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Graphene-based nanomaterials (GBMs), such as graphene oxide (GO) and reduced 
graphene oxide (rGO), possess unique properties triggering high expectations for the 
development of new technological applications and are forecasted to be produced at 
industrial-scale. This raises the question of potential adverse outcomes on living organisms 
and especially toward microorganisms constituting the basis of the trophic chain in 
ecosystems. However, investigations on GBMs toxicity were performed on various 
microorganisms using single species that are helpful to determine toxicity mechanisms 
but fail to predict the consequences of the observed effects at a larger organization scale. 
Thus, this study focuses on the ecotoxicological assessment of GO and rGO toward a 
biofilm composed of the diatom Nitzschia palea associated to a bacterial consortium. 
After 48 and 144 h of exposure to these GBMs at 0, 0.1, 1, and 10 mg.L−1, their effects 
on the diatom physiology, the structure, and the metabolism of bacterial communities 
were measured through the use of flow cytometry, 16S amplicon sequencing, and Biolog 
ecoplates, respectively. The exposure to both of these GBMs stimulated the diatom 
growth. Besides, GO exerted strong bacterial growth inhibition as from 1 mg.L−1, influenced 
the taxonomic composition of diatom-associated bacterial consortium, and increased 
transiently the bacterial activity related to carbon cycling, with weak toxicity toward the 
diatom. On the contrary, rGO was shown to exert a weaker toxicity toward the bacterial 
consortium, whereas it influenced more strongly the diatom physiology. When compared 
to the results from the literature using single species tests, our study suggests that diatoms 
benefited from diatom-bacteria interactions and that the biofilm was able to maintain or 
recover its carbon-related metabolic activities when exposed to GBMs.
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INTRODUCTION

Two-dimensional nanomaterials derived from graphene possess unique properties such as 
high surface area, electrical and thermal conductivity, mechanical strength, and optical 
transmittance that are currently being explored for the development of new applications in 
multiple area including composite improvement, energy storage, electronics, medicine, or water 
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purification (Perreault et al., 2015; Dasari Shareena et al., 2018; 
Mohan et  al., 2018; Nag et  al., 2018). Among these graphene-
based nanomaterials (GBMs), graphene oxide (GO), and reduced 
graphene oxide (rGO) appear as very attractive due to their 
ease of synthesis, their high stability after dispersion in various 
solvents and the possibility for surface functionalization (Smith 
et  al., 2019). rGO, which carries a lower amount of oxygen-
containing functions compared to GO (Lavin-Lopez et  al., 
2017), constitutes a good compromise between GO and graphene, 
especially for electrical conductivity properties, leading to its 
use for the development of electrochemical sensors (Rowley-
Neale et  al., 2018; Tarcan et  al., 2020). As the production of 
high quality graphene suffers from high energy consumption 
and cost, GO and rGO constitute major products in the 
graphene market (Lin et  al., 2019). For these reasons, these 
GBMs are forecasted to be  mass-produced and are thus likely 
to be  released in the environment during their whole life 
cycle, from the production to the recycling (Mottier et  al., 
2017). However, the monitoring of environmental pollutions 
by GBMs is not possible yet due to technical limitations for 
their detection at current low concentrations in complex 
matrices (Goodwin et al., 2018). Nevertheless, despite the lack 
of modeling data about their expected environmental 
concentrations, it is estimated that with increasing needs, 
GBMs could reach concentrations between 1 and 1,000  μg/L 
in aqueous environment (Zhang et  al., 2017), with an 
accumulation trend in sediment (Sun et al., 2016; Avant et al., 
2019). This requires to carefully evaluate the potential impact 
of these materials on environmental health, in order to contribute 
to the development of this nanotechnology in a safety and 
sustainable way (Fadeel et  al., 2018).

Previous studies investigated the toxicity of GBMs toward 
various aquatic organisms including vertebrates (Clemente et al., 
2019; Evariste et  al., 2019; Paital et  al., 2019) or invertebrates 
(Castro et  al., 2018; Lv et  al., 2018), while the most abundant 
literature concerns the effects on bacteria and microalgae (Han 
et  al., 2019; Kumar et  al., 2019; Tashan et  al., 2019; Saxena 
et  al., 2020). Studying the effects of GBMs on these 
microorganisms is essential since they play crucial roles in 
aquatic ecosystems. Indeed, microalgae ensure primary 
production through photosynthesis while bacterial heterotrophic 
activities contribute to organic matter and nutrient cycling 
(Paerl and Pinckney, 1996; Scala and Bowler, 2001). Moreover, 
these microorganisms are at the basis of the trophic chain in 
the environment and act as a resource supplier for many 
primary consumers. Thus, impairment of these communities 
by GBMs exposure could indirectly affect organisms from 
higher trophic levels (Evariste et  al., 2020). The vast majority 
of the studies available on bacteria and algae were performed 
on isolated single strains (e.g., Escherichia coli, Staphylococcus 
aureus, and Chlorella sp.) and highlighted antibacterial activities, 
and algal growth inhibitory effects of GBMs that were both 
associated to oxidative stress and membrane injuries (Ouyang 
et  al., 2015; Ji et  al., 2016; Zhao et  al., 2017). Although these 
effects are well-documented in free-living cells, data concerning 
GBMs toxicity toward microorganisms living in complex biofilms 
remain scarce and inconsistent despite the fact that environmental 

biofilms are recognized to bind and accumulate nanoparticles 
(Ikuma et al., 2015). Biofilm lifestyle confers ecological advantages 
over free-living cells as it includes social cooperation as well 
as enhanced resource capture and resistance to antimicrobials 
for the organisms embedded in a matrix of extracellular 
polymeric substances (EPS; Flemming et  al., 2016).

