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Microbial drinking water quality in premise plumbing systems (PPSs) strongly affects
public health. Bacterial community structure is the essential aspect of microbial
water quality. Studies have elucidated the microbial community structure in cold
tap water, while the microbial community structures in hot tap and shower water
are poorly understood. We sampled cold tap, hot tap, and shower water from
a simulated PPS monthly for 16 consecutive months and assessed the bacterial
community structures in those samples via high-throughput sequencing of bacterial
16S rRNA genes. The total relative abundance of the top five most abundant phyla
(Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes) was
greater than 90% among the 24 identified phyla. The most abundant families were
Burkholderiaceae, Sphingomonadaceae, unclassified Alphaproteobacteria, unclassified
Corynebacteriales, and Mycobacteriaceae. A multiple linear regression suggests that
the bacterial community diversity increased with water temperature and the age of
the simulated PPS, decreased with total chlorine residual concentration, and had a
limited seasonal variation. The bacterial community in hot tap water had significantly
lower Shannon and Inverse Simpson diversity indices (p < 0.05) and thus a much
lower diversity than those in cold tap and shower water. The paradoxical results (i.e.,
diversity increased with water temperature, but hot tap water bacterial community was
less diverse) were presumably because (1) other environmental factors made hot tap
water bacterial community less diverse, (2) the diversity of bacterial communities in all
types of water samples increased with water temperature, and (3) the first draw samples
of hot tap water could have a comparable or even lower temperature than shower water
samples and the second draw samples of cold tap water. In both a three-dimensional
Non-metric multidimensional scaling ordination plot and a phylogenetic dendrogram,
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the samples of cold tap and shower water cluster and are separate from hot tap
water samples (p < 0.05). In summary, the bacterial community in hot tap water in
the simulated PPS had a distinct structure from and a much lower diversity than those
in cold tap and shower water.

Keywords: drinking water, premise plumbing, community structure, community composition, temporal variation,
16S rRNA gene, high-throughput sequencing, public health

INTRODUCTION

Municipal water utilities remove physiochemical contaminants
from source water and inactivate microbes before discharging
finished water to drinking water distribution systems (DWDSs)
(Zhang and Liu, 2019). However, certain microbes, including
opportunistic pathogens, survive disinfection and (re)grow in
engineered water systems [EWSs, including DWDSs and building
premise plumbing systems (PPSs)] (Hwang et al., 2012; Ashbolt,
2015a; El-Chakhtoura et al., 2018; Douterelo et al., 2019; Zhang
and Liu, 2019; Zhang et al., 2019; Zhang and Lu, 2021).
Microorganisms in EWSs corrode iron and steel pipes (Ren
et al., 2015; Xing et al., 2018; Zhu et al., 2019), deteriorate
water taste and color (Zhou et al., 2017; Boers et al., 2018; El-
Chakhtoura et al., 2018), and threaten public health [e.g., water-
related disease outbreaks due to the (re)growth of opportunistic
pathogens] (Ashbolt, 2015b; Liu et al., 2017; Wang et al., 2017; El-
Chakhtoura et al., 2018; Chen et al., 2019; Zhang and Lu, 2021).
Each year, more than one dozen drinking-water-related disease
outbreaks occur in the United States (US), and opportunistic
pathogen Legionella (mainly from EWSs) causes over 50% of
these outbreaks (Beer et al., 2015; Benedict et al., 2017). Other
opportunistic pathogens such as non-tuberculous mycobacteria
(NTM) and Pseudomonas aeruginosa also inhabit EWSs and
potentially infect humans (Ashbolt, 2015b; Falkinham et al., 2015;
Lu et al., 2016; Perrin et al., 2019).

Monitoring microbial community structures in EWSs is
essential to estimate the health risks of water-related microbes
(especially opportunistic pathogens), develop strategies to
mitigate those risks, and meet increasingly strict drinking water
regulations and policies (Hwang et al., 2012; Pinto et al., 2014;
Wang et al., 2017; El-Chakhtoura et al., 2018; Perrin et al.,
2019; Zhang and Liu, 2019; Zhang and Lu, 2021). Studies
have intensely examined microbial community structures in
cold tap/drinking water (as well as the corresponding biofilms)
from EWSs and linked the structures to various factors such
as seasonally changing environmental factors (e.g., ambient
temperature, precipitation, and nutrients level) (McCoy and
VanBriesen, 2012; Henne et al., 2013; Pinto et al., 2014; Ling
et al., 2016; Prest et al., 2016b; Zhang and Liu, 2019; Vavourakis
et al., 2020), treatment trains at water utilities (Pinto et al., 2012),
disinfectant residual (e.g., free and combined chlorine) levels
(Hwang et al., 2012; Waak et al., 2019; Zhang and Lu, 2021),
and pipe network flushing (Douterelo et al., 2014; El-Chakhtoura
et al., 2018). In addition to cold tap water, the end-consumers
frequently contact two essential points of human exposure: hot
tap water and shower water (a mixture of cold and hot tap
water). In the field of water engineering, “hot tap water” refers

to cold or normal municipal tap water that has been heated by
a device (such as a local boiler and a mounted instant heater)
either outside or within a PPS and reaches a temperature of
30◦C or higher after the heating. Pathogenetic microbes in hot
tap and shower water pose significant health risks (Henne et al.,
2013; Lu et al., 2017). For instance, Legionella, an opportunistic
pathogen causing legionellosis, is frequently present in hot tap
water (Arnow et al., 1985; Farhat et al., 2012; Lesnik et al.,
2016; Lu et al., 2017; Wolf-Baca and Siedlecka, 2019; Zhang
and Lu, 2021). Shower water or showerhead is a reservoir for
water-related Mycobacterium avium such as NTM, which infects
human lungs (Nishiuchi et al., 2007, 2017; Falkinham et al., 2008;
Feazel et al., 2009). However, research on microbial community
structures in hot tap and shower water is scarce (Henne et al.,
2013), and a comprehensive comparison of microbial community
structures among cold tap, hot tap, and shower water is missing.

We recently conducted a long-term sampling campaign and
assessed the population dynamics of representative opportunistic
pathogens in cold tap, hot tap, and shower water from a
home plumbing system (HPS) simulator (i.e., a simulated
PPS) in a basement bathroom of a research building via
quantitative polymerase chain reactions (qPCRs) (Lu et al.,
2017). We concluded that water temperature caused the
significant variations in the occurrence and abundance of those
opportunistic pathogens. However, since qPCRs quantify only
one group of microbes each time, we targeted only a few
important opportunistic pathogens such as Mycobacterium spp.,
Legionella spp., and P. aeruginosa. Therefore, the structure of the
whole bacterial community in the simulator was unknown.

We aimed to comprehensively understand the bacterial
community structures in cold tap, hot tap, and shower
water of the HPS simulator. We also aimed to reveal how
environmental factors, such as the age of the simulator and
disinfectant (i.e., free chlorine) residual concentration, affected
the structures. We hypothesized that the bacterial community
diversity was negatively correlated with disinfectant residual
concentration because the residual would effectively suppress
bacterial (re)growth (Zhang and Liu, 2019; Zhang and Lu, 2021).
We also hypothesized that the diversity was positively correlated
with the age of the simulator because the bacterial community
of pipe biofilms and loose deposits with a greater diversity and
density than that of the bulk water would detach from pipe
surface when the simulator aged or the biofilms/deposits matured
(Rittmann and McCarty, 2001; Henne et al., 2012; Liu et al.,
2014, 2018; Petrova and Sauer, 2016; Prest et al., 2016a; Potgieter
et al., 2018; Chan et al., 2019). We further hypothesized that
the bacterial community in hot tap water was less diverse than
those in cold tap and shower water because water in municipal
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EWSs typically has a relatively low temperature (i.e., < 25 or
30◦C) (Blokker and Pieterse-Quirijns, 2013; Eck et al., 2016;
Zlatanovic et al., 2017; Agudelo-Vera et al., 2020) and only a
small percentage of drinking water bacteria could adapt to the
high temperature (i.e., > 30◦C) of hot tap water. Therefore, we
also compared the bacterial communities in cold tap, hot tap,
and shower water to more comprehensively understand their
structures in the simulator. This work provides deep insights
into how environmental factors affect water bacterial community
structures in PPSs and the interrelationship among cold tap, hot
tap, and shower water bacterial communities.

MATERIALS AND METHODS

Study Location and Water Sampling
We collected cold tap, hot tap, and shower water samples
from the HPS simulator constructed for research purposes in
a basement bathroom of a research building in a major city in
the East North Central region of the Midwestern US (Cahalan
and Lytle, 2017; Lytle et al., 2018, 2021). Cold tap water of the
building PPS was directly pumped to the HPS simulator. The
building PPS was fed with the water from a typical municipal
water utility. The utility used river water as source water and
sequentially conducted coagulation, flocculation, sedimentation,
sand and gravel filtration, granular activated carbon filtration,
and chlorination before discharging the finished water to a typical
municipal DWDS (Gomez-Alvarez et al., 2015; Buse et al., 2019).
The typical source water, treatment train at the water utility, and
structure of the DWDS ensured that the water samples analyzed
in this study were representative municipal drinking water of the
Midwestern US.

