous zooplankton.
To estimate the nutritional quality of POM, the biochemical compositions [biomolecular
and amino acid (AA) compositions] of POM were investigated in the northwestern
Ross Sea during the late austral summer in 2018. Carbohydrates (CHO) accounted
for the highest portion among different biomolecules [CHO, proteins (PRT), and lipids
(LIP)] of POM. However, the higher contribution of PRT and lower contribution of
CHO were observed in the southern section of our study area compared to those
in the northern section. The spatial distribution of total hydrolyzable AAs in POM
was considerably influenced by phytoplankton biomass, which indicates that the main
source of particulate AA was generated by phytoplankton. Our results showed that the
relative contribution of EAA to the total AAs was strongly associated with EAA index
(EAAI) for determining protein quality. This result indicates that higher EAA contribution
in POM suggests a better protein quality in consistency with high EAAI values. In this
study, variations in the biochemical compositions in POM were principally determined
by two different bloom-forming taxa (diatoms and Phaeocystis antarctica). The southern
region dominated majorly by diatoms was positively correlated with PRT, EAA, and
EAAI indicating a good protein quality, while P. antarctica-abundant northern region
with higher CHO contribution was negatively correlated with good protein quality
factors. Climate-driven environmental changes could alter not only the phytoplankton
community but also the physiological conditions of phytoplankton. Our findings could
provide a better understanding for future climate-induced changes in the biochemical
compositions of phytoplankton and consequently their potential impacts on higher
trophic levels.
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INTRODUCTION

Marine particulate organic matter (POM) is derived from a
variety of living and non-living sources, including detritus matter,
bacterial cells, and phytoplankton (Volkman and Tanoue, 2002).
Although the relative importance of these diverse sources cannot
be clarified, phytoplankton is definitely the most important
part of marine POM in surface waters (Riley, 1971; Kharbush
et al., 2020). POM largely derived from phytoplankton plays a
significant role in linking the primary producers to herbivores
as a crucial food source (Dzierzbicka-Głowacka et al., 2010;
Lowe et al., 2014; Andersson et al., 2017) and potential carbon
export to the deep ocean (Ducklow et al., 2001; Basu and
Mackey, 2018). Biochemical properties of POM, especially
biomolecular and amino acid (AA) compositions, are useful
indicators of nutritional quality for higher trophic consumers
(Dell’Anno et al., 2000; Lee et al., 2004; Bhavya et al., 2019).
The various biomolecular components, including carbohydrates
(CHO), proteins (PRT), and lipids (LIP), are generated through
photosynthetic assimilation of dissolved inorganic carbon into
organic compounds within phytoplankton (Fernández-Reiriz
et al., 1989; Fichez, 1991). The relative contribution of
the biomolecular compounds produced by phytoplankton is
tightly linked to the prevailing environmental conditions (e.g.,
availability of nutrients and light), major phytoplankton groups,
and the growth phase of phytoplankton (Ahn et al., 2019; Bhavya
et al., 2019 and the references therein). Thus, the biomolecular
composition of phytoplankton has also been considered a suitable
indicator of the physiological responses of phytoplankton to
the limitation of macro and micronutrients (i.e., bioavailable
N, P, Si, and Fe) (Morris et al., 1974; Sterner and Elser, 2002;
Saito et al., 2008; Moore et al., 2013) and light stress (Morris
et al., 1974; Smith and Morris, 1980; Sunda and Huntaman,
1997; Klausmeier et al., 2008) which is consequently connected
with their nutritional quality for higher trophic consumers
(Bhavya et al., 2019).

On the one hand, it is well known that AAs are the building
blocks of different biomolecules which are mainly peptides and
PRT (Kolmakova and Kolmakov, 2019; Shields et al., 2019).
Previous studies have shown that compositional changes in AAs
are related to the degradation state of POM, phytoplankton
community structure, and growth phase of phytoplankton
(Hecky et al., 1973; Kolmakova and Kolmakov, 2019; Shields
et al., 2019). Therefore, these compositional changes of AAs have
widely been used to indicate the organic matter degradation
(Cowie and Hedges, 1992; Mente et al., 2002; Becker and
Richmond, 2004) and protein quality (Oser, 1959; Mente et al.,
2002; Becker and Richmond, 2004). The degradation index (DI)
based on the changes in the relative abundance of each AA
to total AAs during organic matter diagenesis can be applied
to estimate the degradation degree of POM in sediment as
well as sinking particles (Dauwe and Middelburg, 1998; Dauwe
et al., 1999; Le Moigne et al., 2017). Among different AAs,
essential AAs (EAAs) cannot be synthesized de novo by most
heterotrophic organisms and must therefore be fulfilled by
prey to meet consumer’s nutritional needs for their growth
and reproduction (Muller-Navarra, 1995; Kleppel et al., 1998;

Kolmakova and Kolmakov, 2019). However, nutritional quality
for higher trophic levels comprises not only the quantity of
EAA but also balance in individual EAAs (Müller-Navarra,
2008). Hence, the EAA index (EAAI) allows us to evaluate the
protein quality in terms of the AA composition of POM as
consumers’ diets.

The Ross Sea is one of the most productive regions in
the Southern Ocean and thus supporting considerable standing
stocks of apex predators such as penguins, seals, and whales
(Nelson et al., 1996; Pinkerton et al., 2010). In 2016, this region
was established as a massive Marine Protected Area (MPA)
safeguarding 1.55 million km2 of ocean bordering Antarctica
from ice edge to deep ocean by the Commission for the
Conservation of Antarctic Marine Living Resources (CCAMLR).
Of that, cape Hallett located at the northern Victoria Land
is one of the specially protected areas and large populations
of breeding penguins relevant to large aggregations of krill as
their primary food source (Lyver et al., 2011). The marine top
predators (e.g., penguins, seals, and whales) depend directly or
indirectly on organic matter by photosynthetic microalgae since
the quantity and quality of POM produced by phytoplankton
have consequences for the entire marine ecosystem of the Ross
Sea through bottom-up processes (Oksanen and Oksanen, 2000;
Gruner et al., 2008). Indeed, the Ross Sea food webs are supported
at their foundation by phytoplankton comprising of two key
algal groups: diatoms and haptophytes, particularly Phaeocystis
antatarctica (DiTullio and Smith, 1996; Alderkamp et al., 2012;
Smith et al., 2014; Mangoni et al., 2017). The relative abundance
of major two phytoplankton communities varies with spatial
and temporal patterns in the Ross Sea and subsequently can
have significant influences on the spatial and temporal diet
variability of higher trophic levels (trophodynamics) (Young
et al., 2015b; Mangoni et al., 2019). According to current climate
trends, the Ross Sea is expected to experience extreme warming,
decreased sea ice concentrations, and shallower mixed layers
throughout the next century (Bracegirdle et al., 2008; Ainley
et al., 2010; Bracegirdle and Stephenson, 2012). The changes in
the predominant phytoplankton community and physiological
status of phytoplankton caused by this predicted climate change
(e.g., increase in sea surface temperatures, decreases in the
mixed layer depths, sea ice concentrations, and macronutrient
concentrations; Rickard and Behrens, 2016) can have profound
implications on diet variability of higher trophic levels (Smith
et al., 2003; Smetacek et al., 2004; Tang et al., 2008). Therefore,
the aims of the paper were to (1) investigate biochemical
compositions (biomolecular and AA compositions) of POM
derived mainly phytoplankton and main factors in controlling
the relative dominance of these biochemical compositions and (2)
evaluate physiological conditions of phytoplankton and potential
food quality as prey for consumers.

MATERIALS AND METHODS

Study Sites and Sampling
The field survey was performed closely to Cape Adare and Cape
Hallett during the Ross Sea Marine Projected Area Expedition
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(ANA08C; from 25 February to 1 March 2018) in Antarctica
on the IBR/V Araon (Figure 1). The vertical temperature and
salinity profiles were collected using a conductivity-temperature-
depth (CTD) recorder (SeaBird Electronics Inc., SBE 911 plus).
At all sampling stations, discrete water samples for biological and
chemical analyses were obtained from three different light levels
(100, 30, and 1% light penetration depths which were estimated
from the Secchi depth) employing CTD/rosette sampler attached
to 24-10 L Niskin bottles. The depth of the euphotic zone (Zeu)
was defined as the depth at which 99% of the surface irradiance
is attenuated (Kirk, 1985) and estimated using a Secchi disk. The
mixed layer depth (Zm) was defined as the depth where a change
of 0.01 kg m−3 in potential density (σt) from the stable surface
layer value (Smith et al., 2000; Asper and Smith, 2019).

