
fmicb-12-626048 September 29, 2021 Time: 11:45 # 1

ORIGINAL RESEARCH
published: 29 September 2021

doi: 10.3389/fmicb.2021.626048

Edited by:
Camila Fernandez,

UMR 7621 Laboratoire
d’Océanographie Microbienne

(LOMIC), France

Reviewed by:
Marco J. L. Coolen,

Curtin University, Australia
Ian P. G. Marshall,

Aarhus University, Denmark

*Correspondence:
Matthias Labrenz

matthias.labrenz@
io-warnemuende.de

René Janßen
rene.janssen@io-warnemuende.de

Specialty section:
This article was submitted to

Aquatic Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 04 November 2020
Accepted: 24 August 2021

Published: 29 September 2021

Citation:
Janßen R, Beck AJ, Werner J,

Dellwig O, Alneberg J, Kreikemeyer B,
Maser E, Böttcher C, Achterberg EP,
Andersson AF and Labrenz M (2021)

Machine Learning Predicts the
Presence of 2,4,6-Trinitrotoluene in

Sediments of a Baltic Sea Munitions
Dumpsite Using Microbial Community

Compositions.
Front. Microbiol. 12:626048.

doi: 10.3389/fmicb.2021.626048

Machine Learning Predicts the
Presence of 2,4,6-Trinitrotoluene in
Sediments of a Baltic Sea Munitions
Dumpsite Using Microbial
Community Compositions
René Janßen1* , Aaron J. Beck2, Johannes Werner1, Olaf Dellwig3, Johannes Alneberg4,
Bernd Kreikemeyer5, Edmund Maser6, Claus Böttcher7, Eric P. Achterberg2,
Anders F. Andersson4 and Matthias Labrenz1*

1 Biological Oceanography, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany, 2 Marine
Biogeochemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany, 3 Marine Geology, Leibniz Institute
for Baltic Sea Research Warnemünde, Rostock, Germany, 4 Science for Life Laboratory, Department of Gene Technology,
School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Solna, Sweden,
5 Institute of Medical Microbiology, Virology and Hygiene, University of Rostock, Rostock, Germany, 6 Institute of Toxicology
and Pharmacology for Natural Scientists, University Medical School Schleswig−Holstein, Kiel, Germany, 7 State Ministry
of Energy, Agriculture, The Environment, Nature and Digitization, Kiel, Germany

Bacteria are ubiquitous and live in complex microbial communities. Due to differences in
physiological properties and niche preferences among community members, microbial
communities respond in specific ways to environmental drivers, potentially resulting in
distinct microbial fingerprints for a given environmental state. As proof of the principle,
our goal was to assess the opportunities and limitations of machine learning to
detect microbial fingerprints indicating the presence of the munition compound 2,4,6-
trinitrotoluene (TNT) in southwestern Baltic Sea sediments. Over 40 environmental
variables including grain size distribution, elemental composition, and concentration
of munition compounds (mostly at pmol·g−1 levels) from 150 sediments collected
at the near-to-shore munition dumpsite Kolberger Heide by the German city of Kiel
were combined with 16S rRNA gene amplicon sequencing libraries. Prediction was
achieved using Random Forests (RFs); the robustness of predictions was validated
using Artificial Neural Networks (ANN). To facilitate machine learning with microbiome
data we developed the R package phyloseq2ML. Using the most classification-
relevant 25 bacterial genera exclusively, potentially representing a TNT-indicative
fingerprint, TNT was predicted correctly with up to 81.5% balanced accuracy. False
positive classifications indicated that this approach also has the potential to identify
samples where the original TNT contamination was no longer detectable. The fact
that TNT presence was not among the main drivers of the microbial community
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composition demonstrates the sensitivity of the approach. Moreover, environmental
variables resulted in poorer prediction rates than using microbial fingerprints. Our
results suggest that microbial communities can predict even minor influencing factors in
complex environments, demonstrating the potential of this approach for the discovery
of contamination events over an integrated period of time. Proven for a distinct
environment future studies should assess the ability of this approach for environmental
monitoring in general.