The HPS simulator contained approximately 56 m Type M
copper pipes (inside diameter 1.45 cm), a flow meter totalizer, a
454-L GE R© electric water heater (Model GE40M06AAG, General
Electric Company, Boston, Massachusetts, United States), a
Glacier Bay showerhead (Model 875-2101, The Home Depot,
Inc., Atlanta, Georgia, United States), and four faucets. The flow
meter was at the start of the simulator and recorded the flow
rate of the whole simulator. The water heater at the start of the
hot water recirculation loop generated hot water (temperature
set at 49◦C). Faucet 1 was a cast brass utility faucet. Faucets
2 to 4 were three identical bathroom-type hot-and-cold water
faucets (i.e., mixing faucets; Model 8125F, American Standard,
Piscataway, New Jersey, United States) with a chrome exterior
and a cast brass and plastic interior. The lengths of the cold water
line from the flow meter to Faucet 1, Faucet 2, Faucet 3, Faucet
4, and the showerhead were 16.6, 14.8, 12.0, 9.1, and 15.5 m,
respectively. The lengths of the hot water line from the electric
water heater to Faucet 1, Faucet 2, Faucet 3, Faucet 4, and the
showerhead were 18.4, 16.1, 13.2, 10.2, and 16.4 m, respectively.
Other important HPS simulator components included brass ball
valves, brass check valves, a bathtub, and a toilet.

The HPS simulator was constructed on January 23, 2012,
and was operated only on weekdays. We operated the HPS
simulator under a “controlled-use” flushing schedule to simulate
the average daily water use for a typical household of four

residents (target total daily water use 708 L). We achieved this
target water use by manually flushing all four faucets three times
per weekday at 8:00 AM (cold tap water only), 12:00 PM (a 50:50
blend of cold and hot tap water), and 3:00 PM (cold tap water
only). The toilet and showerhead were flushed with cold tap water
and a 50:50 blend of cold and hot tap water, respectively, each
weekday at 8:00 AM, 12:00 PM, and 3:00 PM. Faucet 1, Faucet 2,
Faucet 3, Faucet 4, and the showerhead were flushed for 7, 7, 15,
1, and 15 min each time, respectively.

Our recent work detailed the water sampling (Lu et al.,
2017). Briefly, we sampled water monthly (except May 2013)
from March 2012 to July 2013 from Faucet 4 (for cold and
hot tap water) and the showerhead (for shower water) (16
sampling events, 32 one-liter samples for each water type, 96
samples in total) (Supplementary Table 1 in Supplementary
material). On each sampling day (around 7 AM on Wednesday
and occasionally Tuesday or Thursday), we collected the first
draws of cold and hot tap water immediately after turning the
taps on. We then collected the second draws of cold and hot
tap water after running the taps for 3 min. After collecting the
tap water samples, we flushed the showerhead for 3 min and
subsequently collected two consecutive shower water (a blend of
cold and hot tap water) samples (i.e., the first and second draws).
The volumes of stagnant cold and hot tap water for Faucet 4
were approximately 1.49 and 1.67 L, respectively. The volumes
of stagnant cold and hot tap water for the showerhead were
approximately 2.55 and 2.68 L, respectively. Running faucets/taps
and showerheads for minutes (or even seconds) before sampling
to release stagnant water and get representative water samples is a
widely accepted standard practice in water engineering (Zacheus
and Martikainen, 1994; Leoni et al., 2005; Bargellini et al., 2011;
Wang et al., 2012; Henne et al., 2013; Serrano-Suárez et al., 2013;
Bukh and Roslev, 2014; Donohue et al., 2014, 2019a,b; Wolf-
Baca and Siedlecka, 2019; Isaac and Sherchan, 2020). Because the
faucet (i.e., Faucet 4) and showerhead were flushed for a sufficient
amount of time prior to the sampling of shower water, the
first draw samples of shower water were already representative
samples. Therefore, unlike sampling tap water, we did not flush
the showerhead between sampling the two draws of shower water
but collected the two draws of shower water consecutively on
each sampling day.

After collecting each water sample (1 L) in a sterile flask,
we immediately measured water temperature and chlorine (free
and total) residual concentrations (Supplementary Table 1).
We determined free and total chlorine residual concentrations
with US Environmental Protection Agency (US EPA) approved
Methods 10231 and 10232, respectively, using a Free and Total
Chlorine TNTplus R© Vial Test kit (TNT867, limit of detection
0.05 mg Cl2·L−1; Hach Company, Loveland, Colorado, United
States). We recorded the absolute sampling time (representing
the age of the simulator) for each sampling day (e.g., the samples
of March 2012 and July 2013 were 0 and 484 d samples,
respectively). In this work, “age” and “aged” specifically apply
to the newly built simulator in the bathroom. We also collected
the daily average ambient temperature data of the city where the
research building is located in for each sampling day from the
National Weather Service (National Oceanic and Atmospheric
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Administration, US Department of Commerce; weather.gov)
(Supplementary Table 2).

Total Genomic DNA Extraction and
Quantification
We extracted total genomic DNA from water samples following
an established procedure (Lu et al., 2016, 2017). Briefly, we
filtered each entire water sample (1 L) with a 0.4 µm pore
size polycarbonate membrane to capture microbial cells. The
membrane was transferred to a Lysing Matrix A Tube (MP
Biomedicals, Santa Ana, California, United States) containing
garnet powder and a ceramic sphere. The tube was then stored
at−80◦C until DNA extraction.

To extract DNA from the stored cells, we added 400 µL
of 1× Tissue and Cell Lysis Solution (Epicenter Technologies
Corp., Madison, Wisconsin, United States) to each tube. We then
shook each tube with a Mini-Beadbeater-16 (BioSpec Products,
Inc., Bartlesville, Oklahoma, United States) to lyse the cells. We
subsequently centrifuged each tube and recovered total genomic
DNA from the supernatant using a MasterPure™ Complete
DNA and RNA Purification Kit (Epicenter Technologies Corp.,
Madison, Wisconsin, United States). A final 100 µL of DNA
solution was collected in a microcentrifuge tube for each
water sample. We determined the concentration and purity of
each DNA sample with a Nanodrop™ 1000 Spectrophotometer
(Thermo Scientific, Wilmington, Delaware, United States). The
DNA samples were stored at−80◦C until use.

High-Throughput Sequencing of
Bacterial 16S rRNA Genes
We amplified the V4 variable region of bacterial 16S rRNA genes
from the DNA samples by PCRs (one PCR with one primer set
for each DNA sample) using a TaKaRa Ex Taq R© DNA Polymerase
Kit (Takara Bio United States, Inc., Mountain View, California,
United States). The forward primer 515F (5′-GTG CCA GCM
GCC GCG GTAA-3′) was identical for all PCRs. However, each
PCR had a unique reverse primer consisting of 806R (5′-GGA
CTA CHV GGG TWT CTA AT-3′) and a sample-specific Golay
barcode (Caporaso et al., 2012; Walters et al., 2016). Each PCR
totaled 25 µL with 200 nM each (forward and reverse) primer
and 2 µL of DNA sample (equivalent to 20 mL of original water
sample). The PCR thermal cycling conditions were 5 min at 94◦C,
30 cycles of (45 s at 94◦C, 60 s at 50◦C, and 90 s at 72◦C), and
10 min at 72◦C (Qin et al., 2017). After checking the quality of the
PCR amplicons with agarose gel electrophoresis, we pooled and
purified the amplicons of different DNA samples. The purified
amplicons were paired-end sequenced (2 × 250 bp) on an
Illumina MiSeq platform (Illumina, Inc., San Diego, California,
United States) at the DNA Core Facility of Cincinnati Children’s
Hospital (Cincinnati, Ohio, United States).

Data Availability Statement
The raw sequencing data are available at the National Center
for Biotechnology Information’s Sequence Read Archive (SRA)
website (ncbi.nlm.nih.gov/sra) (BioProject ID: PRJNA598369;
Tax ID: 2651591; SRA IDs: SRR10810816 to SRR10810911;
Accession numbers: SAMN13704937 to SAMN13705032).

Sequencing Data Cleaning and Contig
Alignment
We used Mothur (version 1.43.0) (Schloss et al., 2009; López-
García et al., 2018; Schloss, 2020) to analyze the sequencing data
following a standard procedure (mothur.org/wiki/MiSeq_SOP;
accessed December 2019) (Kozich et al., 2013) and two extended
protocols (Batut et al., 2018; Hiltemann et al., 2018; Chappidi
et al., 2019). The raw paired-end reads were merged to 2,838,570
contigs. The contigs having more than two mismatches with
515F or 806R were removed. We trimmed the remaining contigs
to remove the sequences of the primers. We then removed
the contigs with any ambiguities or longer than 275 bp and
created a contig dataset containing 2,284,563 contigs (339,300
unique contigs).