Particulate Organic Carbon (POC),
Nitrogen (PON), and Stable Carbon
Isotopes (δ13C) Analyses of POM
For the analyses of POC, PON, and δ13C, 0.3 L of sampled
sample was filtered through Whatman GF/F filter (25 mm,
0.7 µm pore) and immediately stored at −80◦C. The filtered
samples were acidified over fuming HCl to eliminate inorganic
carbon before further analysis. Then, the filters were analyzed for
carbon and nitrogen contents and isotope ratios using a Finnigan
Delta + XL mass spectrometer at the stable isotope laboratory of
the University of Alaska Fairbanks, United States.

Major Inorganic Nutrients, Chlorophyll a,
and Other Phytoplankton Pigments
Analyses
Samples for the determination of dissolved inorganic nutrients
(phosphate, nitrate + nitrite, ammonium, and silicate) were
collected directly from the Niskin rosette into 50 mL conical
tubes and immediately stored at 4◦C until analysis within

24 h. Nutrient concentrations were measured on board with a
QuAAtro Continuous Segmented Flow Analyzer (Seal Analytical,
Norderstedt, Germany) using standard colorimetric methods
according to the “QuAAtro Applications.”

Water samples (0.3 L) were filtered through 25 mm GF/F filter
papers (Whatman, 0.7 µm pore) to measure the total chlorophyll
a (chl-a) concentration. Sequential filtrations were performed to
determine each size-fractionated chl-a concentration (>20, 5–20,
and <5 µm). First, 0.5 L of seawater was filtered through the
Polycarbonate Track Etched (PCTE) membrane 20 µm filter
(GVS, 47 mm). Then, the filtrate was passed through the PCTE
membrane 5 µm filter (Whatman, 47 mm) and 47 mm GF/F
filters (Whatman, 0.7 µm pore) in sequence. The chl-a pigment
was extracted by submerging filtered samples in 90% acetone for
24 h in dark and cold conditions (Parsons et al., 1984). The chl-
a fluorescence was measured onboard using the pre-calibrated
Trilogy fluorometer (Turner Designs, United States).

Phytoplankton pigment analysis using a high-performance
liquid chromatography (HPLC) system can be used to quantify
concentrations of each pigment that were determined by
measuring the integrated peak area based on the method of
Zapata et al. (2000). The pigments on the filtered samples (1
or 2 L of seawater) were extracted in 5 mL of 100% acetone
with canthaxanthin (internal standard) for 24 h in dark at 4◦C.
The extract was filtered through a 0.2 µm Advantec syringe
filter. HPLC measurements were performed on an Agilent 1200
HPLC system (Agilent infinite 1260, Agilent, United States)
and the separating column was used Zobrax Eclipse XDB C8
column (250 × 4.6 mm, 5 µm, Agilent Technologies). The same
analysis procedures of Kang et al. (2018) were performed for
quantifying of pigment concentrations. As suggested by Mackey
et al. (1996), the contribution of various phytoplankton classes
could be estimated by the ratio of each diagnostic pigment to
total chl-a using the CHEMTAX program. The initial pigment
ratio to chl-a for each mark pigment used in the CHEMTAX

FIGURE 1 | Map of the study area and sampling stations (with depth contours in meters). Mean sea ice concentration (%) data during the sampling period from
Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave data provided by National Snow and Ice Data Center.
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program was modified by Mackey et al. (1996); Wright et al.
(1996), and DiTullio et al. (2011).

Biomolecular Composition of
Phytoplankton
Water samples were obtained from three light depths (100, 30,
and 1%) for biomolecular compositions (CHO, PRT, and LIP)
of phytoplankton and filtered through a 47 mm GF/F filter.
The filters were stored at −80◦C for spectrometric analysis
using a UV–visible spectrometer (Hitachi UH-5300, Japan) to
measure each biomolecular concentration. CHO concentration
was determined using the phenol-sulfuric method according to
Dubois et al. (1956). After 1 mL of deionized water was added to
the polypropylene tube containing the filtered sample, samples
were ultrasonicated for 20 min for CHO extraction. 1 mL of
5% phenol reagent was additionally added, and the extracted
samples were kept at room temperature for 40 min. The CHO
after reaction with concentrated sulfuric acid were quantified by
measuring the absorbance at 490 mm and then calculated from
the calibration glucose standard (1 mg mL−1, SIGMA) curve.
To measure PRT concentration based on Lowry et al. (1951),
1 mL of deionized water and 5 mL of alkaline copper solution (a
mixture of 2% Na2CO3 in 0.1 N NaOH with 0.5% CuSO4·5H2O
in 1% sodium or potassium tartrate; 50:1, v:v) were added into
vials with the filtered samples for PRT extraction. After 20 min
of ultrasonication, 0.5 mL of diluted Folin-Ciocalteu phenol
reagent (1:1, v:v) was added into sample vials for the colorimetric
reaction. The absolute concentration of PRT was calculated from
the absorbance at 750 nm comparing with a protein standard
solution (2 mg mL−1, SIGMA). The total LIP was extracted by
chloroform and methanol (1:2, v:v) according to the modified
method of Bligh and Dyer (1959) and Marsh and Weinstein
(1966). The absorbance at 360 nm was expressed as tripalmitin
equivalents. More detailed methods are explained in Bhavya et al.
(2019).

Amino Acid Composition Analysis
Samples for the analysis of total particulate hydrolyzable AAs
(PAAs) were collected from three light depths (100, 30, and
1%) at six stations. Water samples (1 L) from each station were
passed through 47 mm GF/F filters (Whatman, 0.7 µm pore)
and then frozen at −80◦C for later analysis. Acid hydrolysis
was performed using the modified methods of Lobbes et al.
(1999) and Bartolomeo and Maisano (2006). A filtered paper
is transferred into the 5 mL reaction vial containing 2 mL
HCl (6 M) and 10 µL ascorbic acid (11 mM). The vials
were capped tightly after flushing with N2 gas and then
moved into a pre-heated heating block at 110◦C for 24 h.
After acidic hydrolysis, hydrolysates were cooled at room
temperature and filtered through 0.2 µm PTFE syringe filters
(Advantec, Tokyo, Japan). Each remaining liquid was evaporated
to dryness using a nitrogen evaporator at 60◦C. The dried
residues were reconstituted with 200 µL of 0.1 N HCl and
transferred into glass vials for analysis. Samples were analyzed
using HPLC (Agilent 1260 Infinity, Germany) equipped with an
autosampler, a Zorbax-Eclipse AAA column (4.6 × 250 mm,

5 µm), and UV/VIS detector (338 and 262 nm). In the
pre-column method, the samples and AA standard solutions
were automatically derivatized with ortho-phthalaldehyde (OPA)
and 9-fluorenylmethyl chloroformate (FMOC) by programming
autosampler according to Agilent Application note (Henderson
et al., 2000). The column temperature was maintained at 40◦C
with a flow rate of 1.5 mL/min. The mobile phase A contained
40 mM sodium phosphate (di-basic) with 0.1% phosphoric
acid and mobile phase B was acetonitrile/methanol/deionized
water (45:45:10, v:v:v). AA standard mixture with 21 L-
AAs and L-norvaline (surrogate standard) was prepared for
AA identification and quantification. AA standard solutions
contained 22 L-AAs: Aspartic acid (ASP), Glutamic acid (GLU),
Asparagine (ASN), Serine (SER), Glutamine (GLN), Histidine
(HIS), Glycine (GLY), Threonine (THR), Arginine (ARG),
Alanine (ALA), Tyrosine (TYR), Cystine (CY2), Valine (VAL),
Methionine (MET), Tryptophan (TRP), Phenylalanine (PHE),
Isoleucine (ILE), Leucine (LEU), Lysine (LYS), Hydroxyproline
(HYP), Proline (PRO) and Norvaline (NVA). Hydroxyproline
(HYP), and proline (PRO) could not be quantified because of
their low responses and high detection limits in our HPLC.
A representative chromatogram for the mixed standard is shown
in Supplementary Figure S1. Each linear relationship for the
four-point calibration curve of individual AAs was obtained with
a correlation coefficient being above 0.999. The relative standard
deviations of peak areas for each AA in each point ranged from
1.6 to 9.5% (n = 3) for measurement precisions. Before injecting,
20 µL of norvaline as a surrogate standard has added a sample of
each vial and each sample was injected twice for HPLC analysis.
Peak areas of AA measured that the average value of three blanks
was subtracted from each sample analyzed. Then, individual
AA concentrations in injected samples were calculated using
the slope of the calibration curve of each AA and the known
concentration of Norvaline. Glutamine (GLN) and asparagine
(ASN) were quantified as glutamic acid (GLU) and aspartic acid
(ASP) because glutamine (GLN) and asparagine (ASN) react into
glutamic acid (GLU) and aspartic acid (ASP) during hydrolysis,
respectively. Moreover, tryptophan (TRP) and cystine (CY2) are
omitted from our AA results since they are fully or partially
destroyed during acid hydrolysis. Therefore, the concentration of
each remaining AA was expressed as a mole percentage (mol%)
of the total AA.