The main literature available focus on the effects of metallic 
nanoparticles toward biofilms, while studies focusing on carbon-
based nanomaterials remains scarce (González et  al., 2015; 
Lawrence et  al., 2016; Hou et  al., 2017; Miao et  al., 2019). 
Specifically, the effects of GBMs toward biofilms were monitored 
on single bacterial strains in order for the development of 
antimicrobial treatments to avoid the formation of pathogenic 
biofilms for biomedical purposes (Han et  al., 2019; Liu et  al., 
2019; Cacaci et  al., 2020; Cao et  al., 2021). In this context, 
studies indicated that GO-coated surfaces could either promote 
or inhibit biofilm formation by E. coli and S. aureus (Ruiz 
et  al., 2011; Guo et  al., 2017; Yadav et  al., 2017). However, 
these studies were performed under conditions that are not 
fully relevant within environmental-based contexts that are not 
sufficiently investigated (Jastrzębska and Olszyna, 2015; 
Montagner et  al., 2016). Thus, understanding the toxicological 
effects of GBMs toward more complex communities is crucial 
to better characterize the ecotoxic potential of these nanomaterials 
and to further determine the possible consequences of their 
presence in freshwater environments on the ecosystem 
functioning. The aim of this study was to investigate the toxicity 
of a commercial GO and its reduced form toward a complex 
assembly composed by the diatom Nitzschia palea associated 
to a bacterial consortium. This biofilm was exposed under 
controlled conditions to GBMs at concentrations ranging from 
0.1 to 10 mg.L−1 to determine the effects on diatom physiology 
using flow cytometry, as well as on bacterial community structure 
and activity using high throughput 16S sequencing and 
community-level physiological profiles, respectively.

MATERIALS AND METHODS

Graphene-Based Nanomaterials
Graphene oxide was provided by Antolin Group and prepared 
by oxidizing Grupo Antolin Carbon Nanofibers (GANF®; Grupo 
Antolín, Burgos, Spain) using the Hummer’s method (Hummers 
and Offeman, 1958; Lobato et al., 2016). We thermally reduced 
it at 200°C in H2 atmosphere into rGO, as previously described 
(Evariste et  al., 2019). GBMs were stored as dry powder in 
the dark and dispersions were prepared extemporaneously in 
order to avoid any possible change of material characteristics. 
Full characterization of the tested materials was detailed in 
previous work (Evariste et  al., 2019) and characterization data 
are summarized in Table  1.

Complex Biofilm Model and Exposure 
Procedure
The experimental model for complex biofilms was composed 
of an association between an axenic strain of N. palea CPCC-160 
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provided by the Canadian Phycological Culture Center (University 
of Waterloo, Waterloo, ON, Canada) and a bacterial consortium 
isolated from water filters of the freshwater Museum-Aquarium 
of Nancy (France). After sampling, the consortium was suspended 
in 50% glycerol and stored at −80°C until use.

Before the beginning of the exposure to GBMs, 
microorganisms were sequentially introduced in culture Flasks 
(Falcon 355,001, 600  ml – 150  cm2) as follows. Nitzschia palea 
was cultured as previously described in a modified CHU no. 
10 basic medium, called SPE medium (SPE; 6.4  <  pH  <  6.6; 
Garacci et  al., 2017). Standard growth conditions consisted in 
an incubation at 22  ±  1°C on a rotary shaker (50  rpm) in a 
culture room. An illumination of 50  μmol  m−2  s−1 with a day/
night period of 14/10  h, respectively, was applied. Two days 
prior to exposure (T−48h), diatoms were transferred at a density 
of 5 × 104 cells/ml in a flask containing 50 ml of SPE medium. 
After 24  h of growth in standard conditions (T−24h), diatoms 
reached a concentration of 9  ×  104  cells/ml. Glycerol was 
removed from the bacterial consortium after centrifugation 
and the consortium was suspended in 100 ml of SPE medium. 
Thus, at T−24h, flasks containing diatoms were inoculated with 
the bacterial consortium to reach the concentration of 
3  ×  104  bacterial cells/ml, leading to the ratio of 3 diatoms 
per bacterial cells in each flask. After 24  h, flasks were 
contaminated with GBMs (T0). For this purpose, nanomaterials 
were dispersed in SPE medium through the use of an ultrasonic 
bath for 10  min and autoclaved. Dilutions of the GBMs stock 
dispersions were carried out under axenic conditions in order 
to avoid contamination. Intermediary dispersions were prepared 
at 0.2, 2 and 20 mg.L−1. A volume of 50 ml of GBMs-contaminated 
SPE media was added in the flasks to reach a final concentration 
of 0.1, 1, or 10 mg.L−1 of GBMs while uncontaminated medium 
was added in the control groups (T0). Exposures were performed 
over 144  h under standard conditions as previously indicated.

Biofilm was sampled after 48 and 144  h of exposure with 
the different concentrations of GBMs (n  =  3 per time and 
GBM concentration). For each sampling, the biofilm was gently 
scrapped and flask content was homogenized and divided into 
two fractions of 50  ml. The first fraction was used for diatom 

and bacteria counts as well as analysis of the diatom physiological 
parameters using flow cytometry. In addition, this fraction 
was also used to perform community level physiological profiles 
(CLPP) analysis. The second 50  ml fraction was filtrated at 
0.45  μm (Whatman® Nuclepore™) to collect the whole 
microorganism community and investigate the microbial 
community structure. Filters were stored individually in sterile 
tubes at −80°C prior to further processing.

Flow Cytometry Analysis
Flow cytometric (FCM) analysis of the diatom N. palea and 
bacterial counts were performed using a Beckman-Coulter 
Cytoflex flow cytometer equipped with a 488 nm laser and data 
were collected and analyzed using Cytexpert v. 2.2.0.97 software.