Keywords: munition compounds, Kolberger Heide, mercury, random forest, 16S rRNA gene amplicon sequencing,
monitoring, fingerprint, TNT

INTRODUCTION

Microbes are the most diverse, abundant, and ubiquitous life
forms on Earth. They live in complex microbial communities,
which can react rapidly to environmental changes, a result
of consistent evolutionary pressures applied by fluctuating
conditions (Lindh and Pinhassi, 2018). The developed variety
of physiologies enables communities to respond in specific
ways to environmental drivers, hence functioning as indicators
for surrounding conditions. This principle was demonstrated
for very different habitats: it was possible to match individual
human skin microbiomes with those on the occupant’s household
surfaces (Wilkins et al., 2017), to associate subway microbiomes
to the major cities they were located in Ryan (2019) or to
distinguish microbial communities in the brackish Baltic Sea
along the salinity gradient (Herlemann et al., 2011) and its anoxic
regions (Thureborn et al., 2016). However, relevant indicative
fractions of the communities, conceivably acting as microbial
fingerprints, may only emerge by analyzing a sufficiently large
number of communities. Next generation sequencing allows
for processing such larger amounts of samples to extract this
information, but it might be accompanied by a large portion of
irrelevant data with regard to the particular indication.

The ensemble classifier Random Forest (RF) is capable of
identifying such potential fingerprints—even if they include
non-linear relations—in large and complex data sets (Breiman,
2001). RF is among the most popular machine learning
methods and has frequently been used in biological sciences
(Fernández-Delgado et al., 2014). The features relevant for the
model’s decisions can be assumed equivalent to an indicative
fingerprint and the RF variable importance measure readily
identifies them (e.g., Altmann et al., 2010; Janitza et al.,
2018). Fingerprints related to community-shaping drivers are
revealed by performing unsupervised classification, whereas
specific influences can be targeted by the application of
supervised machine learning. In microbiological studies, RF
has been deployed to predict various geochemical features as
well as to detect oil spills (Smith et al., 2015) and to localize
the geographic origin of port water across three continents
based on dominant bacterial phyla (Ghannam et al., 2020).
Moitinho-Silva et al. (2017) used RF among other classifiers
to separate between sponges of high and low microbial
abundance. Thompson et al. (2019) used RF and artificial
neural networks (ANN) to identify important taxa for the

prediction of dissolved organic carbon concentrations. In a
previous study we demonstrated the identification of glyphosate-
impacted free-living community compositions by ANN and RF
after a 82.45 nmol mL−1 glyphosate pulse in a lab microcosm
experiment (Janßen et al., 2019b).

In this study, we are particularly interested in to what
extent environmental microbial communities can reliably predict
anthropogenic pollutants using the above algorithms. As a
proof of principle, we tested this approach for a munitions
dumpsite in the southwestern Baltic Sea, where sediments
are contaminated with explosive compounds such as 2,4,6-
trinitrotoluene (TNT). The munitions dumpsite Kolberger Heide
in the Kiel Bight (Germany) is an approximately 1,260 ha
large area of 10–15 m water depth. Conventional munition,
mostly incomplete or unfused was disposed of at this site after
World War II (Kampmeier et al., 2020). About 30,000 tons are
estimated to be still on site, containing mainly TNT and 1,3,5-
trinitroperhydro-1,3,5-triazine (RDX) as munition compounds
(Böttcher et al., 2011). The containments such as mines,
shells and torpedo heads display various states of corrosion
(Kampmeier et al., 2020), resulting in the leakage of munition
compounds (Beck et al., 2019). In addition, bare munition
chunks are scattered across the sediment bed, potentially due
to low-order, or incomplete detonation during blow-in-place
clearance activities (Pfeiffer, 2009; Maser and Strehse, 2020).
Dissolved TNT can be rapidly dissipated or metabolized in direct
proximity to its source, complicating the quantification of TNT
released into the environment (Elovitz and Weber, 1999; Beck
et al., 2019). However, the presence of munition compounds
including TNT and its transformation products in the Kolberger
Heide water column samples (ca. 1–15 ng·L−1) and biota (1–
24,000 ng·g−1) has been reported (Gledhill et al., 2019). Little
is known about the munition compounds’ concentrations in
accordant sediments.