We used a Mothur-compatible (i.e., customized) SILVA
database (full length version, release 132) (Quast et al., 2012;
Yilmaz et al., 2013; López-García et al., 2018) as the reference
database. The coordinates for 515F and 806R in the original
(i.e., un-customized) SILVA database are 13,862 and 23,444,
respectively (Ben Guerrero et al., 2016; Sapountzis et al., 2019).
To customize the database, we removed the sequences before
position 13,862, the sequences after position 23,444, the leading
dots, and the trailing dots from the original SILVA database. The
customized reference database was 9,582 columns wide.

We aligned the 2,284,563 contigs to the customized reference
database and found that more than 95% of the 2,284,563 contigs
started at position 8 and ended at position 9,581 or 9,582 of
the customized database. We then removed the contigs that
started after position 8, ended before position 9,581, or had a
stretch of more than eight repeated bases from the alignment
(i.e., the contig dataset aligned to the customized database).
The resultant alignment had 2,210,140 contigs (321,196 unique
contigs). We further removed any overhangs on either end
of the V4 region of bacterial 16S rRNA genes and columns
with only gap characters (“-” or “.”) from the alignment. The
removal of overhangs and gap characters reduced the size of the
alignment from 9,582 to 521 columns wide and created 17,964
duplicate contigs. Therefore, we merged the contigs with the
same sequences and created an alignment with 303,232 unique
contigs (2,210,140 contigs). We further merged the unique
contigs with one or two nucleotide differences (pre-clustering),
generating an alignment with 103,321 unique contigs (2,210,140
contigs). We also removed chimerical contigs using VSEARCH
(version 2.13.3, implemented in Mothur) (Rognes et al., 2016)
and obtained an alignment with 2,119,850 contigs (71,056 unique
contigs; 4.1% of the 2,210,140 contigs were chimerical). We
classified the unique contigs using a naïve Bayesian classifier
(Wang et al., 2007) and the original (i.e., un-customized) SILVA
database (cutoff 80%). Contigs belong to Eukaryota, chloroplasts,
mitochondria, and Arachaea as well as those could not be
classified to a domain were removed. The resultant alignment had
2,104,926 contigs (69,747 unique contigs).

Taxonomic Classification
We calculated the uncorrected pairwise distances between
aligned contigs with a one-gap calculator (Sogin et al., 2006;
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Schloss, 2010) and obtained 114,076,573 pairs of contigs
(each pair had a distance less than 0.03). We then identified
3,821 operational taxonomic units (OTUs) from the
aligned contigs using the OptiClust algorithm (cutoff 0.03)
(Westcott and Schloss, 2017). We also counted the contigs
in each OTU for each water sample (Supplementary
Table 3) and identified the taxonomy for each OTU
(Supplementary Table 4).

Bacterial Community Structure
Examination
We assessed the alpha diversity of the bacterial communities
in the water samples by generating rarefaction curves with
the Chao1 estimator (Chao, 1984; Colwell and Coddington,
1994; Schloss et al., 2009; Chao and Shen, 2010; Eren
et al., 2012) (Supplementary Table 5 and Supplementary
Figure 1). We also calculated the Shannon diversity index
(proportional to both community richness and evenness)
(Shannon, 1948; Chao and Shen, 2003; Spellerberg and
Fedor, 2003; Grice et al., 2009; Lu et al., 2012; Waak
et al., 2019) (Supplementary Figure 2) and the Inverse
Simpson diversity index (proportional to both community
richness and evenness) (Simpson, 1949; Li et al., 2012;
Blasiak et al., 2014) (Supplementary Figure 3) for the
bacterial community in each water sample. Richness and
evenness are the two key components for community diversity
(Zhang et al., 2012).

To analyze the beta diversity of the bacterial communities,
we first calculated the numbers of OTUs shared by two groups
of water samples with the Observed-richness calculator (Schloss
et al., 2009; Schloss, 2020). We then determined which shared
OTUs had significantly different abundance between the two
groups with the Metastats program (White et al., 2009). We also
calculated the Yue and Clayton theta similarity coefficients (to
indicate the dissimilarity between the structures of communities)
(Yue and Clayton, 2005) and the classical Jaccard similarity
coefficients (to indicate the dissimilarity between the membership
of communities) (Jaccard, 1908, 1912). The Jaccard index was
chosen because it is the most widely used one among all similarity
indices (Yue and Clayton, 2005). The Yue and Clayton distance
matrix was chosen because of its frequent use in community
similarity analysis and capability to distinguish between a
population and a sample (Koyano et al., 2014; Ly et al., 2018;
Paredes-Montero et al., 2020; Tal et al., 2020; Trudeau et al.,
2020). Those two distance matrices were analyzed with a three-
dimensional Principal coordinates analysis (3D PCoA) and a 3D
Non-metric multidimensional scaling (3D NMDS). The PCoA
and NMDS better explain the Yue and Clayton theta distance
matrix than explain the Jaccard distance matrix (Supplementary
Table 6). Therefore, only the Yue and Clayton theta distance
matrix was analyzed hereinafter. Next, to determine whether
the bacterial community diversity between two or among three
groups of water samples was homogeneous (i.e., whether the
variations of different groups were distinct), we conducted a
Homogeneity of molecular variance test (HOMOVA test; a
non-parametric analog of the Bartlett’s test) (Bartlett, 1937;

Stewart and Excoffier, 1996; Schloss, 2008). Using an Analysis
of molecular variance test (AMOVA test; a non-parametric
analog of Analysis of variance) (Excoffier et al., 1992; Martin,
2002; Schloss, 2008), we further tested whether the points
representing samples in different groups of water samples in
the Yue and Clayton theta distance matrix have significantly
different centroids.

We ranked the 3,821 OTUs according to their significance
in shifting the water samples along the three axes of the 3D
NMDS ordination by calculating the Spearman’s rank correlation
coefficients, which indicate the correlations between the relative
abundance of OTUs and the axes (Zar, 1972; Gauthier, 2001;
Hauke and Kossowski, 2011; Mukaka, 2012; Tkachuk et al., 2014).
We also used the Spearman’s rank correlation coefficients to
determine whether water temperature, absolute sampling time
(i.e., the age of the HPS simulator), total chlorine residual
concentration, and ambient temperature significantly moved the
water samples in the 3D NMDS ordination. In addition, using
the Dirchlet-multinomial mixture (DMM) model (Holmes et al.,
2012) and the Square root of the Jensen-Shannon divergence
calculator (Endres and Schindelin, 2003; Osterreicher and Vajda,
2003; Fuglede and Topsoe, 2004), we tested whether the bacterial
communities in the water samples can be partitioned to separate
metacommunities or enterotypes.

We converted the phylip-formated Yue and Clayton
theta distance matrix to a Newick-formatted dendrogram
using the unweighted pair-group method with an arithmetic
mean algorithm (Sokal and Michener, 1958; Huelsenbeck
and Kirkpatrick, 1996). The dendrogram describes the
dissimilarity (i.e., one minus the similarity) among the bacterial
communities in cold tap, hot tap, and shower water. The
dendrogram was visualized with a FigTree software (version
1.4.4) (Rambaut, 2018). We tested whether the clustering
of different groups of water samples in the dendrogram is
statistically significant using three assays: (1) the parsimony
approach (the branch length of the dendrogram ignored)
(Slatkin and Maddison, 1989, 1990; Maddison and Slatkin,
1991; Schloss and Handelsman, 2006), (2) the unweighted
UniFrac algorithm (the branch length incorporated; the
weightings uncorrected), and (3) the weighted UniFrac
algorithm (the branch length incorporated; the weightings
corrected) (Lozupone and Knight, 2005; Lozupone et al., 2007;
Schloss, 2008).