Microorganisms Counts and Growth Rate 
Calculation
For N. palea counts, unstained algae were gated based on 
their forward scatter parameters (FSC-A) and chlorophyll 
fluorescence (690/50 nm). Bacteria were accounted using SYTO9 
dye (Invitrogen). Samples were incubated with 5  μM of the 
probe for 15  min in the dark at room temperature. Bacteria 
were detected and enumerated based on the fluorescence emitted 
by SYTO9-positive events (525/40 nm) and side scatter parameters 
(SSC-H). Normalized growth rates of the diatoms and bacteria 
were calculated as follows:
 

Growth rate Cs Mic
Mic

 =
−






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Normalized growth rate Growth rate
MCtGr

x  
 

%( )=






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Cs corresponds to the organism concentration at sampling 
time, Mic is the mean initial concentration of organisms (at 
T−48h for diatoms and at T−24h for bacteria) and MCtGr is the 
mean growth rate in the control group at sampling time.

Diatom Physiological Parameters
The relative chlorophyll a content of N. palea was determined 
through the measurement of natural chlorophyll a fluorescence 
emitted at 690/50  nm. The mean fluorescence intensity (MFI 
in arbitrary unit) collected is expressed as a percentage of the 
negative control.

Diatom viability was evaluated using SYTOX® Green. After 
incubation with the probe for 10  min at a final concentration 
of 0.5  μM, cell suspensions were analyzed by flow cytometry 
to measure the fluorescence emitted at 525/40  nm. Diatoms 
with injured or permeable membrane are positive to the green 
fluorescence-emitting probe bound to DNA. Results are expressed 
as viability percentage (100% – percentage of SYTOX-positive cells).

Neutral lipid relative content of the diatoms was evaluated 
using BODIPY (4,4-difluoro-1,3,5,7,-tetramethyl-4-bora-3a,4a-
diaza-s-indacene; 505/515). Algae were incubated for 1.5  min 
with the lipophilic dye at a final concentration of 1  μg.ml−1 

TABLE 1 | Physico-chemical characteristics of graphene oxide (GO) and 
reduced graphene oxide (rGO) used in the study.

Graphene Oxide
Reduced Graphene 

Oxide

Carbon content (at. %) 69.0 ± 0.4 83.8 ± 0.5
Oxygen content (at. %) 31.0 ± 0.4 16.2 ± 0.3
Csp2 graphene (at. %) 35.5 64.5
C▬OH/C▬O▬C (at. %) 24.7 7.8
C═O (at. %) 2.5 5.8
O═C▬O (at. %) 5.3 1.3
Sat. (at. %) 1.4 4.5
Number of layers (HRTEM) 1–5 1–5
Lateral size (TEM; μm) 0.2–8 0.2–8
Specific surface area (BET; 
m2.g−1)

228 ± 7 16 ± 0.5

TEM, transmission electron microscope; HRTEM, high resolution TEM; BET, Brunauer-
Emett-Teller; at. %, atomic %.
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before FCM. The BODIPY fluorescence emitted by the stained 
diatoms was collected using a 530/30  nm band-pass filter. The 
MFI measured is presented as a percentage of the negative control.

The intracellular reactive oxygen species (ROS) produced by 
the diatoms was measured using 2′,7′-dicholorofluorescindiacetate 
(DCFH-DA), a marker of oxidative stress. Samples were stained 
for 30  min with the probe at a final concentration of 10  μM 
prior running flow cytometry measurements. Diatoms with elevated 
intracellular ROS are positively stained by the probe (Thamatrakoln 
et  al., 2012). The results are presented as a percentage of the 
diatom population emitting probe-related fluorescence.

Analysis of Community Level Physiological 
Profiles
BIOLOG® EcoPlates, consisting of 96-well plates containing a 
triplicate of 31 different carbon sources and a control with 
no carbon source, were used to analyze the CLPP of the 
microorganism communities. Samples were diluted 100 times 
with fresh SPE medium and 120  μl of the diluted suspension 
was transferred into each well of the plate. After inoculation, 
EcoPlates were incubated in aerobic conditions at 22  ±  1°C 
in darkness for 144  h. Optical density (OD) at 590  nm was 
measured immediately after microorganism plating (Tin) and 
was monitored daily over the 144  h with a CLARIOStar plate 
reader (BMG Labtech). Over these 144 h, OD increased linearly 
(r2  =  0.94) and did not reached a plateau phase. For each 
substrate, absorbance was corrected by subtracting the absorbance 
of the control well containing media only. Negative values of 
the corrected readings were set to zero. The average well color 
development (AWCD) of substrate utilization was calculated 
across all wells per plate as follows:
 

AWCD ODi= ∑( ) / ,31

where ODi  represent the corrected optical density of the 
ith well. AWCD was also calculated for each guild of carbon 
sources, grouped into (1) carbohydrates, (2) carboxylic acids, 
(3) amino acids, (4) amines and amides, and (5) polymers as 
defined by Weber and Legge (2009). To compensate the influence 
of the microorganism density on the AWCD measurement, 
corrected OD values were calculated per bacteria by dividing 
the OD value per the number of bacteria introduced in each 
well at Tin. The normalized carbon source utilization data were 
also subjected to principal components analysis (PCA). All 
the results reported refer to the 144  h time point.