Sediment in the Kolberger Heide is contaminated by TNT
at pmol·g−1 levels. It was our aim (a) to investigate if machine
learning is capable of predicting TNT in these sediments and
identifying indicative microbial fingerprints; (b) to assess how
robust the predictions are and which factors influenced the
model’s performance; and (c) to evaluate whether a microbial
fingerprint is sufficiently persistent to detect a history of TNT,
indicated by TNT transformation products. Finally, we discuss
how the described approach could supplement and be integrated
into regular monitoring activities.
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MATERIALS AND METHODS

Collection of Sediments and
Determination of Munition Compounds
One hundred sixty-seven sediment samples were collected
within the Kolberger Heide munitions dumpsite and its
surroundings during the course of the Umweltmonitoring
für die DElaboration von Munition im Meer (UDEMM)
(Environmental monitoring for the delaboration of munitions
on the seabed, Greinert, 2019) project. Samples were obtained
during several cruises and individual sampling events. Additional
sampling took place at defined distances from mines and at a
site of a controlled detonation. Sediment samples within the
dumpsite were collected manually by scientific divers or using
an remotely operated underwater vehicle (ROV). Outside the
dumpsite’s restriction zone, surface sediments were collected
using a Van Veen grab. Duplicate sediment cores were collected
using a multi-corer at two sites east and west of the dumpsite
(map provided in Supplementary Figure 1). Sampling was
conducted in December 2016 and from June to December 2017.
Supplementary Figure 2 details contextual data such as position
of sample collection, cruises, and experiments as well as measured
parameters. “Experiments” refer to the goal of a sampling, e.g.,
investigating a spatial munition compounds gradient in cardinal
directions around a mine, analyzing the munition compounds
distribution across a mine mound or along a sediment profile.
Sediments were stored in sealable plastic bags (Whirl-paks;
Nasco, Madison, WI, United States) at −20◦C for subsequent
munition compounds analysis using an ultra-high performance
liquid chromatographic system coupled to a heated electrospray
ionization source and a high resolution quadrupole/orbitrap
mass analyzer (UHPLC-HESI-MS, Q Exactive, Thermo Fisher
Scientific) detection after thawing and extraction using liquid
chromatography-mass spectrometry (LCMS)-grade acetonitrile
(Fisher). Munition compounds were measured according
to Gledhill et al. (2019) including TNT, RDX, 2-amino-
4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene
(4-ADNT), 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene
(2,6-DNT), 1,3-dinitrobenzene (DNB), 1,3,5-trinitrobenzene
(TNB), octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX),
and tetryl (N-methyl-N-2,4,6-tetranitrolaniline). The TNT
transformation products, 2,4-diamino-6-nitrotoluene (2,4-
DANT), and 2,6-diamino-4-nitrotoluene (2,6-DANT) are not
included in the Gledhill et al. (2019) suite of compounds,
but were analyzed using the same method, and quantified
after standardization using single-compound standards
(AccuStandard, New Haven, CT, United States). For geological
and molecular biology analyses sediments were slowly thawed,
homogenized under a clean bench, and split into two 15 mL
aliquots. The aliquots were stored at−80◦C.

Geochemical and Sedimentological
Analyses
Sample Preparation
The frozen (−20◦C) sediment samples were freeze-dried (Christ
LOC-1M Alpha 1-4 and Christ Delta 1-24 LSCplus, Osterode am

Harz, Germany) for 60–72 h. Except for the grain size analyses,
the dried samples were homogenized in an agate ball mill (Fritsch
Pulverisette, Idar-Oberstein, Germany) at 200 rpm for 10 min.

Carbon, Nitrogen, and Sulfur
About 10–17 mg of the sediments were weighted into tin
crucibles, a spatula tip of vanadium(V) oxide (Alpha Resources,
Stevensville, MI, United States) was added as catalyzer and
total C, total N, and total S were determined by an elemental
analyzer (EuroEA, HEKAtech, Wegberg, Germany). For total
inorganic carbon, 50–70 mg of sediment was treated with
40% orthophosphoric acid and analyzed with an elemental
analyzer (multiEA 4000, Analytik Jena, Jena, Germany). Total
organic carbon was calculated by subtracting total inorganic
carbon from total carbon. Precision and trueness were checked
with in-house standards [Mecklenburg Bay Sediment Standard
(MBSS), Oder Bay Sediment Standard (OBSS)] and were <3.5%
(Häusler et al., 2018).

Mercury
The sedimentary mercury content was determined by a direct
mercury analyzer (DMA 80, Milestone Srl, Italy) using 100–
120 mg per analysis (50 mg for sample “Udemm1277,”
which exceeded the calibration range). Precision and trueness
were checked with the certified reference material BCR-142R
(Community Bureau of Reference) and an in-house standard
comprising Baltic Sea sediments (MBSS) and were <3 and
<10%, respectively (Häusler et al., 2018). Sediments exceeding
1,000 µg Hg·kg−1 were measured three times and averaged.