Amino Acid Index Calculations
The quantitative DI for POM was calculated using mol% AA
composition and the factor coefficient of Dauwe et al. (1999).
According to Dauwe et al. (1999), this index could reflect the
reactivity of POM as degradation proceeds. DI was estimated
using this equation derived by Dauwe et al. (1999).

DI =
∑
i

[
vari − AVGvari

STDvari
] × fac · coefi

In this equation, vari is the mol% of the individual AA,
AVGvari and STDvari are the mean and standard deviation of
the AA mol% in a given dataset, and fac·coefi is the factor
coefficient in Dauwe et al. (1999).
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Individual AA of each sample is divided into EAA and
non-EAA (NEAA): nine essential (histidine, threonine, arginine,
valine, methionine, phenylalanine, isoleucine, leucine, and lysine)
and six non-essential (aspartic acid, glutamic acid, serine, glycine,
alanine, and proline). The EAAI is a common index for
estimating the quality of phytoplankton as a diet for higher
trophic levels such as zooplankton (Oser, 1959; Mente et al.,
2002; Becker and Richmond, 2004). The EAAI is defined as a
ratio of EAA in prey to corresponding EAA in reference egg
protein (Oser, 1959). However, the mean fraction of EAA in
the zooplankton community in this study (unpublished data)
was used as the reference AA since efficient food has a similar
AA profile to that of the consumer (Guisande et al., 2002). The
modified EAAI of POM was determined from this formula:

EAAI = n

√
aa1

AA1
×

aa2

AA2
×

aa3

AA3
×

aa4

AA4
× · · · ×

aan
AAn

where aa1, . . ., aan are the ratio of each EAA to total EAA in
POM and AA1, . . ., AAn are the average ratio of each EAA to total
EAA in zooplankton communities in this study (unpublished
data). To calculate EAAI, the values of aa1/AA1, . . ., aan/AAn
were constrained between 0.01 minimally and 1 maximally
(Hayashi et al., 1986).

Statistical Analysis
Significant differences of biochemical properties (concentrations
of biomolecules and biomolecular composition) between
northern and southern stations were tested using the Student’s

t-test. The results of statistical analyses were assumed to be
significant at p-values < 0.05. All correlation analyses were
performed in this study using Pearson’s correlation coefficients.
Statistical analyses were performed using Statistical Package for
the Social Sciences (SPSS ver.12.0). For the multivariate analysis
of the analyzed and investigated parameters, we carried out the
principal component analysis (PCA) with the rotation method of
Varimax with Kaiser normalization using the XLSTAT software
(Addinsoft, Boston, MA, United States). Further, to calculate
the dissimilarity between samples, agglomerative hierarchical
clustering (AHC) analysis with Euclidean distance dissimilarity
and Ward’s method was conducted using the XLSTAT software
(Addinsoft, Boston, MA, United States).

RESULTS

Hydrographical and Chemical Properties
The vertical profiles of potential temperature and salinity within
the upper 100 m ranged from −1.82 to −0.52◦C and from
33.96 to 34.58, respectively (Figure 2). The lowest potential
temperature and salinity were measured at station (St.) 1, whereas
other stations never reached freezing temperature and had
relatively higher salinities. The higher salinity values over 34.40
with depth showed at Sts. 14 and 17 which also had higher
temperature values. The Zeu and Zm were 30–43 and 20–117 m,
respectively (Table 1). The Zeu at most stations was shallower
than Zm except for Sts. 1 and 11.

FIGURE 2 | Vertical profiles of (A) temperature (◦C) and (B) salinity in the upper 100 m of the water column during this cruise ANA08C.

TABLE 1 | Description of sampling stations and associated environmental variables during ANA08C cruise.

Station Latitude (◦N) Logitude (◦E) Date (mm/dd/yy) Teu Seu Bottom depth (m) Zeu (m) Zm (m)

1 −72.318 170.177 25/02/18 −1.8 34.0 165 43 21

2 −71.698 172.186 26/02/18 −1.1 34.2 1043 35 117

5 −72.163 175.566 27/02/18 −1.2 34.2 1342 38 65

11 −72.987 174.315 28/02/18 −1.0 34.3 345 30 20

14 −72.596 171.413 28/02/18 −1.2 34.3 387 41 53

17 −73.421 173.662 01/03/18 −1.0 34.3 287 30 75

Teu and Seu: water temperature and salinity averaged from surface to the euphotic zone depth (Zeu).
Zm: mixed layer depth.
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Figure 3 shows vertical distributions of dissolved inorganic
nutrients (phosphate, nitrate + nitrite, ammonium, and silicate)
from the surface to 100 m depth. The concentrations of
dissolved inorganic nutrients except for ammonium mostly
increased with depth from the surface to 100 m. At Sts. 14
and 17, the concentrations of phosphate, nitrate + nitrite,
and silicate increased sharply below the euphotic layers
compared with those at other stations. In the upper 100 m,
the concentrations of phosphate, nitrate + nitrite, and silicate
were 1.89–2.38, 19.11–22.66, and 60.74–81.53 µM, respectively.
Dissolved inorganic ammonium had low concentrations,
ranging from 0 to 1.49 µM, and did not show a clear
spatial pattern.

Particulate Organic Carbon (POC),
Nitrogen (PON), and Stable Carbon
Isotopes (δ13C) of POM
The averaged concentrations of POC, PON, and C/N ratio
within the euphotic zone and δ13C values of surface POM are
summarized in Table 2. The POC and PON concentrations
were 108.0–194.5 and 11.1–27.5 µg L−1, respectively. The lowest
mean values of the euphotic depth-averaged POC and PON were
observed at St. 2 while the highest values were found at St.
17 (Table 2). The C/N ratios were in a range of 7.7–11.4 and
the average C/N ratio value was highest at St. 1 (10.8 ± 0.6)
and lowest at St. 17 (8.0 ± 0.3) (Table 2). The δ13C values
of surface POM ranged from −25.1 (St. 1) to −29.2h (St.
17) (Table 2).

Phytoplankton Biomass and Community
Structure
The vertical patterns of the total chl-a concentrations between
the surface and 1% light depth are shown in Table 3 and
were almost uniform throughout the euphotic zone at each
station (Table 3). Depth-integrated total chl-a concentrations
throughout the euphotic zone (from the surface to depth of Zeu)
ranged between 13.1 and 42.6 mg chl-a m−2, with a mean value
of 24.7 mg chl-a m−2 (SD = ±11.1 mg chl-a m−2). The lowest
integrated chl-a values were observed at the northernmost Sts. 2
and 5, while the highest value was found at the southernmost and
near the offshore station (St. 17). We found a distinct difference
in chl-a contributions of different size classes (>20, 5–20, and
0.7–5 µm) to the total chl-a concentration among the stations
(Table 3). The large-sized phytoplankton (>20 µm) contributed
most to the total phytoplankton biomass in the southern part of
the study area (Sts. 11, 14, and 17), whereas relatively smaller
cells (0.7–5 and 5–20 µm) were dominating in the northern part
(Sts. 1, 2, and 5). The overall contributions of large (>20 µm),
middle (5–20 µm), and small-sized (0.7–5 µm) phytoplankton
to the total chl-a concentrations were 14.7–82.8, 11.1–47.4, and
5.6–47.1%, respectively. Moreover, the contribution of large-
sized fraction (>20 µm) showed a statistically significant positive
correlation with integrated total chl-a concentration (r = 0.888,
p < 0.05), whereas a significant negative correlation was found
between small size-class (0.7–5 µm) and integrated total chl-a
value (r =−0.910, p < 0.05) in our study area.