Analysis of Bacterial Community Structure: 
DNA Extraction, PCR, Sequencing, and 
Data Processing
After cutting filters into pieces, total DNA was extracted using 
the QIAGEN DNeasy PowerSoil kit following manufacturer’s 
instructions. Extraction controls were performed using unused 
filters to ensure the absence of DNA contamination. The DNA 
extracts quantity and quality were analyzed using a 
NanoDrop  2000 UV spectrophotometer (Thermo Scientific). 
The V4-V5 region of 16S rRNA gene was targeted for Archaea 

and Bacteria using 515F (5'-GTGYAGCMGCCGCGGTA-3') 
and 928R (5'-CCCCGYCAATTCMTTTRAGT-3') primers set 
(Wang and Qian, 2009). PCR reactions were run in a final 
volume of 50  μl containing: 37.5  μl of PCR water, 5  μl of 
10X PCR buffer, 2  μl of DNA extract, 2  μl of both primer, 
1  μl of dNTP (2.5  mM) and 0.5  μl of Taq DNA polymerase 
(5  U/μl – Sigma Aldrich). The following PCR protocol was 
applied: 94°C for 120  s, 30  cycles of 94°C for 60  s, 65°C for 
40  s, 72°C 30  s, and 72°C for 10  min. Sequencing of the 
resulting amplicons was performed using Illumina MiSeq 
technology (2 × 250 pb) by the Get_PlaGe platform (Genotoul, 
Toulouse, France). Bioinformatic analysis was performed using 
Find Rapidly Operational Taxonomic Units Galaxy Solution 
(FROGS) pipeline on Galaxy (Escudié et  al., 2018). Briefly, 
sequences with mismatch in the primers were excluded and 
PCR primers were trimmed. Reads were clustered into 
operational taxonomic units (OTUs) using the Swarm clustering 
method (Mahé et  al., 2014). Chimera was removed and filters 
were applied to remove singletons and keep OTUs present 
in at least two samples. OTUs were assigned at different 
taxonomic levels (from Kingdom to species) using RDP classifier 
and NCBI Blast+ against Silva 138 database (pintail 80; Quast 
et  al., 2012). Amplicons affiliated to the diatom chloroplast 
and mitochondria were removed from the dataset prior to 
data analysis.

Statistical Analysis
As interactive effects were observed between the exposure duration 
and the contaminant concentrations using two-ways ANOVA, 
one-way ANOVA was performed at each sampling time to 
compare the effects induced by the different concentrations of 
contaminant. Thus, data related to microorganism growth rates, 
diatom physiological parameters, and community physiological 
profiles were analyzed using one-way ANOVA when assumptions 
of normality and homogeneity of variance were met. Otherwise, 
data were transformed to meet these assumptions and data were  
analyzed using Minitab 16 Statistical software. Concentrations 
leading to 50% of bacterial growth inhibition (IC50) were 
determined using non-linear Hill regression in Graphpad 
Prism software.

Sequencing data analyses for OTUs counts, alpha diversity 
indexes, and Weighted Unifrac Distances calculations as well 
as multidimensional scaling (MDS) plot were carried out 
using the R package “Phyloseq” (McMurdie and Holmes, 
2013). Differential abundance of bacterial genera between 
exposed conditions compared to the control group was examined 
using “Deseq2” R package (Love et  al., 2014). PERMANOVA 
was performed using Adonis function from the “vegan” R 
package (Oksanen et  al., 2015).

RESULTS

Effects on Microorganism Growth Rates
Exposure to the GBMs led to a transitory growth stimulation 
of the diatom. At T48h, the growth rate calculated in the control 
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group reached a value of 5.4 ± 0.95 (Supplementary Figure S1). 
Except after exposure to GO at 0.1 mg.L−1, a significant growth 
stimulation was observed in all GBMs-containing conditions 
(ANOVA p  <  0.001), reaching 268  ±  31% of the control group 
value after exposure to 10  mg.L−1 of rGO (Figure  1A). After 
144  h of exposure, none of the growth rates calculated in the 
exposure conditions were significantly different from the control 
group (Figure  1B). In addition, growth rates of the diatom 
calculated after 48  h of exposure to GBMs reached values 
similar to the control group at T144h (12.7 ± 2.6; t-test; p = 0.604; 
Supplementary Figure S1).

For the bacterial compartment, exposure to GO led to a 
dose dependant growth inhibition from 1  mg.L−1, while only 
a slight inhibition was noticed after exposure to rGO at 
10  mg.L−1 (Figure  1C). The calculated concentrations leading 
to a growth inhibition of 50% (IC50) were 2.18  mg.L−1 and 
13.25 mg.L−1 after 48 and 144 h of exposure to GO, respectively. 
Contrary to the recovery observed for diatoms at 144  h, 
bacterial growth rates were still significantly different from 
the control at 1 and 10  mg.L−1 of GO to at 10  mg.L−1 of 
rGO (Figure  1D).

Effects on N. palea Physiology
The relative chlorophyll content of the diatom remained 
unchanged after 48  h of exposure to the GBMs (Figure  2A) 

while a higher relative chlorophyll content could be  measured 
in the diatoms exposed to GO at 10  mg.L−1 during 144  h 
(Figure  2B). On the contrary, exposure to rGO led to a slight 
decrease of the chlorophyll content after 144  h of contact with 
rGO (Figure  2B).

Graphene oxide exposure did not lead to any significant 
change in the lipid content of the diatom while in rGO 
containing conditions, an accumulation of lipids was measured, 
with a more marked effect after 48  h of exposure 
(Figures  2C,D).

Measurement of oxidative stress in the diatom indicated a 
significant oxidative stress after 48  h of exposure to rGO at 
10 mg.L−1 (Figure 2E) while no DCF-positive cells were observed 
at T144h (data not shown). Monitoring of the diatom viability 
highlighted a significantly higher percentage of alive diatoms 
after 48  h of exposure to GO at 1 and 10  mg.L−1 (ANOVA, 
p  =  0.027, Figure  2F). At T144h, no differences were observed 
between the different GBMs-containing conditions and the 
control group in the diatom viability that reached that 99 ± 0.64% 
(data not shown).