Reactive Iron and Trace Element Contents
For determination of reactive element contents, about 200 mg
of sediment material was weighed into pre-cleaned 11.5 mL
polystyrene tubes and 10 mL of 0.5 M HCl was added. The
tubes were shaken for 60 min at 175 rpm, followed by 6 min
of centrifugation at 4,000 × g and filtration of the solutions
with 0.45 µm syringe filters. Three procedural blanks were
analyzed together with the samples. The contents of Fe, P, and
trace metals in the 0.5 M HCl extracts were determined by
Q-ICP-MS (iCAP Q; Thermo Fisher Scientific, Germany) after
automated 50-fold dilution with 2 vol% HNO3 via a prepFAST
module (Elemental Scientific, Omaha, NE, United States) and
external calibration. Helium was used as collision gas (KED
mode) to minimize polyatomic interferences and a Rh and
Ir containing solution added online by the prepFAST module
served as internal standard to compensate for matrix effects
and instrument fluctuations. The calibration was checked with
the international reference material SGR-1b (USGS), which
underwent total acid digestion in closed PTFE vessels using a
HNO3–HF–HClO4 mixture (Dellwig et al., 2019). For stable
206/207Pb isotope ratios the NIST SRM-981 was used as reference
material (Dellwig et al., 2018). Precision and trueness of
the measurements of the reference materials were <4.4 and
8.1%, respectively.

Grain Size Distribution
The grain size of the <2 mm sediment faction was measured
using a Hydro EV accessory to the Mastersizer 3000 (Malvern
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Panalytical GmbH, Herrenberg, Germany). The samples were
stirred at 2,500 rpm and sonicated for 10 s. Eight measurements
were performed per sample, followed by purging steps with
distilled water. Outliers (values exceeding 1.5 times the
interquartile range) were removed and the remaining values per
sediment were averaged.

Molecular Biology and Bioinformatics
The methods described in the following were applied to the
molecular biology aliquots of each sediment sample.

Extraction of Nucleic Acids
The sediments were collected using the appropriate collection
and storage procedures for the determination of munition
compounds. To retrieve the best possible results in subsequent
molecular biological analyses and due to the long term presence
of TNT in the Kolberger Heide, the more robust 16S rRNA gene
was preferred over the more sensitive 16S rRNA as sequencing
target. DNA was extracted from 250 mg wet sediment using the
Qiagen PowerSoil DNA Kits or from 2,000 mg wet sediment
using the Mobio PowerSoil RNA kit with the DNA elution kit
(Hilden, Germany). For each kit an extraction control without
sediment was processed along with regular samples.

Sequencing 16S rRNA Gene Amplicons
The V4 region of the 16S rRNA gene was targeted with
the universal prokaryotic primer set 515f-806r (forward 5′
GTGCCAGCMGCCGCGGTAA 3′, reverse 5′ GGACTACHV
GGGTWTCTAAT 3′, Caporaso et al., 2011). Indexed amplicon
libraries were pooled to a concentration of 4 µM. As usual for
low diversity libraries, the PhiX control was spiked into the
library pools at a concentration of 40 pM (10%). Each final
library pool (4 pM) was subjected to 1 of 3 consecutive individual
paired-end sequencing runs using 500 cycle V2 chemistry kits on
an Illumina MiSeq (Berlin, Germany). Additional information
with regard to the 16S rRNA gene libraries is provided in
Supplementary Figure 3.

Processing 16S rRNA Gene Amplicon Sequences
Amplicon read processing—including the removal of primer
and two-parent chimera sequences, the quality filtering step
and the taxonomic annotation—was conducted using the
DADA2 pipeline v. 1.10.0 (Callahan et al., 2016) with R v.
3.5.1 (R Core Team, 2017). DADA2 corrected for sequencing
errors during the generation of amplicon sequence variants
(ASVs). As recommended, such a correction was applied
separately for each sequencing run. The individual tables
were merged afterward. Only ASVs of length from 231 to
272 bp were kept according to the expected amplicon lengths
reported in Ziesemer et al. (2015).