Statistical Analysis, Linear Regression,
and Figure Plotting
We performed statistical analysis with Mothur (version 1.43.0)
(Schloss et al., 2009; Schloss, 2020) or an SPSS R© Statistics software
(version 26.0, International Business Machines Corporation,
Armonk, New York, United States) (Landau and Everitt,
2003; Elliott and Woodward, 2007; Gaur and Gaur, 2009).
Means ± standard deviations are reported. The significance
level is 0.05. We conducted linear regression using the SPSS R©

Statistics or Microsoft Office 365 ProPlus Excel (version 1902,
Microsoft Corporation, Redmond, Washington, United States).
Figures were plotted with Excel unless specified otherwise.
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RESULTS AND DISCUSSION

Correlations Among Water Temperature,
Ambient Temperature, and Chlorine
Residual Concentration
The ambient temperature and the temperature for cold tap, hot
tap, and shower water were normally distributed (the Shapiro-
Wilk test with SPSS R©, p > 0.05) (Supplementary Table 7). The
temperature of the first draw of cold tap water had a negative
linear correlation with ambient temperature (R2 0.253, p 0.047)
(Supplementary Figure 4). However, this correlation has only
a marginal p-value close to 0.05 (i.e., the selected significance
level) and a relatively small R-squared value, indicating that the
ambient temperature had a limited effect on the temperature of
the first draw of cold tap water. Similarly, the temperature of
the second draw of cold tap water lacked a linear correlation
with ambient temperature (R2 0.060, p 0.362) (Supplementary
Figure 4). Therefore, the temperature of cold tap water (both
first and second draws) was insensitive to the changes in ambient
temperature. In addition, the temperature of cold tap water
had limited seasonal variations (Supplementary Table 1). In
summary, the temperature of cold tap water (both first and
second draws) did not vary significantly over the 16-month
sampling campaign (i.e., relatively stable over time).

The mean temperatures for the first draws of cold
(20.9 ± 1.1◦C) and hot (30.4 ± 5.3◦C) tap water were
much lower than those of the second draws (30.1 ± 3.3◦C
and 46.9 ± 1.2◦C for cold and hot tap water, respectively)
(Supplementary Table 1). The cold tap water in the PPS of the
research building is warmer than that in the HPS simulator.
The first draw of cold tap water was stagnant water sitting in
the cold water line in the simulator overnight (the last flushing
before the sampling occurred at 3:00 PM the day before), and
the second draw of cold tap water was representative water
from the cold water line of the building plumbing. Similarly,
the first draw of hot tap water was stagnant water, while the
second draw of hot tap water was representative water from
the electric water heater because its temperature was close to
the set temperature of the heater (49◦C). The temperatures
for cold and hot tap water significantly predict shower water
temperature (multiple linear regression with SPSS R©, R2 0.513,
p < 0.001) because shower water was a mixture of cold and
hot tap water. The concentrations of free and total chlorine
residuals had a strong positive linear correlation (R2 0.986,
p < 0.001) (Supplementary Figure 5). Therefore, we used total
chlorine residual to represent disinfectant residuals hereinafter.
Total chlorine residual concentration (0.11 ± 0.12 mg Cl2·L−1,
n = 96) lacked a significant linear correlation with water
temperature (19.0 to 49.0◦C, 34.2 ± 8.8◦C, n = 96) (p 0.598)
(Supplementary Figure 6).

The Bacterial Community Compositions
of Cold Tap, Hot Tap, and Shower Water
Were Distinct
After cleaning the sequencing data, we obtained 69,747
unique bacterial 16S rRNA gene sequences (i.e., the contigs)

representing 2,104,926 contigs from the 96 water samples. The
number of contigs per water sample varied from 12,291 to
34,753 (21,926 ± 4,674 contigs per sample) (Supplementary
Table 3). We identified 3,821 OTUs from those 2,104,926
contigs (Supplementary Table 4). We further classified 24 phyla
(Supplementary Table 8) and 248 families (Supplementary
Table 9) from those 3,821 OTUs.

The bacterial communities of the first and second draws of any
water type (i.e., cold tap, hot tap, and shower water) shared 542 or
less OTUs (Figure 1). For any water type, most (57% or more) of
the OTUs for any draw were unique to that draw, suggesting that
the two draws had different bacterial community compositions.
Only 6% of the OTUs shared by the two draws of shower water
had significantly different abundance between the two draws,
while the figures for cold (19%) and hot (13%) tap water were
much greater. The small percent (6%) for shower water was due
to the consecutive sampling strategy. The relatively large precents
for cold and hot tap water (19% and 13%, respectively) were
because that the first draws were stagnant water and the second
draws were representative water.

The bacterial communities of cold tap, hot tap, and shower
water had 3,821 OTUs in total but shared only 472 OTUs (12.4%
or 472/3,821) (Figure 1). We identified 15 phyla from those
472 shared OTUs. Proteobacteria (relative abundance 65.9% or
311/472), Actinobacteria (relative abundance 13.1% or 62/472),
and Bacteroidetes (relative abundance 5.5% or 26/472) were the
dominant phyla (Supplementary Table 10). Any two groups
of samples (i.e., cold and hot tap water, cold tap and shower
water, and hot tap and shower water) shared 812 or less OTUs
(Figure 1). Thus, most (56% or more) of the OTUs for each
group of samples (i.e., cold tap, hot tap, and shower water) were
unique to that group. Therefore, those three groups of water
samples from the same HPS simulator had different bacterial
community compositions.

This study found that the first and second draws for either cold
or hot tap water sampled within a short time from the same faucet
had distinct bacterial community compositions (Figure 1). This
distinction suggests that the bacterial community composition
for stagnant tap water changed significantly overnight (the
duration between sampling and the last flushing the day
before was approximately 16 h). In addition, any two types
of water (i.e., cold tap, hot tap, and shower water) from
nearby plumbing endpoints had distinct bacterial community
compositions, indicating water temperature and other factors
dramatically altered the compositions. The rarefaction curves
for some water samples do not level off (data not shown),
suggesting that a deeper sequencing would have identified
more OTUs from those samples (Liao et al., 2013). However,
the rarefaction curves for the first and second draws of any
water type (i.e., rarefaction curves for “pooled” water samples)
do generally level off (Supplementary Figure 1), indicating
that the dominant species or OTUs for the first and second
draws had already been sampled at the current sequencing
depth. Therefore, the distinction in bacterial community
compositions would not significantly change with a greater
sequencing depth.

Fifteen percent to 27% of the OTUs shared by any two groups
of water samples (i.e., cold tap, hot tap, and shower water)
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FIGURE 1 | Numbers of OTUs identified from different groups of water samples. C: Cold tap water. H: Hot tap water. S: Shower water. For each of the three
horizontal bars of C, H, and S, the left, middle, and right segments represent the numbers of OTUs unique to the first draw, shared by the two draws, and unique to
the second draw, respectively. For each of the three bars of C and H, C and S, and H and S, the left, middle, and right segments represent the numbers of OTUs
unique to cold (for the bars of C and H and C and S) or hot (for the bar of H and S) tap water, shared by the two groups of water samples, and unique to hot tap
(for the bar of C and H) or shower (for the bars of C and S and H and S) water, respectively. For the bar of C, H, and S, the first, second, third, fourth, fifth, sixth,
and seventh (left to right) segments represent the numbers of OTUs unique to cold tap water, unique to hot tap water, unique to shower water, shared by cold and
hot tap water (excluding shower water), shared by cold tap and shower water (excluding hot tap water), shared by hot tap and shower water (excluding cold water),
and shared by cold tap, hot tap, and shower water, respectively. Numbers within bar segments: Numbers of OTUs. Numbers marked with leftward and rightward
arrows immediately next to the bars (on the right): The IDs of the top five most important OTUs (descending order of abundance, left to right) that had significantly
greater (p < 0.05) abundance in the groups represented by the farleft and farright segments, respectively. Percents next to the rightward arrows (on the right):
Percents of OTUs (among the shared ones) that had significantly different abundance between the two groups (p < 0.05).

had significantly different abundance (Figure 1). Therefore,
most (> 70%) of the OTUs shared by any two groups had
comparable abundance. The underlying reason could be that all
water samples were originated from the same cold tap water
of the nearby building plumbing. In addition, the percent of
OTUs with significantly different abundance between cold tap
and shower water (15% of the shared OTUs) was obviously
lower than those between cold and hot tap water (23% of the
shared OTUs) and between hot tap and shower water (27% of
the shared OTUs). As a result, the bacterial community structure
of hot tap water could be different from those of cold tap
and shower water.

Proteobacteria, Actinobacteria, Bacteroidetes, Cyanobacteria,
and Firmicutes (descending order of the number of OTUs
in a phylum) were the top five most abundant phyla
identified from the 3,821 OTUs (Supplementary Table 8).
Previous studies also classified Proteobacteria, Actinobacteria,
Cyanobacteria, and Bacteroidetes to be the most abundant
phyla in drinking water (Santo Domingo et al., 2003; Williams
et al., 2004; Revetta et al., 2010, 2011; Zhang and He,
2013; Wang et al., 2018). For any water type, the first
and second draws had similar compositions at the phylum
level (Figure 2). In addition, Proteobacteria, Actinobacteria,
Bacteroidetes, and Gemmatimonadetes (dominant phyla) had
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FIGURE 2 | The relative abundance of dominant bacterial phyla in the first and second draws of cold tap, hot tap, and shower water (six groups of water samples).
CF: Cold tap water-First draw. CS: Cold tap water-Second draw. HF: Hot tap water-First draw. HS: Hot tap water-Second draw. SF: Shower water-First draw. SS:
Shower water-Second draw. We assigned a phylum to each contig for each water sample with Mothur and then calculated the relative abundance of each phlyum
for each group of samples. We displayed a phylum only if its relative abundance is greater than 0.50% in at least one group.

similar relative abundance in cold tap, hot tap, and shower
water (Supplementary Figure 7A). Furthermore, the relative
abundance of dominant phyla in the first and second draws
for any water type changed following similar trends over the
16-month sampling period (Supplementary Figures 7B to 7G).
Likewise, the changes in the relative abundance of dominant
phyla for cold tap, hot tap, and shower water over the 16-
month sampling period followed similar trends (Supplementary
Figures 7B to 7G). Therefore, cold tap, hot tap, and shower
water had comparable bacterial community compositions at
the phylum level.