Effects of GBMs Exposure on Community 
Level Physiological Profiles
The community level physiological profile of the biofilm 
was monitored using Biolog® Ecoplate after 48 and 144  h 

A B

C D

FIGURE 1 | Normalized growth rate of the diatom Nitzschia palea calculated after 48 h (A) and 144 h (B) of exposure to graphene-based nanomaterials (GBMs). 
Normalized growth rate of the bacterial consortium calculated after 48 h (C) and 144 h (D) of exposure to GBMs. ANOVA was followed by Tukey test. Letters 
indicate significant differences between the tested conditions.
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of exposure to the different concentrations of GBMs. As 
indicated by the normalized AWCD values as well as the 
PCA results, a dose-dependent increase of the overall utilization 
of carbon sources was noticed after 48  h of exposure to 
GO while the substrate utilization did not differ from the 
control group after exposure to rGO (Figure  3A; 
Supplementary Figures S2A,B). In the case of GO exposure, 
this increase of normalized AWCD values resulted from an 

increase of the utilization of all the different guilds of carbon 
sources (Supplementary Figure S3A). At T144h, the normalized 
AWCD values were significantly lower in the control group 
compared to T48h (t-test, p  =  0.016) and values were not 
significantly different from the control group after exposure 
to GBMs (Figure  3B). However, according to PCA  
results, carbon sources utilization appears to be  different 
from the control in every GO-containing condition 

A B

C D

E F

FIGURE 2 | Physiological parameters of the diatom N. palea following exposure to GBMs. Normalized chlorophyll content measured after 48 h (A) and 144 h of 
exposure (B), normalized lipid content measured after 48 h (C) and 144 h (D), oxidative stress (E) and viability (F) following 48 h of exposure to GBMs. Values are 
presented as mean ± SD. ANOVA (p < 0.05) was followed by Tukey test. Letters indicate significant differences between the tested conditions.
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(Supplementary Figure S2C). This is associated to an increased 
utilization of the polymers guild (Supplementary Figure S3B). 
Similarly, PCA results suggest changes in the CLPP after 
144 h of exposure to rGO at 10 mg.L−1 compared to unexposed 
biofilm (Supplementary Figure S2D). In this condition, 
carbon sources 4-hydroxy benzoic acid, itaconic acid, and 
D-xylose appeared to be utilized by the microbial consortium 
while it was not the case in other conditions. The highest 
average AWCD values measured in the control group at 
both 48 and 144  h was for the carbohydrate and amino 
acid guilds while after 144  h of exposure to GO at 1 and 
10 mg.L−1, the utilization of the substrates from the polymers 
guild is favored.

Effects on Bacterial Community Structure
After 48  h of exposure, the Shannon indexes calculated 
for the bacterial communities were similar in the GBMs 
containing conditions compared to the control group (ANOVA 
p = 0.305; Figure 4A) and the bacterial community structure 
was not significantly affected as revealed by MDS and 
PERMANOVA analysis using weighted UniFrac distances 
(PERMANOVA, p  =  0.221; Figure  4B). Between 48 and 
144  h, the trajectory of bacterial communities in control 
conditions resulted in a decrease of Shannon index 
(Figure  4B). However, after 144  h of exposure to GO at 
10  mg.L−1, the Shannon index was significantly higher than 
in the control (ANOVA, p  <  0.001; Figure  4C) when 
compared to the control group. At T144h, the exposure to 
GBMs significantly affected the bacterial community structure 
(PERMANOVA: p  =  0.001) and MDS analysis revealed that 
the effects were more marked after exposure to GO at 
10  mg.L−1 (Figure  4D).

At T48h in the control group, over 98% of the bacteria 
constituting the biofilm belonged to the phyla Proteobacteria 
and Bacteroidota, accounting for 60.7 ± 2.0% and 38 ± 1.5% 

of the total bacteria, respectively (Figure  5). At T144h, these 
two phyla represented over 99% of the whole community 
but the relative abundance of the phylum Proteobacteria 
decreased to 37.0  ±  4.9% while it increased to 62.5  ±  4.7% 
for the phylum Bacteroidota (Figure  5). At T48h, the relative 
abundances of these two phyla were not affected by the 
GBMs exposure (Bacteroidota: ANOVA, p  =  0.954; 
Proteobacteria: ANOVA, p = 0.944). After 144 h of exposure 
to the different concentrations of GBMs, only the exposure 
to GO at 10  mg.L−1 led to significant changes in the phyla 
distribution. In this condition, the relative abundance of 
the phylum Bacteroidota was significantly lower (51.8 ± 3.5%) 
compared to the one observed in the control group (ANOVA, 
p  =  0.001 followed by Tuckey test), while the relative 
abundance of the phylum Proteobacteria was significantly 
higher (47.8  ±  3.4%; ANOVA, p  =  0.002 followed by 
Tuckey test).

At T48h, OTUs assigned to the phylum Bacteroidota were 
mainly members of the orders Chitinophagales and 
Sphingobacteriales (Supplementary Figure S4A). Members from 
the order Burkholderiales and Rhodobacterales predominated 
among OTUs affiliated to the phylum Proteobacteria 
(Supplementary Figure S4B). While Burkholderiales and 
Rhodobacterales members still predominated over other 
Proteobacteria after 144 h of incubation, the relative abundance 
of OTUs affiliated to the Order Xanthomonadales increased 
over time in all conditions (Supplementary Figure S4B). 
Statistical analysis of the OTUs relative abundances in the 
biofilm indicated that four OTUs from the phylum Proteobacteria 
were differentially abundant upon exposure to GBMs, with a 
significance threshold fixed at p  =  0.01. All four OTUs were 
more abundant after exposure to 10  mg.L−1 of GO during 
144  h than in control condition. Two of these OTUs, with a 
log2-fold change of 6.79  ±  1.2 and 5.82  ±  1.1, were affiliated 
to the genus Acidovorax while the two others with a log2-fold 

A B

FIGURE 3 | Normalized average well color development (AWCD) values measured after 48 h (A) and 144 h (B) of exposure to GBMs. ANOVA followed by Tukey 
test. Letters indicate significant differences between the tested conditions.
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change of 1.81  ±  0.4 and 1.95  ±  0.2 belonged to the genus 
Silanimonas (Table 2). In the control group, the relative abundance 
of the two Acidovorax members (OTUs 29 and 18) decreased 
between T48h and T144h while it increased for the two Silanimonas 
sp. (OTUs 9 and 61; Figure  6). Upon exposure to GO at 
10 mg.L−1, these OTUs followed different trajectories compared 
to the control conditions. Thus, the increases of the former 
OTUs were enhanced while the decreases were less marked 
over time for the latter OTUs (Figure  6). For example, the 
OTU 9 increased from 0.18  ±  0.02% at T48h to 1.7  ±  0.2% at 

T144h in the control group whereas it reached 6.2  ±  1.2% 
following exposure to GO at 10  mg.L−1.