Concerning the relative contributions of individual
phytoplankton groups based on CHEMTAX analysis

FIGURE 3 | Vertical profiles of measured concentrations (µM) of major inorganic nutrients within 100 m depth: (A) phosphate (PO4), (B) nitrate + nitrite (NO2 + NO3),
(C) ammonium (NH4), and (D) silicate (SiO2).
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TABLE 2 | The concentrations of POC and PON, and δ13C (h) of particulate organic matter (POM) in the northwestern Ross Sea.

Station Light depth (%) Sampling depth (m) POC (µg L−1) PON (µg L−1) C/N ratio (molar:molar) POC/Chl-a δ13C (h)

1 100 0 166.4 19.0 10.2 299.7 −25.1

30 11 147.4 15.1 11.4 262.9

1 43 128.3 13.8 10.9 225.4

2 100 0 108.2 11.1 11.4 282.3 −26.3

30 9 116.0 13.6 10.0 297.3

1 35 133.0 15.3 10.2 381.3

5 100 0 125.0 15.7 9.3 343.2 −27.1

30 10 127.4 15.2 9.8 354.0

1 38 108.0 14.3 8.9 295.4

11 100 0 153.1 18.7 9.6 226.7 −26.9

30 8 140.4 17.6 9.3 206.6

1 30 142.7 16.3 10.2 142.9

14 100 0 141.7 17.6 9.4 192.1 −26.8

30 11 133.5 16.6 9.4 188.6

1 41 144.4 17.5 9.6 173.7

17 100 0 175.4 25.7 8.0 128.1 −29.2

30 8 194.5 27.5 8.3 139.2

1 30 174.9 26.6 7.7 118.9

TABLE 3 | Total and euphotic-depth integrated chl-a concentrations (from the surface to 1% light depth) and compositions of different size-fractionated chl-a and
phytoplankton communities.

Station Light depth (%) Total Size-fractionated (%) Phytoplankton community composition (%)

Chl-a (µg L−1) Integrated (mg
chl-a m−2)

>20 µm 5–20 µm 0.7–5 µm Diatoms Haptophytes Dinoflagellates Others

1 100 0.6 24.2 16.6 40.0 43.4 74.3 25.2 0.3 0.2

30 0.6 29.0 43.1 27.9 76.4 23.1 0.3 0.2

1 0.6 25.4 47.4 27.2 77.5 22.0 0.4 0.0

2 100 0.4 13.1 17.1 39.2 43.7 37.1 62.4 0.3 0.2

30 0.4 16.2 36.7 47.1 25.3 74.4 0.4 0.0

1 0.3 14.7 42.8 42.5 33.9 65.7 0.4 0.0

5 100 0.4 13.8 15.3 43.5 41.2 48.7 48.1 0.0 3.2

30 0.4 16.5 43.2 40.3 54.6 42.0 0.0 3.4

1 0.4 18.8 42.4 38.8 55.2 41.0 0.0 3.8

11 100 0.7 23.9 59.4 22.0 18.7 72.2 20.8 0.6 6.4

30 0.7 60.7 22.3 17.0 79.6 16.1 0.5 3.8

1 1.0 71.5 18.6 9.9 91.4 5.6 0.6 2.5

14 100 0.7 30.7 59.2 25.9 14.9 93.1 0.2 0.6 6.1

30 0.7 64.4 21.4 14.3 79.1 18.9 0.6 1.4

1 0.8 50.4 35.0 14.6 74.6 22.3 0.9 2.2

17 100 1.4 42.6 82.5 11.9 5.6 95.5 0.1 0.3 4.1

30 1.4 82.5 11.1 6.3 95.1 0.0 0.6 4.3

1 1.5 82.8 11.3 5.9 95.8 0.1 0.3 3.7

(Mackey et al., 1996; Wright et al., 1996; DiTullio et al.,
2011), the combined contributions of diatoms and haptophytes
(hereinafter Phaeocystis antarctica) contributed up to 99.6% of
the total phytoplankton biomass during this study (Table 3).
The phytoplankton community composition exhibited varying
vertical distribution patterns and did not show clear differences
between the three light depths (Table 3). Although most
of the stations were diatoms-dominated with relatively low
contributions of P. antarctica, P. antarctica presented markedly

higher contributions at Sts. 2 and 5 (mean ± SD = 67.5 ± 6.2
and 43.7± 3.8%, respectively) (Table 3). Since two major groups,
diatoms and P. antarctica, were distinctly observed during our
study period, they could be related with different cell sizes based
on our size-fractionated chl-a results. The size-fractionated chl-a
and pigment analyses revealed that the larger phytoplankton
assemblage (>5 µm) was dominated by diatoms (r = 0.917,
p < 0.05). In comparison, the greater fraction of chl-a contained
in small cells (<5 µm) accounted for mainly P. antarctica
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(r = 0.929, p < 0.01), presumably indicative for solitary cells of
P. antarctica (∼4 µm in size; Schoemann et al., 2005).

Biomolecular Composition of POM
The concentrations and relative composition of CHO, PRT,
LIP, and food material (FM; the sum of CHO, PRT, and LIP;
Danovaro et al., 2000) concentrations are presented in Table 4.
The differences in concentrations of each biochemical pool
(CHO, PRT, and LIP) and FM at these different three-light
depths did not show a clear pattern. The absolute concentrations
of each biomolecule (CHO, PRT, and LIP) and FM were
67.4–161.6, 7.9–75.6, 43.8–118.0, and 163.4–278.4 µg L−1,
respectively (Table 4). There was no clear difference in the
CHO concentrations among the stations. In contrast, the PRT,
LIP, and FM contents exhibited higher values in the southern
part compared to those in the northern part (t-test, p < 0.05),
in particular for PRT and FM contents (t-test, p < 0.001).
Based on Pearson’s correlation analysis, the PRT, LIP, and FM
contents were found to have a positive relationship with chl-a
concentration as an indicator of phytoplankton biomass (PRT
vs. Chl-a: r = 0.915, p < 0.01; LIP vs. Chl-a: r = 0.787,
p < 0.01; FM vs. Chl-a: r = 0.806, p < 0.01). Regarding the
relative percentages of biomolecular components at each station,
CHO made up the largest portion with a mean percentage of
54.0 ± 10.2%, increasing to ∼66.7% at the 1% light depth,
followed by LIP (mean ± SD = 29.9 ± 5.4%) and PRT
(mean± SD = 16.1± 6.8%) (Table 4). Although the biomolecular
compositions of phytoplankton varied without vertical trends,
the CHO and PRT compositions exhibited spatial variability
between the northern and southern parts (Table 4). More

TABLE 4 | Concentrations of each biomolecular component (CHO, PRT, and LIP)
and food materials (FMs) and percentages of the biomolecular composition of
POM at each station in the northwestern Ross Sea.

Station Light
depth (%)

Concentration (µg L−1) Composition (%)

CHO PRT LIP FM CHO PRT LIP

1 100 122.8 23.1 53.3 199.2 61.6 11.6 26.8

30 118.4 7.9 58.4 184.7 64.1 4.3 31.6

1 121.3 11.4 49.3 182.0 66.7 6.2 27.1

2 100 122.8 22.4 50.7 195.9 62.7 11.4 25.9

30 97.8 23.1 43.8 164.7 59.4 14.0 26.6

1 114.8 16.9 47.4 179.1 64.1 9.4 26.5

5 100 96.8 21.7 44.9 163.4 59.2 13.3 27.5

30 102.4 22.4 70.5 195.3 52.4 11.5 36.1

1 84.4 23.1 58.4 166.0 50.9 13.9 35.2

11 100 125.7 42.5 54.4 222.5 56.5 19.1 24.4

30 161.6 36.9 62.1 260.6 62.0 14.2 23.8

1 97.1 42.5 64.3 203.8 47.6 20.8 31.5

14 100 86.9 37.6 62.8 187.3 46.4 20.1 33.5

30 109.4 43.1 56.9 209.5 52.2 20.6 27.2

1 121.3 41.8 61.0 224.1 54.1 18.6 27.2

17 100 100.5 61.1 73.8 235.3 42.7 26.0 31.3

30 67.4 69.4 118.0 254.9 26.5 27.2 46.3

1 118.4 75.6 84.4 278.4 42.5 27.2 30.3

specifically, CHO compositions in the northern part (Sts. 1, 2,
and 5) were higher than those in the southern part (Sts. 11,
14, and 17) (t-test, p < 0.01). In comparison, PRT composition
in the euphotic layer of the southern part has much higher
values compared to those measured in the northern part (t-test,
p < 0.001). Meanwhile, we found that the proportion of CHO
positively correlated with P. antactica composition (r = 0.609,
p < 0.01) while the proportion of PRT positively correlated with
diatom composition (r = 0.592, p < 0.01).