Taxonomic annotation of herein presented data was
accomplished using the Silva release 132 (Yilmaz et al., 2014),
including the taxonomic changes that were proposed by Parks
et al. (2018). The ASV and taxonomy table were imported to and
analyzed with phyloseq v. 1.30.0 (McMurdie and Holmes, 2013)
accelerated by speedyseq v. 0.1.1 (McLaren, 2020). Plots were
generated using ggplot2 v. 3.3.1 (Wickham, 2016).

Amplicon sequence variants which were present in negative
PCR or extraction controls and also found abundantly in
actual samples were individually checked due to potential cross
contamination directed from samples toward the controls. ASVs
with more than 35 reads in controls were removed from
the dataset. ASV00001 was excluded from this rule because
it was much more abundant in actual samples (extraction
control: 75 reads, samples: >10,000 reads). ASVs which were
present in controls and less abundant in samples were removed.
Subsequently, it was checked if any of the as important detected
taxa were also present in control samples. ASV00063 belonged
to the important genus Maribacter (4 reads in positive PCR
control) and ASV00074 to Cobetia (5 reads in negative PCR
control). As no reads were found in the extraction control and
they were as abundant as up to 3,000 reads in sediments, these
ASVs were left unaltered.

Machine Learning Analyses
Machine learning analyses were conducted to evaluate
whether microbial community compositions contain sufficient
information about their environment and are sensitive enough
to contamination to act as a proxy for in this case sea-dumped
munitions. Such approach would allow to detect a variety
of substances per community data set, once trained models
for those substances are available. It allows for analyzing and
understanding the mutual effects of TNT and bacteria on each
other and thereby investigating the larger ecological context,
leading to a potential application in environmental monitoring.
If the goal is solely to measure TNT, traditional instrumental
analyses should be conducted.

Analyses were carried out on six virtual machines provided by
the German Network for Bioinformatics Infrastructure (de.NBI
Cloud). The virtual machines ran Ubuntu 18.04.4 LTS as
operating system on 28 Intel Xeon Gold 6140s cores with 256–
512 GB memory available. RF analyses were performed utilizing
R package ranger v. 0.12.1 (Wright and Ziegler, 2017). ANNs
were generated with the R Keras framework v. 2.3.0.0 (Allaire
and Chollet, 2020) and the TensorFlow back end v. 2.2.0 (Allaire
and Tang, 2020). Our efforts to extract abundance, taxonomical
and contextual data from phyloseq objects and subject those
to machine learning led to the development of the R package
phyloseq2ML v. 0.5.1.1 It facilitates modification and combining
such data sets as needed—using objects of class “phyloseq” as
source—and formats the data for the above mentioned machine
learning implementations in R.

Challenges of a Small Biological Data Set
The presented data set consists of contextual subsets (e.g., by
specific transects or sampled by a given method) which are likely
to contain samples more similar to each other than to those of
other subsets. To ensure that the model’s decision making was
based on the presence of TNT rather than to a particular cruise
or experiment, we developed guidelines to assess which samples
were appropriate for machine-learning (ML) analyses. First, the
technical replicates were averaged. Then, if for a given subset of

1https://github.com/RJ333/phyloseq2ML
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samples all of the following questions could be answered with yes,
samples had to be removed from the subset to prevent potential
spurious relationships between the presence of TNT and the
prediction accuracy:

For all samples from the same cruise (including
biological replicates) → do they originate from the same
experiment? → and the same area? → and do the sediment
sampling positions have horizontal distance of <20 m → and
do they only contain one class (TNT present or TNT absent)
emphasized “or” (OR) is there a strong imbalance (e.g., 20×TNT
absent, 1× TNT present)?

Following this guideline led to a removal of 17 of the original
167 sediments (Supplementary Figure 2). No samples were
removed based on other criteria such as low read counts.

As about half of the sediment samples did not contain TNT
and the TNT concentration within the other half of the samples
was unevenly distributed (see section “TNT Contamination
of Kolberger Heide Sediments”) and also given the rather
small sample size, it was considered unreasonable to perform
regression analyses to predict the concentration of TNT. It was
decided to investigate whether TNT has an effect at all on
the microbial community composition, thus the samples were
categorized as “TNT present” and “TNT absent.”

Machine Learning Workflow
The remaining 150 samples were split into a training-validation
set (in short: training set) consisting of 112 samples (75%) and a
holdout test set of 38 samples (25%). This procedure was repeated
to yield six different, pseudo-random splits of training and test
sets. Using a random seed, the splits were reproducible.