DISCUSSION

Due to the multiple crucial roles played by microbial communities 
in the environment, studying the effects of GBMs toward these 
communities is essential to better assess the ecosystemic 
consequences of a contamination of the environment by these 

A C

B D

FIGURE 4 | Effects of exposure to GBMs on bacterial communities from the biofilm. Shannon evenness index following 48 h (A) or 144 h of exposure to GBMs 
(C) are compared between the exposure conditions. ANOVA followed by Tukey test. Letters indicate significant differences between the tested conditions. 
Multidimensional scaling (MDS) plot of bacterial communities based on unweighted Unifrac distances after 48 h (B) and 144 h (D) of exposure to the different 
conditions.
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nanomaterials. For this purpose, many studies evaluated their 
ecotoxic potential through the use of single-species-based assays. 
These tests are relevant to determine the toxicological effects 

and pathways associated to GBMs exposure but they are not 
realistic and fail to inform the consequences that could occur 
when interacting species are exposed. As litterature about GBMs 

FIGURE 5 | Relative abundance of bacterial phyla from the biofilm after 48 h (T48h) and 144 h (T144h) of exposure to GO or rGO at concentrations ranging from 
0 to 10 mg.L−1.

TABLE 2 | Operational taxonomic units (OTUs) differentially abundant (p < 0.01) at 10 mg.L−1 of GO compared to the control group after 144 h of exposure.

OTU Log2-fold change Phylum Class Order Family Genus

18 6.79 Proteobacteria Gammaproteobacteria Burkholderiales Comamonadaceae Acidovorax
29 5.82 Proteobacteria Gammaproteobacteria Burkholderiales Comamonadaceae Acidovorax
61 1.81 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Silanimonas
9 1.95 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Silanimonas

Positive log2-fold change values indicate enriched OTUs in the exposure condition.

FIGURE 6 | Heatmap showing the relative abundances of the discriminant OTUs identified by Deseq analysis. The dendrogram is based on Bray-Curtis distances 
metric and hierarchical clustering of OTUs using the complete method.
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impact on complex communities is scarce for the aquatic 
environment, this study aims to fill the gap on the subject.

Consequences of the GBMs Exposure on 
the Algal Compartment
In our study, exposure to the different GBMs concentrations 
led to a growth stimulation of the diatom N. palea, reaching 
the maximum growth rate earlier compared to the control group, 
the growth rate of the latter being comparable to previous studies 
(Garacci et  al., 2017). These results are contradictory with the 
vast majority of single-species-based studies which indicated that 
exposure to engineered nanoparticles led to algal growth inhibition 
associated to oxidative stress induced by cellular damages (Chen 
et al., 2019; Saxena et al., 2020). For example, this was observed 
for green pelagic algae such as Raphidocelis subcapitata, Chlorella 
pyrenoidosa, or Scenedesmus obliquus after exposure to GO or 
rGO (Du et  al., 2016; Zhao et  al., 2017, 2019; Malina et  al., 
2019). It was also indicated that the exposure of the freshwater 
diatom N. palea to few layer graphene (FLG) increased the 
production of EPS substances which mitigated its toxicity (Garacci 
et  al., 2017, 2019). Despite the difference of sensitivity of the 
different algal species to GBMs, the concentrations leading to 
50% of algal growth inhibitions all ranged from 20 to over 
150  mg.L−1, which is approximately one order of magnitude 
higher than the concentrations tested in our study (Nogueira 
et  al., 2015; Du et  al., 2016; Zhao et  al., 2017). In our work, 
the similar trends observed on the increase of the diatom growth 
following exposure to GO or rGO suggest that this response 
may not be influenced by specific physico-chemical characteristics 
such as oxidation level. In addition, the weak oxidative stress 
measured in the diatom is consistent with the absence of growth 
impairment and highlights the protective effect associated to 
the biofilm lifestyle. Growth inhibitory effects were also 
hypothesized to be associated to indirect ecotoxic effects through 
shading as well as to nutrient depletion by GBMs (Garacci 
et  al., 2017; Zhao et  al., 2017). As the algal growth increased, 
these two hypotheses are unlikely under the exposure conditions 
used in this study or they could have been counterbalanced 
by favorable interactions with bacteria.

According to the FCM analyses performed, we  observed 
that exposure to GO led to an increase of chlorophyll content 
and to a decrease of lipid content in the diatom while opposite 
results were observed following rGO exposure. Although few 
studies monitored changes in algal physiological parameters, 
the results obtained in the latter case are in line with studies 
from the literature focusing on the effects associated to 
low-oxygen content GBMs exposure. Indeed, a significant 
reduction of chlorophyll level and an under-expression of genes 
associated to chlorophyll biosynthesis resulted from an exposure 
to rGO or few layer graphene in the algae Scenedesmus obliquus 
or N. palea, respectively (Du et  al., 2016; Garacci et  al., 2019). 
In addition, exposure to graphene nanosheets was shown  
to favor lipid accumulation in Chlorella pyrenoidosa 
(Khanra et  al., 2018). However, in the case of GO exposure, 
our results are contradictory with the single-species-based 
literature that usually reports a decrease of chlorophyll pigments 
(Tang et  al., 2015; Hu et  al., 2016; Hazeem et  al., 2017; 