Amino Acid Composition of POM and
Amino Acid Indices
Particulate hydrolyzable AA concentrations were quantified from
the sum of each measured concentration of 14 detected AA since
tyrosine, cystine, and tryptophan were not detected in our POM
samples (Table 5). The PAA concentrations within the euphotic
zone ranged from 0.18 µM at the 30% light depth of St. 2 to
1.04 µM at the 30% light depth of St. 17, with an average value
of 0.40 ± 0.21 µM (Table 5). However, the significant spatial
distinction of PAA concentrations was not observed although the
concentrations of biomolecular components had a clear spatial
pattern as mentioned above. We calculated the carbon and
nitrogen normalized yields of AAs (AA-POC% and AA-PON%)
for our PAA samples (Table 5). The PAA accounted for 7.8–26.6%
of total POC (mean± SD = 14.2± 5.9%) and 21.3–81.8% of total
PON (mean± SD = 41.7± 19.7%), respectively (Table 5).

The contributions of each AA in the PAA are presented in
Table 5. The AA composition in the PAA was variable among
the stations, and especially lysine and histidine have substantial
variability. The major constituents of the PAA were glycine,
glutamic acid, and alanine whereas lysine, histidine, methionine,
and phenylalanine were minor components (Table 5). Among
individual AA, glycine was the most dominant constituent
(mean± SD = 20.99± 3.74%), followed by glutamic acid, alanine,
leucine, and serine. Lysine had the lowest molar percentage
(mean ± SD = 2.78 ± 2.93%) and particularly was below the
detection limit in most samples obtained from Sts. 2 and 5. The
percentage compositions of NEAA and EAA to total PAA were in
the ranges of 46.5–65.3 and 34.7–53.5%, respectively (Table 5).
The proportion of NEAA was higher than those of the EAA
fraction except for the sample at the 30% light depth of St. 11.

The calculated DI and EAAI values ranged from−0.87 to 1.00
and from 0.34 to 0.95, respectively (Table 5). In this study, strong
positive correlation was found between the relative contribution
of EAA (%) and EAAI (Figure 4; r = 0.629, p < 0.01).

Multivariate Analysis (AHC Analysis and
PCA) Between Biochemical
(Biomolecular and Amino Acid)
Compositions of POM and Other
Chemical and Biological Features
The dendrogram according to AHC analysis based on the same
28 variables used with PCA revealed three distinct groups
(Figure 5). Cluster 1 (C1) had the southern part samples and one
sample collected from 100% light depth at St. 1 whereas Cluster 2
(C2) contained almost all the samples obtained from the northern
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TABLE 5 | PAA concentrations, carbon and nitrogen normalized yields of PAA (AA-POC% and AA-PON%), mol fractions of individual amino acids, NEAA, and EAA, and values of AA-based indices (DI and EAAI).

Station light
depth

(%)

PAA
(µM)

AA-
POC%

AA-
PON%

Amino acid composition (mol%) NEAA
(mol%)

EAA
(mol%)

DI EAAI

ASP GLU SER GLY ALA HIS THR ARG VAL MET PHE ILE LEU LYS

1 100 0.30 9.6 28.9 6.40 14.48 7.67 17.98 8.83 3.59 7.69 6.14 5.94 1.51 3.92 4.31 7.62 3.94 55.4 44.6 −0.10 0.87

30 0.61 21.3 76.9 6.61 18.01 7.64 22.86 8.98 4.03 3.00 8.18 3.77 2.48 2.54 3.50 7.24 5.52 64.1 40.3 −0.72 0.83

1 0.61 24.0 81.8 4.65 10.33 9.45 25.39 6.87 4.04 7.23 7.67 4.13 4.33 3.59 3.62 8.68 N.D. 56.7 43.3 −0.03 0.56

2 100 0.22 10.2 36.6 6.64 10.75 7.69 22.88 11.26 4.96 6.02 7.35 1.55 6.30 4.01 3.36 7.90 N.D. 59.2 41.5 −0.11 0.51

30 0.18 7.8 23.6 6.31 10.06 7.84 20.74 13.30 6.04 4.30 5.82 1.72 7.16 4.32 4.28 8.11 N.D. 58.2 41.8 0.84 0.51

1 0.37 13.8 44.2 5.42 13.28 7.82 24.80 9.75 4.67 4.68 7.49 1.39 6.02 3.36 3.42 7.28 N.D. 61.1 38.3 −0.02 0.51

5 100 0.21 8.2 21.3 9.65 11.71 8.68 24.90 10.38 N.D. 5.27 4.71 6.93 1.88 4.31 4.25 7.33 N.D. 65.3 34.7 −0.54 0.34

30 0.46 18.8 59.1 7.57 15.38 6.71 23.69 7.65 5.49 4.11 7.04 1.26 4.90 4.00 3.04 3.33 9.68 61.0 42.8 −0.04 0.71

1 0.43 20.7 56.3 7.63 20.28 6.05 22.23 7.62 6.59 3.44 7.06 2.31 1.50 3.87 3.23 8.18 N.D. 63.8 36.2 0.00 0.49

11 100 0.29 9.9 28.4 5.35 10.84 7.53 21.56 11.20 3.71 7.25 7.11 3.92 3.87 4.25 4.26 9.16 N.D. 56.5 43.5 0.29 0.57

30 0.26 10.4 27.1 10.01 13.38 8.14 14.97 N.D. 3.60 8.60 6.10 4.28 4.71 4.76 5.99 9.33 6.11 46.5 53.5 1.00 0.94

1 0.51 18.5 56.7 6.16 10.58 7.56 19.91 11.05 2.67 7.48 6.62 3.63 3.85 4.05 4.57 8.21 3.65 55.3 44.7 0.03 0.92

14 100 0.25 9.5 23.8 9.83 12.79 7.26 11.96 11.75 N.D. 7.51 4.64 4.46 5.00 4.27 6.18 8.39 6.44 53.6 46.9 0.45 0.57

30 0.25 10.0 27.9 6.67 11.27 7.53 18.04 10.71 4.23 6.75 5.72 4.75 3.39 3.92 4.85 7.91 4.26 54.2 45.8 0.24 0.95

1 0.29 10.5 28.3 7.17 12.84 7.96 16.48 11.05 N.D. 7.72 6.06 6.68 2.37 3.91 4.93 8.18 4.64 55.5 44.5 −0.18 0.57

17 100 0.41 12.0 29.0 6.19 9.82 7.44 22.44 10.31 3.55 7.35 6.34 4.36 3.23 3.80 4.50 7.92 2.73 56.2 43.8 −0.16 0.90

30 1.04 26.6 68.6 6.39 12.83 6.71 23.91 9.80 4.42 7.12 6.37 5.57 1.75 2.38 3.14 7.88 0.64 59.6 39.3 −0.87 0.71

1 0.47 13.7 32.9 5.98 8.91 6.88 23.09 9.85 5.78 7.20 6.22 5.48 1.99 3.40 4.04 8.71 2.48 54.7 45.3 −0.07 0.84

Mean ± SD 0.40 ±
0.21

14.2 ±
5.9

41.7 ±
19.7

6.92 ±
1.52

12.64 ±
2.94

7.59 ±
0.76

20.99 ±
3.74

9.46 ±
2.85

3.74 ±
1.99

6.26 ±
1.68

6.48 ±
0.95

4.01 ±
1.78

3.68 ±
1.75

3.85 ±
0.60

4.19 ±
0.91

7.85 ±
1.27

2.78 ±
2.93

57.6 ±
4.5

42.8 ±
4.3

0.00 ±
0.47

0.68 ±
0.19

The list of AA abbreviations is as follows: aspartic acid (ASP), glutamic acid (GLU), serine (SER), glycine (GLY), alanine (ALA), histidine (HIS), threonine (THR), arginine (ARG), valine (VAL), methionine (MET), phenylalanine
(PHE), isoleucine (ILE), leucine (LEU), and lysine (LYS).
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FIGURE 4 | Relationship between the relative contribution of EAA (%) and EAAI.