In supervised learning, training and validation data for a
model contain the independent variables and the corresponding
continuous or discrete response variable. The measured TNT
concentrations were categorized as response classes “absent”
for concentrations below the detection limit (0.01 ng·g−1 or
0.044 pmol·g−1 wet sediment) and “present.”

Settings automatically derived from the learning process
are called parameters, such as the weights between ANN
nodes. Hyperparameters, instead, are model settings chosen
before training has started. RFs are controlled via two main
hyperparameters: the number of trees per forest and the number
of variables “mtry” to consider for sample separation at each
tree node. The default value for mtry for classification tasks is
the square root of the total number of independent variables.
As this default value might not be optimal for sparse data such
as ASV abundance tables, a factor multiplying this number of
variables was used instead and will be referred to as “mtry factor”
(Hastie et al., 2009).

Random Forest models were trained on various combinations
of hyperparameter values and input data to find the best
combination. This process is called a grid search and
combinations were compared using the out-of-bag validation
error, i.e., only using the training sets and not the holdout sets.
A confusion matrix was generated to calculate performance
metrics. Balanced accuracy was used as score. It corrects for
imbalanced response variables and allowed comparisons across
training set splits, which displayed class ratios of 43–48% “TNT

present” (Brodersen et al., 2010). The validation results of
the six data splits were averaged to select the best performing
hyperparameter values and input sets. When predicting the
holdout set, the model was trained on the full training-validation
set. The holdout predictions for the various input data sets took
place after all hyperparameter values were determined. This is
required to prevent data leakage.

TNT Presence Prediction Based on Random Forest
Grid Search
Data sets designed as model input were threefold: (a) community
data: describing data deriving from 16S rRNA gene amplicon
sequencing; (b) sediment data: sediment parameters derived from
geochemical and sedimentological analyses; and (c) combined, a
combination of both aforementioned input sets.

The grid search with community data was performed as
follows: All combinations of relative abundance thresholds, the
number of trees and the mtry factor were investigated. ASVs had
to be more abundant than a given threshold in at least one sample.
If so, the ASVs remains without change, otherwise it was filtered
out. Thresholds were: 0.02, 0.04, 0.06, 0.08, 0.1, 0.2, 0.4, 0.6, 0.8,
and 1%. Each of the resulting input sets was provided to models
consisting of 100, 500, 1,000, 5,000, 10,000, and 20,000 trees along
with mtry factors ranging from 1 to 13 by 2. For each combination
50 models were trained and validated.

Subsequently, the filtered relative ASV abundances were
accumulated by taxonomic ranks genus through phylum to train
200 models with the previously identified hyperparameter values
of 10,000 trees, an mtry factor of 5, and a threshold of 0.08%.

The sediment data contained 41 independent variables
including reactive element contents, sum parameters such as total
nitrogen, and the grain size distribution. Hundred models were
trained with 1,000, 5,000, 10,000 trees and mtry factors 1, 3, and
5. For combined input data it was found sufficient to apply the
same hyperparameters as were applied to the community data.

Validation and holdout scores were tested separately for
significant differences between input data sets. Equal means were
tested with unequal variance and one-way analysis of variance.
The results of the analysis of variance were further subjected to
the Tukey’s multiple comparisons of means with 95% family-wise
confidence level to identify the pairwise significances.

Selection of Most Important Variables
The most important variables for classification were retrieved
from models trained with community, sediment and combined
data. Importance for community data (0.08% threshold, genus
rank) and combined data was calculated utilizing the corrected
Gini impurity (Nembrini et al., 2018), followed by p-value
estimation after Janitza et al. (2018). A 100 models using
10,000 trees and an mtry factor of 5 were trained and the
results averaged. Variable importance and associated p-value
for sediment data required the permutation-based approach by
Altmann et al. (2010). A 1,000 permutations with mtry factor 1
and 10,000 trees were applied. The analysis involved elements
Zr, which likely was not soluble by HCl extraction as well as Ca
and Sn, where the measurement by ICP-MS was later identified
as unreliable. The elements were still included in the training
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data, but were not reported as important and removed for other
analysis such as the Spearman rank correlation.

The variables were ordered by average importance over
all splits. The number of variables for further analyses were
selected based on decreasing decline in importance, meaning if
the variables became more similarly important to each other,
the cutoff was set. Thus, 25 genera were selected with Janitza
importance > 0.25, p < 0.01 and 9 sediment parameters with
Altmann importance > 0.001 and p < 0.05. The most important
50 combined variables (equal to Janitza importance > 0.15
and p < 0.01) were compared to the 25 community and 9
sediment variables.