Malina et  al., 2019). Nitzschia palea is a mixotrophic diatom 
able to grow using autotrophic metabolism (e.g., photosynthesis) 
using an inorganic carbon source (CO2) and/or through a 
heterotrophic metabolism using organic carbon sources (Villanova 
et al., 2017). It was reported that mixotrophic algae accumulated 
chlorophyll when cultured in autotrophy, while this content 
decreased and lipids were accumulated by the algae under 
heterotrophic conditions (Cheirsilp and Torpee, 2012; da Silva 
Ferreira and Sant’Anna, 2017). Thus, our observations suggest 
that in N. palea, when it is associated to a bacterial consortium, 
autotrophic and heterotrophic metabolism were differentially 
balanced under GO or rGO exposure. In any case, these changes 
of the energy acquisition pathways in the diatom did not alter 
growth performance following 144  h of exposure to GBMs.

Consequences of the GBMs Exposure on 
the Bacterial Compartment
The effects of GBMs toward bacteria have been mainly investigated 
through the exposure of single bacterial strains. The effects 
toward bacterial communities were studied in soil (Du et  al., 
2015; Xiong et  al., 2018; Forstner et  al., 2019) or in activated 
sludge (Ahmed and Rodrigues, 2013; Guo et  al., 2018; Yujie 
et  al., 2020) but data remain scarce in aquatic ecosystems 
(Evariste et  al., 2020). Given the important bacterial growth 
inhibition and the relatively weak consequences on microbial 
composition noticed after 48  h of exposure to GO, we  can 
suggest that the effects of this nanomaterial could be associated 
to a mechanism that impacts in a similar manner most bacterial 
species found in this biofilm. Previous studies suggested that 
the membrane composition, especially in gram-negative bacteria, 
as well as bacterial shape could constitute a criteria of resistance 
to GBMs (Kang et  al., 2009; Akhavan and Ghaderi, 2010; 
Pulingam et  al., 2019; Sengupta et  al., 2019). Despite that the 
four OTUs benefiting from exposure to high GO concentrations 
are Gram-negative bacteria, it is more likely that their metabolic 
capacities are involved in the greater tolerance to GO. Indeed, 
it was recently reported that bacteria from the genus Acidovorax 
sp. were tolerant to GO concentrations up to 95  mg.L−1 in 
granulated sludge treating wastewater (Kedves et al., 2020). This 
genus is also well-known to be  able to degrade organic matter 
in wastewater treatment plants (Schulze et  al., 1999) as well 
as aromatical compounds like phenanthrene (Singleton et  al., 
2018) or biphenyl (Ohtsubo et  al., 2012). Similarly, Silanimonas 
spp. are categoricized as benzene-degrading species (Mosmeri 
et  al., 2019). Thus, we  can hypothesize that these graphene-
tolerant bacteria benefited from the presence of GBMs in the 
media (i) by outcompeting other less tolerant species and (ii) 
because they could be able to degrade or modify the GO structure.

According to the literature, bactericidal activities of GO and 
rGO toward planktonic bacteria indicated generally stronger 
bactericidal effects of GO compared to rGO as observed in our 
study (Han et al., 2019). However, results concerning antibacterial 
effects toward bacterial biofilms are more contradictory. Indeed, 
strong bactericidal effects of GO were previously observed like 
in our study (Mejías Carpio et  al., 2012; Yadav et  al., 2017; 
Giulio et  al., 2018; Pandit et  al., 2018; Song et  al., 2018) while 
others indicated that GO enhanced biofilm formation and that 
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rGO exerted strong inhibitory effects (Ruiz et  al., 2011; Guo 
et  al., 2017). The interstudy discrepancies may be  associated to 
several causes influencing the biological responses. Among the 
previously cited studies, when available, the characterization data 
indicate a wide variability within the range of oxygen content 
of the tested GO (from 27.8 to over 36 atomic %), with different 
distribution of the types of oxygen-containing functions. In 
addition, depending on the method applied, the reduction of 
these materials lead to the production of a wide variety of rGO. 
This underline the need to provide detailed characterization data 
and the use of a classification framework to facilitate interstudy 
comparisons (Wick et  al., 2014). Among other possible causes, 
it was indicated that the effects of GBMs may vary depending 
on the medium composition and/or on the biofilm maturity 
(Hui et  al., 2014; Guo et  al., 2017; Fallatah et  al., 2019). The 
results obtained in our study are in line with the latter assumption 
as the IC50 values increased between T48h and T144h, indicating 
that the effects of GO on bacterial growth were mitigated over 
time with biofilm maturation. This suggests that bacterial growth 
was delayed by GO exposure and that bacterial communities 
were recovering. However, after 144  h of exposure, the presence 
of GBMs in the media resulted in bacterial communities with 
diverging community structure trajectories compared to the 
control group. Further research would be  needed to determine 
if bacterial communities are able to fully recover and to assess 
the time duration necessary for full recovery.

In addition to the effects on bacterial growth and diversity, 
exposure to GBMs was shown to influence microbial activities 
and could potentially lead to disturbances of carbon or nitrogen 
cycles (Zhou et  al., 2019; Yilihamu et  al., 2020). For example, 
previous studies indicated that exposure to GO or rGO could 
enhance the anaerobic ammonium oxidation activity that is 
involved in nitrogen removal in ecosystems (Wang et  al., 2013; 
Yin et al., 2015; Tomaszewski et al., 2019). Extracellular enymatic 
activities involved in carbon cycling were also shown to be lowered 
by short term exposure to GO (Chung et al., 2015). The results 
obtained in our study using Biolog Ecoplates suggested that 
the effects of GBMs exposure on the community level physiological 
profiles were transitory. Indeed, the activity levels of the microbial 
communities were similar to the control group in the different 
tested conditions after 144 h of exposure. However, this method 
does not allow to determine if the increased activity is associated 
to an increase of intra- or extracellular metabolism. The recovery 
of carbon-related metabolic activities despite the changes occuring 
in microbial community composition could be  explained by 
functional redundancy between the species composing the 
biofilm. Further experiment using other omics tools would 
be needed to examine the metabolic pathways that are influenced 
by GBMs exposure and to determine if the metabolism of 
compounds involved in algae-bacteria mutualistic interactions 
are modified (Cooper and Smith, 2015).