FIGURE 5 | Dendrogram representing the agglomerative hierarchical clustering (AHC) based on dissimilarities using Ward’s method between the biochemical
(biomolecular and amino acid) compositions of POM and other 11 chemical and biological features.

section. Cluster 3 (C3) included the samples collected from only
St. 17 in the southern part. The maximum value of distances
between the class centroids was observed between C2 and C3
(29.743), and C1 and C3 had a small difference in dissimilarity.

As a result of the PCA, the principal components (PC) 1
and 2 explained 29.30 and 21.41% of the data variance in
the biochemical compositions and other parameters among

the stations (Figure 6). The PC1 was positively correlated
with NO2 + NO3, SiO2, C/N ratio, CHO composition (%),
P. antarctica, methionine, and serine whereas negatively loaded
with Chl-a, PRT and LIP composition (%), Diatoms, EAAI,
and valine. The PC2 was found to be positively loaded with
EAA composition (%), isoleucine, threonine, phenylalanine,
leucine, aspartic acid, and DI score while had negative loadings
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FIGURE 6 | Principal component analysis (PCA; after normalized varimax rotation) based on the biochemical (biomolecular and amino acid) compositions of POM
and other chemical and biological features. (A) Correlation circle and projection obtained by PCA of the 28 variables; each red arrow represents the squared cosine
corresponding to an individual variable. (B) Biplot of PCA on the 28 variables and observations for the first and second axis (variability explained: 50.71%).
Observations are grouped according to the classes obtained from agglomerative hierarchical clustering (AHC). Each abbreviation represents as aspartic acid (ASP),
glutamic acid (GLU), serine (SER), glycine (GLY), alanine (ALA), histidine (HIS), threonine (THR), arginine (ARG), valine (VAL), methionine (MET), phenylalanine (PHE),
isoleucine (ILE), leucine (LEU), lysine (LYS), compositions of essential amino acids (EAAs), essential amino acid index (EAAI), degradation index (DI), relative
contributions of diatoms (Diatoms) and haptophytes (P. antarctica), biomolecular composition (CHO, PRT, and LIP), carbon to nitrogen ratio (C:N), phosphate (PO4),
nitrate + nitrite (NO2 + NO3), ammonium (NH4), silicate (SiO2), and chlorophyll a (Chl-a).

for glycine, arginine, and histidine. To determine whether
correlations were worthy of interpretation, we examined the
squared cosines of the variables and then excluded low values
of squared cosines between the variables and PCs (Figure 6;
i.e., glutamic acid, alanine, lysine, PO4, and NH4). A distinct
spatial separation between the northern and southern parts of
our study area was founded along the PC1 axis. In other words,
most of the samples collected from the southern part were on
the left side of the biplot (quadrants II and III) whereas most
of the northern part samples were placed on the lower right-
hand side (quadrant IV). Moreover, the observations in the PCA
space showed a similar pattern of clustering as the AHC analysis
(Figures 5, 6).

DISCUSSION

Source of the Bulk POM
The marine POM filtered on filter paper includes diverse organic
matter derived from phytoplankton, bacterial plankton, detritus,
and terrestrial organic matter (Harmelin-Vivien et al., 2008).
Both of C/N molar ratio and δ13C value in bulk POM have long
been used as indicators of the nature of the organic matter in
various marine ecosystems (Wada et al., 1975; Zweifel et al., 1993;
Montagnes et al., 1994; Lee and Whitledge, 2005). Generally,
phytoplankton have higher C/N ratios in a range of 6–10 than
bacteria (3–5), whereas terrestrial organic matters have 2–20
times higher than the C/N values of phytoplankton (Brzezinski,

1985; Montagnes et al., 1994; Tyson, 1995; Goñi et al., 2003;
Lamb et al., 2006). The range of C/N molar ratios of 7.7–11.4
(mean ± S.D = 9.6 ± 1.0) for POM in this study is within
the previously reported range of C/N ratio for phytoplankton
(Table 2). However, Fabiano et al. (1993) reported lower C/N
molar ratios within the euphotic zone than our observation,
ranging from 5.4 and 9.1 at the stations near Cape Adare and
5.4–6.6 at the stations located in Terra Nova Bay, Ross Sea.
Moreover, Coale et al. (2003) obtained slightly lower ratios
ranging from 6.5 to 7.9 in the southern Ross Sea. Generally,
lower C/N ratios within the euphotic layer were reported during
the bloom period in Antarctic water according to previous
studies (Bodungen et al., 1986; Nelson et al., 1989; Fabiano
et al., 1993). The relatively higher values of the C/N ratio in
this study could be due to our sampling period conducted at
the end of February 2018 in a post-bloom period which will be
discussed later.

In general, δ13C values derived from marine phytoplankton
range from −23 to −19h (Fry and Sherr, 1989; Harmelin-
Vivien et al., 2008). In comparison, δ13C values in phytoplankton
communities of Antarctic surface waters are lower than those
observed in lower-latitude oceans (Wada et al., 1987; Rau et al.,
1989, 1991; Dehairs et al., 1997). In this study, the δ13C values
in the surface bulk POM were in a range of −29.2 to −25.1h
(mean± SD =−26.9± 1.3h) (Table 2). Although our study has
δ13C values closer to terrestrial organic matters (−30 to −26h;
Fry and Sherr, 1989), previous studies have reported that input
of terrestrial organic matter from the ice-covered continent is

Frontiers in Microbiology | www.frontiersin.org 11 January 2021 | Volume 12 | Article 623600

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-623600 January 16, 2021 Time: 21:21 # 12

Jo et al. Biochemical Compositions of Antarctic Phytoplankton

negligible in the Ross Sea (Rogers and Dunbar, 1993; Villinski
et al., 2000). Based on the results of both C/N ration and δ13C
values of POM, the main source of POM in this study could be
phytoplankton-derived organic matter.

Biomolecular Composition of POM
In general, the temporal dynamics of the two major types of
phytoplankton blooms have been well documented in the Ross
Sea (Arrigo et al., 1999; Smith et al., 2000, 2011). The initial bloom
dominated by the haptophyte P. antarctica is commonly found
in the south-central Ross Sea during austral spring (Peloquin
and Smith, 2007). The following second bloom dominated by
diatoms commonly is observed in the western and eastern
portions of the Ross Sea in summer (DiTullio and Smith, 1996;
Peloquin and Smith, 2007). Considering temporal and spatial
phytoplankton bloom patterns in the northwestern Ross Sea, we
infer that our sampling period (end of February–the beginning of
March) was in the post-bloom. In the present study, haptophytes
dominated by solitary P. antarctica cells and nano-sized diatom
assemblages with low chl-a concentrations (<0.6 µg L−1) and
high POC/Chl-a values potentially indicate mostly inactive cells
(Mangoni et al., 2017) prevailed in the northern part of the
study area (Tables 2, 3). Smith et al. (2003) reported that the
abundance of solitary P. antarctica cells increases in the Ross
Sea during late summer under inorganic nutrient and/or iron
limitation. Furthermore, Mathot et al. (2000) and Shields and
Smith (2009) suggested that colonial P. antarctica cells can be
associated with their maximum biomass under nutrient-replete
conditions and exponential phase whereas solitary P. antarctica
cells numerically dominate when their growth rate declined and
the senescence phase began after bloom. In this study, the micro-
sized diatoms with their elevated chl-a concentrations (up to
1.5 µg L−1) and low POC/Chl-a values indicate relatively active
cells (Mangoni et al., 2017) predominated in the southern part
(Tables 2, 3) in comparison to the northern part. Therefore,
taking into account the bloom phase and biological features
(phytoplankton community, cell size, chl-a concentration, and
POC/Chl-a value), it seems reasonable to suggest that solitary
P. antarctica cells and nano-sized diatoms observed in the
northern section were in a senescent status, while micro-sized
diatoms dominated in the southern section were in a relatively
active condition.