Random Forest’s Proximity Matrix for PCA Ordination
and Correlation
Ordination methods are useful to explore multivariate data sets
such as microbial community compositions by displaying their
similarities. The proximity matrix generated by RFs is a measure
of (dis-) similarity, as well. The proximity between two samples
is calculated by measuring the number of times they end up in
the same terminal node of the same tree of the RF, divided by the
number of trees in the forest.

It can be used with unsupervised classification: a synthetic
data set is added to the original data set. This consists of shuffled
columns of the actual data, thus breaking all relationships
between variables. The model (10,000 trees, mtry factor 1) tries
to distinguish between permuted and original data and thereby
identifies correlations and clusters in the actual data set. For
supervised classification, the actual classes were used and no
synthetic data set was required.

Principal component analysis (PCA) was performed based
on the proximity matrix for the most important 25 genera.
To identify microbial community shaping influences for the
unsupervised classification, the sediment parameters were
correlated with the PCA ordination. The function envfit() from
R package vegan v. 2.5-6 (Oksanen et al., 2019) with 9,999
permutations was used to achieve this. Correlating parameters
with p < 0.001 and R2 > 0.3 were displayed. The PCA
ordination was performed for sediment data as described above,
except the envfit() step. Complementary, Spearman’s rank-order
correlations between sediment variables were investigated. The
results were hierarchically clustered and variables with p < 0.01
were marked significant.

Assessing Robustness of Classification With Random
Forest and Artificial Neural Nets
The classification consistency was examined to increase the
understanding of the predictions. All 150 samples were used as
training and validation set for 1,000 models (10,000 trees, mtry
factor 1). Mean prediction errors <0.5 or >99.5% accuracy were
rounded to 0 and 100%, respectively.

Artificial neural networks were additionally deployed to
measure classification robustness across algorithms. The input
data for ANNs required additional steps including the one-hot
encoding of categorical variables and scaling of the independent
variables: the mean of each variable was subtracted, and it was
divided by the standard deviation. This yielded values centered

around 0 with a standard deviation of 1. ANN grid searches were
performed complementary to what is described for RF above.
Results suggested that 50 nodes in the first hidden layer and 40
nodes in the second hidden layer were appropriate values, along
a mini-batch training size of 4. No regularization was applied. The
optimizer function Adaptive Moment Estimation outperformed
Root Mean Square Propagation. Binary cross entropy was set
as loss function, with accuracy as metric. Learning took a
maximum of 100 epochs, stopped by an early callback if the
validation loss did not decrease for two ongoing epochs. The
node within the hidden layers were rectified linear unit-activated
whereas the output nodes’ activation function was sigmoid.
Further hyperparameters and settings were default values of the
keras R package.

Performance assessment was achieved by splitting the training
data into three different, non-overlapping equally proportioned
subsets. Two partitions were used for training and the remaining
one for validation. These three subsets were composed differently
for each of the conducted 333 runs. This 333 times repeated
threefold cross validation yielded a total of 999 predictions.

Data Availability
Code, scripts and files are available under GitHub.2 The
R package phyloseq2ML is available at https://github.com/
RJ333/phyloseq2ML. Sequences were deposited in the NCBI
database under BioProject ID PRJNA632711 and SRA accessions
SAMN14917999–SAMN14918370. The count tables, taxonomy
tables and sample data as well as the thereby generated phyloseq
objects and the machine learning classification result tables were
lodged at https://zenodo.org/record/4062263. Geochemical data
is included in Supplementary Figure 2.

RESULTS

TNT Contamination of Kolberger Heide
Sediments
Of those 150 samples selected for ML, 137 contained munition
compounds: 2-ADNT (127), 4-ADNT (133), 2,4-DANT (67), 2,6-
DANT (52). None of the other munition compounds (2,4-DNT,
2,6-DNT, DNB, TNB, HMX, RDX, Tetryl) were detected in more
than eight sediments (Supplementary Figure 2).