The relative abundance of Actinobacteria (class) in the
first draw of cold tap water decreased over the 16-month
sampling period (Supplementary Figure 8A). However, the
relative abundance of Actinobacteria in the second draw of
cold tap water decreased but subsequently increased over time
(Supplementary Figure 8B). Actinobacteria in the first draw
of hot tap water reached its maximum relative abundance in
August 2012 (Supplementary Figure 8C), but its maximum
relative abundance in the second draw of hot tap water occurred
in April 2012 (Supplementary Figure 8D). The first and
second draws for either cold or hot tap water were stagnant
and representative water, respectively. Therefore, the bacterial
community compositions at the class level for stagnant and
representative water were distinct. For shower water, since the
two draws on each sampling day were consecutive samples, the
relative abundance of dominant classes for those two draws

changed over time following similar trends (Supplementary
Figures 8E and 8F). Furthermore, the relative abundance for
dominant classes in cold tap, hot tap, and shower water changed
over the 16-month sampling period following distinct trends
(Supplementary Figure 8).

The top five most abundant families identified from
the 3,821 OTUs were Burkholderiaceae, Sphingomonadaceae,
unclassified Alphaproteobacteria, unclassified Corynebacteriales,
and Mycobacteriaceae (descending order of number of OTUs in
a family) (Supplementary Table 9). Mycobacteriaceae contains a
single genus Mycobacterium (Lory, 2014) which is an important
drinking water opportunistic pathogen (Good, 1985; Marciano-
Cabral et al., 2010; Lu et al., 2017; Wang et al., 2019;
Zhang and Lu, 2021). For both cold and hot tap water,
the relative abundance of Burkholderiaceae (one dominant
family in drinking water and PPSs) (Zeng et al., 2013; Buse
et al., 2014; Ferro et al., 2019; Vavourakis et al., 2020) and
Xanthobacteraceae (associated with nitrogen fixation) (Oren,
2014) obviously dropped in the second draws (compared with
the first draws) (Figure 3). By contrast, the relative abundance of
Azospirillaceae (associated with nitrogen fixation) (Sridevi et al.,
2012), Obscuribacterales_fa, Moraxellaceae (contains potentially
opportunistic pathogens) (Pettersson et al., 1998; Inkinen et al.,
2018), and Hyphomonadaceae (contains “strict aerobic and
stalked and non-stalked species”) (Abraham and Rohde, 2014)
significantly increased in the second draws for both cold and hot
tap water. The relative abundance of Mycobacteriaceae dropped
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FIGURE 3 | The relative abundance of dominant bacterial families in the first and second draws of cold tap, hot tap, and shower water (six groups of water samples).
CF: Cold tap water-First draw. CS: Cold tap water-Second draw. HF: Hot tap water-First draw. HS: Hot tap water-Second draw. SF: Shower water-First draw. SS:
Shower water-Second draw. We assigned a family to each contig for each water sample with Mothur and then calculated the relative abundance of each family for
each group of samples. We displayed a family only if its relative abundance is greater than 5.00% in at least one group.

in the second draw of cold tap water but increased in the second
draw of hot tap water. Sphingomonadaceae (strictly aerobic
chemoheterotrophs; a reservoir of antimicrobial resistance in
drinking water) (Vaz-Moreira et al., 2011) had a significantly
lower abundance in the second draw than in the first draw of cold
tap water but a comparable abundance for the two draws of hot
tap water. The relative abundance of Chitinophagaceae (aerobic
or facultative anaerobic) (Cao et al., 2017) slightly increased in
the second draws for both cold and hot tap water. For shower
water, since the two draws on each sampling day were consecutive
samples, they had comparable bacterial community compositions
at the family level (Figure 3).

The relative abundance of Burkholderiaceae and
Xanthobacteraceae (families) decreased from hot tap water, to
cold tap water, and to shower water (Supplementary Figure 9).
The relative abundance of Chitinophagaceae (family) decreased
from hot tap water, to shower water, and to cold tap water.
By contrast, the relative abundance of Obscuribacterales_fa
and Azospirillaceae (families) in hot tap water was much
lower than that in cold tap and shower water. The relative
abundance of Mycobacteriaceae (approximately 30%) and

Sphingomonadaceae (12% to 15%) (families) were similar across
cold tap, hot tap, and shower water. As a result, the bacterial
community compositions of cold tap, hot tap, and shower water
at the family level were distinct.

In conclusion, at the phylum level, the first and second
draws for any water type had similar bacterial community
compositions, while cold tap, hot tap, and shower water also
had comparable compositions (Figure 2 and Supplementary
Figure 7). At the class and family levels, the first and second
draws of both cold and hot tap water had distinct bacterial
community compositions (Figure 3 and Supplementary
Figure 8) because the first draws were stagnant water and
the second draws were representative water. By contrast, the
compositions for the two draws of shower water were similar
at the class and family levels because those two draws were
consecutive samples. In addition, cold tap, hot tap, and shower
water had distinct bacterial community compositions at the class
and family levels (Supplementary Figures 8 and 9). In the HPS
simulator, cold tap water was the direct and sole source of hot tap
water, and shower water was a mixture of cold and hot tap water.
Moreover, the cold tap, hot tap, and showerhead were close to

Frontiers in Microbiology | www.frontiersin.org 9 April 2021 | Volume 12 | Article 625324

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-625324 April 20, 2021 Time: 14:47 # 10

Zhang et al. Bacterial Community in Drinking Water

FIGURE 4 | Shannon and Inverse Simpson diversity indices. CF: Cold tap water-First draw. CS: Cold tap water-Second draw. Cold: Cold tap water. HF: Hot tap
water-First draw. HS: Hot tap water-Second draw. Hot: Hot tap water. SF: Shower water-First draw. SS: Shower water-Second draw. Shower: Shower water.
Column heights: Arithmetic means. Error bars: Standard deviations (n = 16 for CF, CS, HF, HS, SF, and SS. n = 32 for Cold, Hot, and Shower). We used Mothur
to calculate the indices for each water sample and SPSS R© to determine whether the differences of the indices for each of the following pairs were statistically
significant: CF versus CS, HF versus HS, SF versus SS, Cold versus Hot, Cold versus Shower, and Hot versus Shower. A pair of indices marked with the same
symbol are significantly different (p < 0.05).

one another in the same simulator where all water pipes had
the same size, material, and age. Therefore, the distinct bacterial
community compositions for cold tap, hot tap, and shower water
at the class and family levels suggest that different endpoints

TABLE 1 | A multiple linear regression model predicting the Shannon and Inverse
Simpson diversity indices of the water samples with four independent variables
(absolute sampling time, water temperature, total chlorine residual concentration,
and ambient temperature).

Regression result Shannon diversity
index

Inverse Simpson
diversity index

Coefficient of determination (R2) 0.414 0.434

Adjusted R2 0.389 0.409

F-ratio (p) for the overall model 16.095 (< 0.001*) 17.412 (< 0.001*)

Unstandardized coefficient (p)
of absolute sampling time

0.002 (< 0.001*) 0.014 (< 0.001*)

Unstandardized coefficient (p)
of water temperature

0.006 (0.377) 0.091 (0.011*)

Unstandardized coefficient (p)
of total chlorine residual
concentration

−1.531 (0.005*) −3.516 (0.210)

Unstandardized coefficient (p)
of ambient temperature

−0.003 (0.667) −0.056 (0.103)

Unstandardized coefficient (p)
of the constant

1.679 (< 0.001*) 1.215 (0.423)

Analyzed with SPSS R©.
*Statistical significance (p < 0.05).

of the simulator had distinct physicochemical and microbial
conditions. Those biotic and abiotic factors significantly
affected drinking water bacterial community composition. For
instance, biofilms and loose deposits on water pipes, faucets,
and showerheads are an important source of microbes of the
corresponding bulk water and significantly affect the bulk water
microbial communities (Henne et al., 2012; Liu et al., 2014, 2018;
Petrova and Sauer, 2016; Prest et al., 2016a; Potgieter et al., 2018;
Chan et al., 2019). The biofilms and loose deposits adapted to the
local environment of the cold water line, cold tap, hot water line,
hot tap, and showerhead in the simulator would release unique
bacterial species to the bulk water (Bollin et al., 1985; Feazel et al.,
2009; Lu et al., 2017), contributing to the distinct community
compositions of cold tap, hot tap, and shower water at the
class and family levels. Furthermore, the bacterial consortium
would have a fast transformation when the electric water heater
produced hot tap water by heating cold tap water (Henne et al.,
2013). When cold tap water was heated, certain bacteria survived
(i.e., the carryover), many bacterial species decayed, and some
high-temperature-tolerant (i.e., thermophilic) bacteria rapidly
outgrew other species. Therefore, the bacterial community
compositions for hot tap and shower water were significantly
different from that of cold tap water at the class and family levels.