There have been numerous studies published in the literature
that the synthesis of biomolecular classes could be influenced
by different growth phases of phytoplankton (Moal et al., 1987;
Fernández-Reiriz et al., 1989; de Madariaga, 1992; Ríos et al.,
1998; Ahn et al., 2019). Considerable changes in the biomolecular
composition of the phytoplankton occurred throughout different
growth phases (i.e., exponential, stationary, and senescent
phases) (Ahn et al., 2019 and the references therein). The
amounts of PRT as biomolecular products of photosynthesis
increased during the exponential growth phase, indicating a
higher PRT demand for exponential cell division and growth
(Mayzaud et al., 1990; Berdalet et al., 1994). When phytoplankton
become stationary and senescent conditions concurrent with the
nutrient deficiency thereafter, CHO and LIP levels increase for
energy reserves (Myklestad, 1974; Mague et al., 1980; Barlow,

1982; Tonon et al., 2002). Generally, phytoplankton growth
in the Ross Sea is limited by irradiance during austral spring
(Smith et al., 2000; Peloquin and Smith, 2007), but by nutrient
bioavailability (particularly iron) in austral summer (Sedwick and
Ditullio, 1997; Sedwick et al., 2000; Peloquin and Smith, 2007). In
this study, major inorganic nutrient concentrations (phosphate,
nitrate + nitrite, ammonium, and silicate) in seawater were not
depleted (Figure 3). Furthermore, Si∗ (defined as [Si]- [NO3

−]
in µM) for the identification of potential iron limitation had
positive values from all stations, suggesting that there was no
evidence for iron limitation during this study (Sarmiento et al.,
2004; Le Moigne et al., 2013). However, scarcity of iron is a
very common feature in the Ross Sea during the summer season
(Olson et al., 2000; Smith and Asper, 2001), and Si∗ could be
restricted as a community-wide iron limitation index because
Si∗ represents the silicic acid uptake and growth related to
only diatom communities under iron limitation (Hogle et al.,
2018; Louropoulou et al., 2019). On the other hand, the specific
carbon uptake rates of phytoplankton in parallel with our study
were highest at surface water from all stations, which suggests
potential light limited conditions in late austral summer period
(Lee et al., 2008). Hence, phytoplankton during this study could
have been a physiologically inactive condition under unfavorable
environmental conditions.

In our study, CHO accounted for the highest portion
(mean ± SD = 54.0 ± 10.2%) among different biomolecules
(CHO, PRT, and LIP) of POM (Table 4). However, the higher
contribution of PRT (up to 27.2%) and lower contribution
of CHO were observed in the southern section of our study
area compared to those in the northern section (Table 4).
Furthermore, we found significant differences in CHO and PRT
compositions between the northern and southern stations (t-
test, p < 0.05). These discrepancies could explain that CHO-
rich solitary P. antarctica cells and nano-sized diatoms were
in a senescent phase in the northern part whereas micro-sized
diatoms having relatively higher PRT had more active conditions
in the southern part. On the other hand, marked spatial
variations in biomolecular compositions among the stations were
probably due to taxonomic differences. The composition of
CHO-rich POM may be linked with structural and/or storage
CHO synthesis of P. antarctica (Lancelot and Mathot, 1985;
Alderkamp et al., 2007; Mangoni et al., 2017; Kim et al., 2018).
P. antarctica produces a mucous colony matrix which is mostly
composed of polysaccharides as a kind of structural CHO
(Alderkamp et al., 2007; Mangoni et al., 2017). Hong et al.
(1997) suggested that when P. antarctica colony matrix begins
to break up during the senescent phase, transparent exopolymer
particle (TEP) production by P. antarctica is closely related with
increased particulate CHO. Moreover, CHO accumulation has
been observed when both single-cell and colonial P. antarctica
reach the end of the bloom phase since they store the surplus
energy as storage CHO (Lancelot and Mathot, 1985; Alderkamp
et al., 2007 and the references therein). In contrast, Young
et al. (2015a) found that Antarctic diatoms adapted to cold
temperatures tend to increase PRT concentrations to compensate
for slow enzyme rates. In conclusion, spatial variability of the
biomolecular composition in the bulk POM during this study was
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not only influenced by phytoplankton growth phases but also by
those taxonomic compositions.

Influence of Origin and Degradation
Status on the Amino Acid Composition
of POM
The measured concentrations of the PAA during this study
(Table 5; 0.18–1.04 µM) varied significantly but were in
agreement well with the range of values previously reported
from polar regions (Hubberten et al., 1995; Dittmar et al., 2001;
Tsukasaki and Tanoue, 2010; Tremblay et al., 2015). Based on
the Antarctic data (Weddell Sea), Hubberten et al. (1995) found
relatively higher PAA concentrations (0.75 ± 0.60 µM) averaged
in the upper 100 m depth than those reported in the Arctic water
(mean± SD = 0.57± 0.61 µM). Tremblay et al. (2015) observed
higher concentrations of PAA at the most productive stations
(up to 0.82 µM) while lower concentrations of PAA (0.16–
0.22 µM) at the stations with low phytoplankton biomass in the
Southern Ocean. Our results are also consistent with that the
positive relationship between PAA and total chl-a concentrations
(r = 0.510, p< 0.05). Therefore, the source of PAA in this study is
probably mostly phytoplankton-produced PRT (Kalachova et al.,
2004 and the references therein).

It is well known that AAs in hydrolyzed POM accounted
for approximately 30% of POC and 50% of PON in various
oceans (Handa, 1970; Siezen and Mague, 1978; Liebezeit and
Bölter, 1986; Misic et al., 2017). All of the AA contributions to
POC (Table 5; 7.8–26.6% of total POC) in the present study
are lower than those in previous studies (Handa, 1970; Siezen
and Mague, 1978; Liebezeit and Bölter, 1986). In contrast, the
averaged proportions of AA to PON (mean± SD = 41.7± 19.7%
of total PON) are comparable to those in previous studies
(Handa, 1970; Siezen and Mague, 1978; Liebezeit and Bölter,
1986), although they varied greatly (21.3–81.8% of total PON)
(Table 5). According to Shields et al. (2019), the carbon
normalized yield of AAs (AA-POC%) had higher values in
less degraded organic matter and decreased with degradation.
In other words, values of AA-POC% were highest during the
mid-exponential bloom phase, while they decreased in the
stationary and degradation phases of phytoplankton growth
(Shields et al., 2019). Furthermore, AA-PON% could also be
indicated for diagenesis in phytoplankton (Duan and Bianchi,
2007). Therefore, the relatively low AA contributions to the total
POC and PON in this study imply that the majority of PAA might
have undergone degradation to some degree (Duan and Bianchi,
2007; Shields et al., 2019).

The major constituents of PAA during this cruise were
glycine, glutamic acid, and alanine, occupying 43.1% (±5.1%)
of total PAA in the bulk POM (Table 5). Generally, previous
studies reported that the predominant AAs of phytoplankton are
glutamic acid, aspartic acid, alanine, and leucine regardless of
marine or freshwater species although there are little differences
in the AA composition of phytoplankton depending on the
species (Hayashi et al., 1986 and the references therein). However,
Hecky et al. (1973) suggested that serine+ threonine and glycine
could be enriched in the cell wall PRT of diatoms. We found

that mol% serine + threonine only positively correlated with
diatom composition (r = 0.473, p< 0.05) while mol% glycine had
no correlation with diatoms. Although the correlation directly
with diatoms was poor as diatom frustules can be preferentially
preserved after cell death, glycine and serine were found to
be bounded on the diatom frustules and this may be a reason
why glycine was enriched in the POM (Ingalls et al., 2006).
On the other hand, Liebezeit and Bölter (1986) found that
glutamic acid, aspartic acid, glycine, and serine are the most
dominant compounds of phytoplankton-derived PAA whereas
glycine becomes dominant in the PAA of deeper waters with an
appreciable quantity of detrital materials. Thus, the composition
of PAA was caused by the combined effects of diatom-dominated
phytoplankton communities and phytodetritus in this study after
the bloom. Further evidence for supporting the degraded POM
in our study was relatively low DI values of PAA (Table 5). Over
half of calculated DI scores for our PAA samples showed negative
values indicating that PAA appeared to be highly degraded
phytodetritus (Dauwe et al., 1999; Wu et al., 2007; Shields et al.,
2019). In general, the DI scores can provide information on the
degree of degradation in bulk POM (Dauwe et al., 1999; Wu
et al., 2007; Shields et al., 2019). The more negative DI value
indicates the more degraded condition, while a positive DI value
is indicative of fresh phytoplankton (Dauwe et al., 1999; Wu et al.,
2007; Shields et al., 2019).