Consequences of the Diatom-Bacteria 
Interactions on the Response to GBMs 
Exposure
In the case of mixed-species biofilms containing phototropic 
microorganisms like diatoms as in our study case, the EPS 

produced can be  used by heterotrophic bacteria as carbon 
and energy sources (Mühlenbruch et  al., 2018). In return, 
bacteria may benefit diatoms by providing sources of nutrients 
such as vitamins or nitrogen but are also able to reduce algal 
oxidative stress through the production of enzymes such as 
catalase (Hünken et  al., 2008; Amin et  al., 2012; Natrah et  al., 
2014). Diatom-associated microbiota from environmental samples 
was described to mainly belong to the phylum Proteobacteria 
and Bacteroidota (ex phylum Bacteroidetes) that are involved 
in EPS degradations (Schäfer et  al., 2002; Amin et  al., 2012; 
Bohórquez et  al., 2017). Thus, the composition of the bacterial 
compartment in the biofilm of our study is consistent with 
the data from the literature. The heterotrophic bacteria 
remineralize the organic matter produced by the diatom, ensuring 
an efficient nutrient cycling (Christie-Oleza et  al., 2017). The 
functioning of biofilms relies on this mutual benefit between 
the algae and the bacterial consortium. In the present study, 
diatom and bacteria growth were not correlated across our 
experimental conditions, demonstrating an interplay between 
multiple/complex interactions and GBMs direct effects.

It has been previously shown that the exposure to carbon-
based nanomaterials such as carbon nanotubes and FLG increased 
the EPS excretion by N. palea (Verneuil et  al., 2015; Garacci 
et  al., 2017). This mechanism was suggested to constitute a 
strategy allowing toxicity mitigation for the algae. However, 
this could have several consequences for the bacterial 
compartment. Indeed, the embedment of GBMs into the biofilm 
EPS could increase contacts with bacteria and favor membrane 
impairments (Dizaj et al., 2015), which could explain the strong 
bacterial growth inhibition that we  observed in presence of 
GO. The differential effects observed between GO and rGO 
on bacterial growth might be  associated to the oxidation level 
of the materials. Indeed, the GBMs were shown to be  able 
to interact with natural organic matter including polysaccharydes 
(Chowdhury et  al., 2014). As these interactions depend on 
the nature of oxygen-containg functional groups (Saya et  al., 
2021), the interaction dynamics between EPS and GO or rGO 
could be  different, influencing the contact with bacterial cells 
embeded in EPS. In addition to the increase in EPS excretion, 
the composition and the quality of the EPS produced by the 
diatoms could be  modified by the presence of GBMs. This 
was previously observed after exposure of bacteria or algae 
to metallic nanoparticles (Hou et  al., 2015, 2017; You et  al., 
2015; Chen et  al., 2019). Moreover, it was suggested that the 
energy balance between growth and EPS production could 
be  modified following exposure to nanoparticles that is likely 
to occur in the case of the growth stimulation observed in 
our study (Taylor et  al., 2016). As it was indicated that the 
EPS composition could affect the bacterial communities in 
biofilms (Haynes et  al., 2007; Bohórquez et  al., 2017), we  can 
hypothesize that the changes observed in the bacterial 
communities could be  associated to indirect effects associated 
to modifications of the EPS quantity and quality.

As discussed in paragraph “Consequences of the GBMs Exposure 
on the Algal Compartment,” the growth stimulation observed 
in the diatom is more likely to be due to indirect effects. We can 
hypothesize that the overproduction of EPS associated to the 
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presence of GBMs might benefit in fine to the diatoms through 
the increase of metabolite quantities produced by bacterial activity. 
In addition, the results obtained from the community level 
physiological profiles indicated an activation of heterotrophic 
metabolism of the biofilm following short term exposure to GO. 
This metabolic increase allowed to compensate the loss of activity 
that can be  expected due to the bacterial growth inhibition 
measured in presence of GO. Indeed, considering the AWCD 
values for the whole biofilm (data not shown) instead of AWCD 
per bacterial cell as previously presented, the overall carbon-
related metabolic activities are maintained at the level of the 
control group until 1  mg.L−1 and a slight decrease is noticed at 
10 mg.L−1 of GO. This should allow to maintain a baseline carbon 
and nutrient cycling between the algae and the bacteria.

CONCLUSION

In this study, we  observed that the biological responses of 
mixed microbial communities facing exposure to GBMs were 
complex and contradictory to the results of single-species 
experiments found in the litterature. Here and according to 
the obtained data, we  suggest that the biofilm responses were 
mainly associated to indirect effects initiated by the 
overproduction of EPS by the diatom. This potentially increased 
the amount of carbon available for bacterial metabolism and 
further benefit to the diatom. However, the oxidized form of 
graphene was shown to strongly impact bacterial biomass. The 
activities of carbon sources utilization were maintained in most 
conditions except at 10  mg.L−1 of GO that is unlikely to occur 
under a scenario of chronic release into the environment. 
However, changes associated to the diatom physiology and 
changes in bacterial community composition might lead to 
modifications of the biofilm biochemical properties and 
potentially affect higher trophic level organisms feeding on it. 
Thus, future research on the environmental risk associated to 
GBMs should increase environmental relevance of the bioassays.
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