At the phylum (Figure 2 and Supplementary Figure
7A), class (Supplementary Figure 8), and family (Figure 3
and Supplementary Figure 9) levels, the cumulative relative
abundance for the dominant groups of bacteria was greater
than 70%. A Krona plot (Ondov et al., 2011) of the community
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FIGURE 5 | The 3D NMDS of the Yue and Clayton theta distance matrix for all water samples visualized using three two-dimensional plots. (A) NMDS 1 versus
NMDS 2. (B) NMDS 1 versus NMDS 3. (C) NMDS 2 versus NMDS 3.

composition based on the taxonomy of the contigs for all
water samples also indicates that a few dominant groups of
bacteria represented the majority of the whole community
(Supplementary Figure 10). As a result, the bacterial community
in the HPS simulator was uneven.

The Bacterial Communities in Cold Tap
and Shower Water Were Significantly
More Diverse Than That in Hot Tap Water
For both cold and hot tap water, the second draws had
significantly greater Shannon and Inverse Simpson diversity
indices than the first draws (two-tailed paired t-test with SPSS R©,
p < 0.05) (Figure 4 and Supplementary Figures 2 and 3).
Therefore, the second draws for tap water had a greater bacterial
community diversity (richness and evenness) and represented
different bacterial niches from the first draws (Serrano-Suárez
et al., 2013; Waak et al., 2019). Indeed, we identified more
OTUs from the second draws of tap water than from the first
draws (i.e., the second draws had a greater richness) (Figure 1
and Supplementary Table 11) (Liao et al., 2013). In addition,
the rarefaction curves for the second draws of tap water had
greater slopes than the first draws (Supplementary Table 5 and
Supplementary Figure 1), confirming that the second draws of
tap water had a greater evenness. The greater diversity of the

bacterial communities in the second draws of tap water might
be due to the greater water temperatures of the second draws.
The mean temperatures for the second draws of cold and hot
tap water were 30.1 ± 3.3◦C and 46.9 ± 1.2◦C, respectively. The
mean temperatures for the first draws of cold (20.9 ± 1.1◦C)
and hot (30.4 ± 5.3◦C) tap water were much lower. For both
cold and hot tap water, the first draws were stagnant water,
while the second draws were representative water. Therefore,
in this HPS simulator, stagnant tap water had a lower bacterial
community diversity than the representative water because of
the water temperature difference. The greater diversity of the
bacterial community in the second draws of tap water implies
that a greater water temperature might promote the (re)growth
and colonization of opportunistic pathogens in building PPSs.
On the other hand, the first and second draws for shower water
had comparable Shannon and Inverse Simpson diversity indices
(two-tailed paired t-test with SPSS R©, p > 0.05) (Figure 4 and
Supplementary Figures 2 and 3), numbers of OTUs (Figure 1
and Supplementary Table 11), and rarefaction curve slopes
(Supplementary Table 5 and Supplementary Figure 1). As a
result, the two draws for shower water had similar bacterial
community diversities because those two draws were collected
consecutively and had comparable temperatures (38.3 ± 2.5◦C
and 38.5± 3.1◦C for the first and second draws, respectively).
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The Shannon diversity indices of cold tap (2.39 ± 0.54)
and shower (2.48 ± 0.87) water were significantly greater than
that of hot tap water (1.87 ± 0.57) (SPSS R©, p for the Kruskal–
Wallis test < 0.001, p for the post hoc test with Bonferroni
correction < 0.01) (Figure 4). The Inverse Simpson diversity
index for shower water (8.03± 5.26) was also significantly greater
than that of hot tap water (4.73 ± 2.49) (SPSS R©, p for the
Kruskal–Wallis test 0.020, p for the post hoc test with Bonferroni
correction 0.041). In addition, cold tap water (6.07 ± 2.51) had a
greater Inverse Simpson diversity index than hot tap water even
though the difference was not statistically significant (SPSS R©, p
for the Kruskal–Wallis test 0.020, p for the post hoc test with
Bonferroni correction 0.281). Furthermore, cold tap and shower
water had more OTUs (Figure 1 and Supplementary Table 11)
and greater rarefaction curve slopes (Supplementary Table 5
and Supplementary Figure 1) than hot tap water. Therefore,
the bacterial communities in cold tap and shower water were
more diverse than that in hot tap water. Similarly, in a research
center in Germany, cold tap water had significantly greater
Shannon (2.43 ± 0.16) and Inverse Simpson (8.88 ± 2.09)
diversity indices than hot drinking water from a showerhead
(Shannon 1.56 ± 0.14; Inverse Simpson 3.82 ± 0.53) (Lesnik
et al., 2016). In the same research center, cold tap water
had a significantly greater bacterial community richness (mean
rank in a rank abundance plot 55, a steeper slope) than hot
drinking water (mean rank 40, a flatter slope) (Henne et al.,
2013). On the other hand, the comparable Shannon and Inverse
Simpson diversity indices (SPSS R©, p for the Kruskal–Wallis test
≤ 0.020, p for the post hoc test with Bonferroni correction 1.000)
(Figure 4), numbers of OTUs (Figure 1 and Supplementary
Table 11), and rarefaction curve slopes (Supplementary Table 5
and Supplementary Figure 1) for cold tap and shower water
indicate that they had similar bacterial community diversities.

Water Temperature, Total Chlorine
Residual Concentration, and the Age of
the HPS Simulator Dictated Bacterial
Community Diversity
We used four independent variables (absolute sampling time or
the age of the simulator, water temperature, total chlorine residual
concentration, and ambient temperature) to predict the Shannon
and Inverse Simpson diversity indices (dependent variables)
using multiple linear regression (Table 1). The four independent
variables together significantly predict the dependent variables
(R2 > 0.400, p < 0.001). The absolute sampling time
(i.e., the age of the simulator) had positive unstandardized
coefficients and statistically significant correlations with both
diversity indices (p < 0.001). Therefore, the diversity of
bacterial community increased with the age of the simulator.
When the simulator aged, pipe biofilms and loose deposits
might have developed in microbial and physical complexity,
releasing bacteria communities with a greater diversity to the
corresponding bulk water (Rittmann and McCarty, 2001; Martiny
et al., 2003; Henne et al., 2012; Liu et al., 2014, 2018; Petrova
and Sauer, 2016; Prest et al., 2016a; Potgieter et al., 2018;
Chan et al., 2019). The unstandardized coefficients for total

chlorine residual concentration were negative for both diversity
indices. A previous study similarly found that both bulk drinking
water and biofilms in a chloraminated DWDS in the US
had significantly lower Shannon and Inverse Simpson diversity
indices than those in a Norwegian DWDS without a disinfectant
residual (p ≤ 0.0001) (Waak et al., 2019). In another study,
total bacterial numbers (16S rRNA gene copy numbers) in the
effluents of simulated household water heaters were negatively
correlated with disinfectant (chlorine and chloramine) residual
concentrations in upstream simulated DWDSs (Spearman’s rank
correlation coefficients between −0.752 and −0.458, p < 0.001)
(Wang et al., 2015). Therefore, a greater disinfectant residual
concentration effectively suppressed the diversity of bacterial
community. Water temperature had a significant positive
correlation with the Inverse Simpson diversity index (p 0.011)
but did not have a significant linear correlation with the Shannon
diversity index (p 0.377). The Inverse Simpson diversity index
is more appropriate when dominant species are more important
in a microbial community, while the Shannon diversity index is
more appropriate when rare and dominant species are equally
important (Morris et al., 2014). In the current study, a few
dominant groups of bacteria represented the majority of the
whole community (Figures 2 and 3, Supplementary Tables 8
and 9, and Supplementary Figures 7 to 10), suggesting that the
dominant species were more important. In addition, the Inverse
Simpson diversity index is superior to the Shannon diversity
index because the former considers the difference in sampling
efforts (Pielou, 1975). Therefore, the diversity of bacterial
communities significantly increased with water temperature
(revealed by the Inverse Simpson diversity index). A previous
study similarly found that the richness (observed OTUs) of
drinking water bacterial community had a statistically significant,
positive correlation with water temperature (Pearson’s R 0.74,
p < 0.05) (Pinto et al., 2014).