The Potential Impacts of the AA
Composition on Food Quality for
Zooplankton Nutrition
The nutritional quality of PRT can be estimated by the proportion
of total EAA and EAAI (Mente et al., 2002; Ju et al., 2008). As
shown in Table 5, total EAA contributed 42.8 ± 4.3% during
this study, which is within the range (41–55%) of compositional
data on the EAA of microalgae and cyanobacteria conducted
both in laboratory cultures and natural conditions (Kolmakova
and Kolmakov, 2019 and the references therein). The general
profile for individual EAA of phytoplankton composed high
contributions of leucine and arginine whereas methionine and
histidine were significantly lower than other EAA (Kolmakova
and Kolmakov, 2019 and the references therein). In this study,
however, lysine and histidine were limited in our POM samples
collected from some stations with concurrent lower values of
the EAAI (Table 5). EAAI scores can be evaluated for protein
quality by comparing the geometric mean value of EAA in
an FM relative to a reference protein derived from consumers
(Peñaflorida, 1989). Based on the classification of Oser (1959),
scores of the calculated EAAI over 0.9 are defined as good protein
material, EAAI of approximately 0.8 is indicated as a useful
protein, and EAAI below 0.7 can be classified as inadequate
PRT. Thus, efficient protein food can be considered by the
most similar AA profile between prey and their consumer and
EAAI scores approaching 1.0 (Ju et al., 2008). The mean EAAI
(0.68 ± 0.19) was classified as inadequate protein FMs during
this study although the scores of the total EAAI (0.34–0.95)
varied significantly (Table 5). Based on the results of EAA in
this study, we found that significant positive relationship between
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the proportion of EAA and AA EAAI (Figure 4). This result
may be surmised that a greater proportion of EAA in POM
was composed with EAA composition with balanced in an
optimal proportion.

Anderson et al. (2004) suggested that individual EAA-deficient
diets had a greater impact on the limitation of the growth of
higher trophic levels rather than bulk amounts of protein and
nitrogen. The previously published studies found that imbalances
in dietary EAA could cause a bad influence on the growth
of marine zooplankton (Kleppel et al., 1998; Guisande et al.,
2000). Furthermore, the total AA composition of the copepod
diets, as well as EAA composition, can be important for the
higher reproductive success of copepods (Guisande et al., 2002).
According to Guisande et al. (2000), AA from ingested food could
not be converted into consumer’s biomass for egg production
with an optimal proportion of AA if AA composition in prey is
highly dissimilar to that of female copepods. Thus, the higher
reproductive success of female copepods is observed when the
AA composition of the ingested food is similar to that of the
consumers (Guisande et al., 1999, 2000). In this study, we
compared the averaged each AA profile of two phytoplankton
communities that were divided into diatoms-dominant (Sts. 1,
11, 14, and 17) and relatively higher P. antarctica-abundant
communities (Sts. 2 and 5) with those of bulk zooplankton
communities (unpublished data) (Figure 7). The reason why we
separated into two groups is that variable grazing by herbivores
appears to discriminate based on the food quality, preference

of ingesting cells, and distributions of the phytoplankton
community (Haberman et al., 2003 and the references therein).
In addition, lysine was nearly absent throughout the euphotic
zone at P. antarctica-abundant stations 2 and 5 (Table 5).
Assuming that the same assimilation rates of total AA between
the two groups, we observed that the relationship for the diatoms-
dominant group was closer to the 1:1 line considered as the ideal
line in comparison to P. antarctica-abundant group with greater
deviations of glycine, lysine, valine, methionine, and histidine
from the line (Figure 7). Therefore, it seems reasonable to suggest
that diatoms-dominant diets were better protein sources because
they had an AA composition similar to their consumers and
higher EAAI value. Our findings are also consistent with the
conclusions of Boyd (1989) and Burford (1997).

The Application of Multivariate Statistical
Analysis for Evaluating Food Quality for
Consumers
In this work, the multivariate statistical analysis was conducted
for finding relationships between biochemical compositions
(biomolecular and AA compositions) and other chemical
and biological data. The PC1 of PCA results separated two
different groups of biochemical parameters and phytoplankton
communities. These two groups formed high proportions of
CHO and high C/N values with a haptophytes-abundant group
dominated by solitary P. antarctica cells while relatively higher

FIGURE 7 | Relationship between amino acid profiles of diatom-dominant and P. antartica-abundant communities and those in zooplankton communities as
potential consumers. Each abbreviation represents aspartic acid (ASP), glutamic acid (GLU), serine (SER), glycine (GLY), alanine (ALA), histidine (HIS), threonine
(THR), arginine (ARG), valine (VAL), methionine (MET), phenylalanine (PHE), isoleucine (ILE), leucine (LEU), and lysine (LYS).
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proportions of PRT and high EAAI scores with diatom-dominant
communities (Figure 6). In the PC2, EAA composition and
DI score were negatively related to glycine which is considered
as an indicator of organic matter degradation as discussed
above (Figure 6) (Liebezeit and Bölter, 1986; Petersson and
Floderus, 2001). Overall, our results revealed that the southern
region dominated majorly by micro-sized diatoms was positively
correlated with PRT, EAA, and EAAI indicating a good protein
quality, while the relatively solitary P. antarctica-abundant
northern region with higher CHO contribution was negatively
correlated with good protein quality factors.

CONCLUSION

Our study found remarkable differences in biochemical
compositions (biomolecular and AA compositions) of the
phytoplankton communities (i.e., CHO-rich vs. relatively higher
PRT and good vs. bad protein quality) depending upon the
growth phase and community structure of phytoplankton.
These changes in the biochemical compositions (biomolecular
and AA compositions) and protein quality of phytoplankton
as a valuable nutrition source could be important for the
growth, reproduction, and naupliar survival of herbivorous
zooplankton as well as their biochemical composition (Gulati
and Demott, 1997; Guisande et al., 2000; Vargas et al., 2006;
Yun et al., 2015; Jo et al., 2017). Furthermore, differences in
biochemical compositions of POM could also influence the
degree of subsequent bacterial degradation and recycling since
the lability of individual biochemical compounds varies widely
(Harvey et al., 1995; Ingalls et al., 2006; Sabadel et al., 2019;
Lehmann et al., 2020). The more refractory compounds could
be preserved highly selective with the loss of labile compounds
through the microbial process, thereby changing the biochemical
compositions of sinking particles and consequently in sediments
(Harvey et al., 1995; Alkhatib et al., 2012; Lehmann et al.,
2020). Recently, significant changes in physical conditions such
as increasing summer temperatures in the atmosphere and
surrounding waters were observed in the southwestern Ross
Sea continental shelf and lengthening of the free ice season
was found in Ross Sea polynya induced by climate change
(Stammerjohn et al., 2008; Comiso et al., 2011; Schine et al.,
2016; Kaufman et al., 2017). These climate-induced stressors can
lead to changes in the size structure and assemblage composition
of phytoplankton and physiological shifts in the phytoplankton
communities (Yun et al., 2019; Antoni et al., 2020; Hernando
et al., 2020). Moreover, herbivores encounter rapidly changing
food quality in company with changes in the diverse species,
quantity, and biochemical characteristics of their prey (Scott,

1980; Finkel et al., 2010). In addition, differential preservation
of biochemical compounds in accordance with reactive changes
of the altered biochemical composition of POM under ongoing
climate changes could have effects on remineralization rates and
sinking particles in the deep sea (Ingalls et al., 2006; Kharbush
et al., 2020; Lehmann et al., 2020). Therefore, additional research
with multidiscipline approaches is required to evaluate the
important food quality as a food source for higher trophic level
organisms and understand complicated biochemical parameters
associated with climate changes.
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