This study found that the diversity of bacterial communities
significantly increased with water temperature (revealed by the
Inverse Simpson diversity index) (Table 1) but the bacterial
community in hot tap water was less diverse than those in cold
tap and shower water (Figures 1 and 4, Supplementary Tables 5
and 11, and Supplementary Figures 1 to 3). The paradoxical
results might be due to three reasons. First, other environmental
factors such as the formation of pipe biofilms/deposits than water
temperature might make the bacterial community in hot tap
water less diverse. In addition, only a small portion of drinking
water bacteria could adapt to the relatively high temperature
of hot tap water (Supplementary Table 1), thus decreasing the
bacterial community diversity of hot tap water. Second, the
Inverse Simpson diversity index of the bacterial communities
for all water types (hot tap, cold tap, and shower water)
increased with water temperature (Supplementary Figure 11).
However, the Inverse Simpson diversity indices of many hot
tap water samples (particularly the first draw samples) were
lower than those of cold tap and shower water samples. Indeed,
the arithmetic mean of the Inverse Simpson diversity indices
for hot tap water (4.73) was lower than those for cold tap
(6.07) and shower (8.03) water (Figure 4). Since the Inverse
Simpson diversity index for all water types increased with water
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FIGURE 6 | Shifting of water samples in the 3D NMDS space by bacterial classes. Fifty one classes were identified from all water samples. Classes with lengths
greater than 0.6, between 0.3 and 0.6, and less than 0.3: red large checker board, blue vertical stripes, and green wide upward diagonal stripes, respectively.

temperature (Supplementary Figure 11), the multiple linear
regression reveals that for the “pooled” water samples (e.g.,
mixed datapoints for all 96 water samples), the Inverse Simpson
diversity index significantly increased with water temperature
(Table 1) although the Inverse Simpson diversity index of hot
tap water was lower than those of cold tap and shower water.
Third, water temperatures of some first draw samples of hot
tap water was comparable to or even lower than those of some

shower water samples and some second draw samples of cold tap
water (Supplementary Table 1 and Supplementary Figure 3B).
Therefore, water temperature of a hot tap water sample was not
necessarily greater than that of a cold tap or shower water sample.

We used the Shannon and Inverse Simpson diversity indices
of cold and hot tap water to predict those of shower water
with multiple linear regression (Supplementary Table 12). This
regression significantly predicts the diversity indices of shower
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TABLE 2 | Shifting of bacterial communities in the 3D NMDS space by water temperature, absolute sampling time, and total chlorine residual concentration.

Factor Spearman’s rank correlation coefficient Length

NMDS 1 (p) NMDS 2 (p) NMDS 3 (p)

Water temperature (◦C) −0.056 (0.585) 0.081 (0.427) 0.158 (0.124) 0.186

Absolute sampling time (d) −0.567 (< 0.001*) 0.678 (< 0.001*) −0.228 (0.026*) 0.913

Total chlorine residual (mg Cl2·L−1) 0.364 (< 0.001*) −0.289 (0.004*) 0.0785 (0.444) 0.471

Analyzed with Mothur.
*Statistical significance (p < 0.05). NMDS 1, NMDS 2, and NMDS 3: Axes 1, 2, and 3, respectively, of the NMDS space. Length = [(Coefficient for NMDS 1)2 + (Coefficient
for NMDS 2)2 + (Coefficient for NMDS 2)2]0 .5.

water (SPSS R©, R2 0.451 and 0.333 for the Shannon and Inverse
Simpson diversity indices, respectively; p < 0.005). However,
this regression explains only less than 50% of the variation
in the diversity indices of shower water, and the p-values
for the correlation coefficients for the diversity indices of
hot tap water are greater than 0.05. In addition, the relative
abundance of dominant bacterial groups in cold and hot tap
water seemed unrelated to those in shower water (Figures 2
and 3 and Supplementary Figures 7A and 9). Furthermore,
only approximately 26% of the OTUs identified from cold tap
and shower water were shared by those two types of water,
while for hot tap and shower water, this figure was even
lower (approximately 22%) (Figure 1). Therefore, the bacterial
community in shower water was more than a simple combination
of those in cold and hot tap water although shower water was
simply a blend of cold and hot tap water. As discussed above, two
underlying mechanisms could make the bacterial community in
shower water more than a simple mixture of those in cold and
hot tap water. First, the biofilms and loose deposits adapted to
the specific local environment of the showerhead might make the
bacterial community in shower water different from those in cold
and hot tap water (Bollin et al., 1985; Feazel et al., 2009; Lu et al.,
2017). Second, the sudden changes in critical physicochemical
water quality parameters, especially water temperature, when
cold and hot tap water was mixed in the showerhead might also
make the bacterial community in shower water unique (Henne
et al., 2013). Other reasons might count as well. For instance,
the hydraulic properties of Faucet 4 and the showerhead in the
current study were significantly different. The unique hydraulic
structure of the showerhead could potentially contribute to the
unique bacterial community in shower water.

The Bacterial Community Structures of
Cold Tap and Shower Water Were
Significantly Different From That of Hot
Tap Water
We visualized the Yue and Clayton theta distance matrix with a
3D PCoA (Supplementary Figure 12) and a 3D NMDS (Figure 5
and Supplementary Figure 13). The NMDS (R2 0.914) is better
than the PCoA (R2 0.833) in explaining the distance matrix.
Indeed, the lowest stress value for the NMDS is 0.123, suggesting
that the NMDS well represents the distance matrix in the reduced
dimensions (Clarke, 1993). Any groups of water samples (i.e.,
the first draw of cold tap water, second draw of cold tap water,
first draw of hot tap water, second draw of hot tap water, first

draw of shower water, and second draw of shower water) diverge
from one another in the PCoA and NMDS ordination plots.
However, the bacterial communities for any of the following
groups were homogenous or had similar variations: the first draw
versus the second draw of cold tap water, the first draw versus
the second draw of hot tap water, the first draw versus the second
draw of shower water, and cold tap water versus hot tap water
versus shower water (HOMOVA test, p > 0.05) (Supplementary
Table 13). Therefore, the bacterial communities in the first and
second draws for any water type were equally stable. In addition,
the bacterial communities from the different endpoints of the
HPS simulator (i.e., cold tap, hot tap, and showerhead) had
comparable stabilities (HOMOVA test, p 0.072). Furthermore, we
applied the HOMOVA test to determine whether the variations
in bacterial communities in the water samples of March to July
in 2012 (i.e., the “early” samples) and those of March to July in
2013 (i.e., the “late” samples) were homogeneous. The bacterial
community in the early cold tap water samples were more
stable than that in the late cold tap water samples (HOMOVA
test, p 0.012) (Supplementary Table 13). However, the bacterial
communities in the early and late samples of either hot tap
or shower water were equally stable or had similar variations
(HOMOVA test, p > 0.05). We hypothesize that the bacterial
community in cold tap water became less stable when the HPS
simulator aged and the pipe biofilms and loose deposits matured.
On the other hand, since hot tap and shower water contained
heated cold tap water, the stabilities of the bacterial communities
of hot tap and shower water responded minimally to the age of
the simulator. Presumably, the effect of the heating of cold tap
water masked the effect of the age of the simulator on bacterial
community stabilities of hot tap and shower water.

We determined which OTUs and classes of bacteria were more
responsible for the specific distribution of the water samples
in the NMDS ordination plot (Figure 5 and Supplementary
Figure 13). OTUs 0001, 0009, 0029, 0002, 0024, 0026, 0027,
0033, 0031, and 0017 (descending order of significance)
were the top ten most important OTUs that moved the
samples in the NMDS space (Supplementary Table 14).
Actinobacteria, Gammaproteobacteria, Gemmatimonadetes,
Deltaproteobacteria, Chlamydiae, and Bacteroidia (descending
order of significance) were the top five most important
classes that shifted the bacterial communities in the
NMDS plot (Supplementary Table 15 and Figure 6). In
addition, the absolute sampling time or the age of the
HPS simulator (length 0.913) is more significant than
total chlorine residual concentration (length 0.471) and
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FIGURE 7 | A phylogenetic dendrogram for cold tap, hot tap, and shower
water. Visualized with FigTree (version 1.4.4). Letters in the sample IDs: CP:
Cold tap water-First draw. CD: Cold tap water-Second draw. HP: Hot tap
water-First draw. HD: Hot tap water-Second draw. SHA: Shower water-First
draw. SHB: Shower water-Second draw. Numbers in the sample IDs:
Sampling dates in the format of “MYY” or “MMYY,” where the “M” or “MM”
stands for month and the “YY” stands for the year (2012 and 2013). For
instance, the sample ID of “SHB1112” stands for the second draw of shower
water sampled in November 2012.

water temperature (length 0.186) in shifting the bacterial
communities in the NMDS space (Table 2). Specifically,
the p-value for the correlation coefficient between water
temperature and any of the three NMDS axes is greater
than 0.05, suggesting that water temperature was not an
important parameter shifting the bacterial communities in the
NMDS space.

The first and second draws of either cold tap or shower
water occupy approximately the same spaces in either the
PCoA (Supplementary Figure 12) or the NMDS (Figure 5 and
Supplementary Figure 13) ordination plot (even though they
do diverge). However, for hot tap water, the first and second
draws occupy apparently different spaces. Indeed, the two draws
of hot tap water have significantly different centroids in either
ordination plot (AMOVA test, p 0.016), but the spatial separation
of the first and second draws for either cold tap or shower water
is minimal (AMOVA test, p > 0.05) (Supplementary Table 13).
The temperature difference between the two draws of either cold
tap or shower water is smaller than that between the two draws
of hot tap water (Supplementary Table 1). Those temperature
differences might explain why the two draws of hot tap water
have different centroids in the ordination plots while the two
draws of either cold tap or shower water occupy approximately
the same spaces.

Cold tap and shower water approximately cluster and are
spatially separate from hot tap water in either ordination
plot (Figure 5 and Supplementary Figures 12 and 13). The
AMOVA test confirms that the bacterial community structure
of hot tap water diverged significantly from those of cold tap
and shower water (p < 0.001), while the bacterial community
structures for cold tap and shower water were comparable
(p 0.373) (Supplementary Table 13). Similarly, a study revealed
remarkably different bacterial community structures for cold and
hot drinking water from a laboratory using DNA fingerprinting
(Henne et al., 2013). Another study found distinct microbial
community structures between cold and hot tap water systems
in an office building using Illumina MiSeq (Inkinen et al., 2016).
With a culture-based method, a study found that only 2% of
the acridine orange direct counts in cold tap water (supply
of hot tap water) from an apartment building were culturable
heterotrophic bacteria, but the figure for hot tap water from the
same building was much greater (38%) (Bagh et al., 2004). Even
though the bacterial community of hot tap water in the current
study was spatially away from those of cold tap and shower
water in the two ordination plots (Figure 5, Supplementary
Figures 12 and 13, and Supplementary Table 13), the best
enterotype number based on the DMM model is one, indicating
that the bacteria for all water samples belonged to only one
metacommunity. On the other hand, the AMOVA test indicates
that the community structures of the early samples (March to
July in 2012) were significantly different from those of the late
samples (March to July in 2013) for cold tap, hot tap, and
shower water (p < 0.001) (Supplementary Table 13). Therefore,
the age of the HPS simulator significantly affected the bacterial
community structures.

In addition to the PCoA and NMDS ordination plots
(Figure 5 and Supplementary Figures 12 and 13), we generated
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TABLE 3 | Parsimony and UniFrac tests on the clustering of water samples in the phylogenetic dendrogram.

Comparison of groups Parsimony Unweighted UniFrac Weighted UniFrac

Score p Score p Score p

Cold tap water: First draw versus second draw 9 0.461 0.705 0.227 0.419 0.527

Hot tap water: First draw versus second draw 7 0.085 0.752 0.002* 0.589 0.009*

Shower water: First draw versus second draw 14 0.999 0.499 0.932 0.231 0.991

Cold tap water versus hot tap water 10 < 0.001* 0.802 < 0.001* 0.536 < 0.001*

Cold tap water versus shower water 20 0.596 0.638 0.128 0.328 0.553

Hot tap water versus shower water 10 < 0.001* 0.820 < 0.001* 0.570 < 0.001*

Analyzed with Mothur.
*Statistical significance (p < 0.05).

a phylogenetic dendrogram from the Yue and Clayton theta
distance matrix to visualize the similarity among the bacterial
community structures of groups of samples (Figure 7). The first
and second draws of either cold tap or shower water cluster in the
dendrogram. The parsimony, unweighted UniFrac, and weighted
UniFrac tests all indicate that the bacterial community structures
of the first and second draws of either cold tap or shower water
were similar (p > 0.05) (Table 3). When ignoring the branch
length of the dendrogram (i.e., the parsimony test), the bacterial
community structures between the first and second draws of hot
tap water were similar (p 0.085). However, when incorporating
the branch length (i.e., the two UniFrac tests), the difference
in the bacterial community structures between the two draws
of hot tap water was significant (p < 0.01). Since the branch
length is important in determining the clustering of samples in
a phylogenetic dendrogram, the first and second draws of hot tap
water had distinct bacterial community structures.

Hot tap water samples cluster with themselves in the
dendrogram, while the samples of cold tap water cluster with
those of shower water (Figure 7). The parsimony, unweighted
UniFrac, and weighted UniFrac tests all indicate that the bacterial
community in hot tap water had a significantly different structure
from those in cold tap and shower water (p < 0.001) but the
bacterial community structures of cold tap and shower water
were similar (p > 0.05) (Table 3).

Limitations and Future Research
The major limitation of this work is the lack of comparing
bacterial communities in multiple PPSs to generalize the
results. Restricted by privacy, management policy, and research
resources, this study monitored the dynamics of bacterial
communities in tap and shower water in only one location
(i.e., a single HPS simulator). Future studies should include
multiple PPSs in different geographical locations to reach more
generalized conclusions and discover the universal characteristics
of the dynamics of bacterial communities in drinking water
of building PPSs.

This work revealed that the fluctuations of dominant phyla
and classes in the water samples had limited seasonal variations
(Supplementary Figures 7B to 7G and 8). In addition, no
significant linear correlations were found between ambient
temperature and both Shannon and Inverse Simpson diversity
indices of the water samples (p > 0.05) (Table 1). By contrast,
previous studies found clear seasonal variations in bacterial

communities of cold drinking water (McCoy and VanBriesen,
2012; Henne et al., 2013; Pinto et al., 2014; Prest et al.,
2016b; Vavourakis et al., 2020). We hypothesize that the lack
of clear seasonal variations in bacterial communities in the
current study could be because the HPS simulator delivered
temperature-stable tap and shower water to the bathroom.
Indeed, the temperature of cold tap water (both first and second
draws) was insensitive to the changes in ambient temperature
(Supplementary Figure 4). In addition, the temperature of
either the first or the second draw of cold tap water had
limited seasonal variations (Supplementary Table 1). The
temperatures of hot tap and shower water were also relatively
stable over the 16-month sampling period. Temperature is
the most important abiotic factor governing the structure of
a microbial community. Therefore, the bacterial communities
in the simulator lacked significant seasonal variations. Future
studies need to confirm whether water temperature was the major
factor that contributed to the lack of seasonal variations of the
bacterial communities. The temporal dynamics of the drinking
water microbial communities in the HPS simulator should also
be further explored.

This work measured or recorded only four environmental
parameters that could affect the diversity of the bacterial
communities in the HPS simulator, while other parameters
could also affect the diversity. Indeed, the four environmental
parameters in the multiple linear regression model explain
only approximately 40% of the variation in the Shannon
and Inverse Simpson diversity indices (Table 1). Other
physicochemical and biological environmental parameters
such as pH, conductivity, organic carbon concentration,
nutrient (nitrogen and phosphorus) concentration, and biofilm
formation might explain the remaining variation (Hwang
et al., 2012; Pinto et al., 2012, 2014; Henne et al., 2013;
Inkinen et al., 2016). Future studies need to explore how
other environmental parameters affect the diversity of the
bacterial communities.

CONCLUSION

We sampled cold tap, hot tap, and shower water monthly
from a HPS simulator in a bathroom for 16 months and
monitored the bacterial community structures in those samples
using 16S-rRNA-gene-based high-throughput DNA sequencing.
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We identified 24 phyla and 248 families from the 96 water
samples. At the phylum level, Proteobacteria, Actinobacteria,
and Bacteroidetes were dominant. The top five most
abundant families were Burkholderiaceae, Sphingomonadaceae,
unclassified Alphaproteobacteria, unclassified Corynebacteriales,
and Mycobacteriaceae. The Shannon and Inverse Simpson
diversity indices of the water samples increased with water
temperature and the age of the simulator but decreased with
total chlorine residual concentration. Ambient temperature did
not have a significant linear correlation with the diversity indices.
In addition, the relative abundance of dominant phyla and classes
in cold tap, hot tap, and shower water all significantly fluctuated
over the 16-month sampling period, but the fluctuations lacked
a clear seasonal trend. Therefore, the bacterial communities in
the simulator had limited seasonal variations. Hot tap water had
a significantly lower bacterial community diversity than cold tap
and shower water. Moreover, the bacterial community structure
of hot tap water was significantly different from those of cold
tap and shower water, while cold tap and shower water had
similar bacterial community structures. The bacterial community
compositions for the first and second draws of shower water
were comparable, but the two draws of either cold or hot tap
water had distinct community compositions. In conclusion, the
bacterial community in hot tap water was less diverse than and
had a distinct structure from those in cold tap and shower water.
Therefore, one needs to simultaneously monitor the dynamics
of the microbial communities in cold tap, hot tap, and shower
water to comprehensively understand microbial drinking water
quality in a PPS.
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