2,4,6-Trinitrotoluene concentration showed a median of 0 and
a mean of 16.29 pmol·g−1 wet sediment among the 150 samples.
It was detected in 68 samples or 45.3% of the samples; TNT
was determined at <25 pmol·g−1 in 65 samples. Therefore, a
binary classification approach was adopted. Notably, the highest
value of 1,587 pmol·g−1 was found in sediments retrieved from
a detonation site, where exposed munition chunks were spread
over the sea floor.

The heavy metals mercury and lead were used as proxies
for primary explosive compounds in conventional ammunition,
which potentially could be present at the dumpsite; chemical
warfare agents can contain arsenic. Mercury contents ranged
in Kolberger Heide sediments from 3.7 to 4,503 µg Hg·kg−1

2https://github.com/RJ333/Kolberger_Heide_manuscript
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dry sediment, with a median of 21 µg Hg·kg−1 and 15
samples exceeding 450 µg Hg·kg−1. The maximal content of
4,503 µg Hg·kg−1 was found during a line transect, where
samples were taken every 20 m. The neighboring samples to the
maximal value contained 8 and 12 µg Hg·kg−1, demarcating a
precise area of elevated Hg presence. Arsenic appeared on level
between 0.4 and 4.8 mg·kg−1 with a median of 0.8 mg·kg−1 and
lead ranged from 1 to 75 mg·kg−1 with a median of 2 mg·kg−1.

Community Data Predicts TNT Presence
More Accurately Than Sediment Data
The microbial community composition of the sediments was
investigated for measurable effects caused by the TNT. A total
of 259 16S rRNA gene libraries were selected to be appropriate
for ML purposes. The selected libraries had a mean size of
82,219 reads, with the 95% confidence intervals being 78,115
and 86,322 reads (Supplementary Figure 3). About 97.02% of
the reads were annotated as Bacteria, 2.43% as Archaea, and
0.39% as Eukaryota. Averaging across libraries from the same
sediment ultimately yielded 150 community tables comprising
66,230 ASVs, 1,703 genera, and 78 phyla available for machine
learning. Optimization of the hyperparameters was performed
using the validation set with taxa at ASV rank. The achieved
validation and prediction scores were averaged over the six
training/test splits for each data set.

Taxonomic ranks were then compared for their potential
to predict the presence of TNT. The hierarchical structure of
the taxonomic annotation allowed investigating the influence
of pooling the relative abundance by taxonomic ranks to
identify the best compromise between the number of taxa

FIGURE 1 | Violin plots with median and interquartile range of correct TNT
classifications of the validation set. The relative abundances were
agglomerated on the taxonomic ranks. The dot represents the mean balanced
accuracy; the classification results of the six different data set splits were
averaged. n indicates the number of models calculated, Taxa represents the
number of variables for each rank.

and the information contained in inter-taxa abundance
variability (Figure 1). The highest mean balanced accuracy was
achieved by ASV (82.9%) and decreased toward the broader
order rank (74.9%). Training with relative abundance per
class (78.8%) and phylum (76.9%), however, still resulted in
acceptable predictions, yielding more accurate classifications
than on order rank. The genus rank (80.6%) was chosen for
further analyses; a compromise between the best accuracy,
reduced number of variables and the possibility to add
community compositions from other sources, as ASVs are
unique to this data set.

A selection of eight input data sets was utilized for
TNT prediction (Figure 2). “Full sediment” contained 41
independent environmental variables and “Full community”
included 542 genera (applying a 0.08% relative abundance
threshold). The mtry factor 5 allowed for 115 genera being
considered at each node. The 0.08% threshold yielded the second
highest mean balanced accuracy among the examined threshold
values, and showed a more distinct classification distribution
(Supplementary Figure 4), therefore it was applied to all
community data sets presented here.

With reference to the validation set, selections of either the
most important 25 genera or 9 sediment parameters yielded
more accurate classifications than using all variables; the lowest
scores were achieved by using the remaining non-important
variables. In this order, the mean balanced accuracy for sediment
data decreased from 78.4 over 77.2 to 71.7% and for the
community data from 83.2 over 80.6 to 72.6%. Using the
most important variables from both data sets combined also
improved the classification from 80.5 to 83.0%. The “Top25
community” represents 4.6% of the genera and increased the
balanced accuracy, whereas the other 517 genera significantly
reduced it. For each variable selection (Full, Top, and Non-Top),
the community data performed better than the corresponding
sediment data. The combined input data achieved classifications
similar to community data alone.

2,4,6-Trinitrotoluene was present in 44–48% of the samples
in the six training data sets. The holdout set contained fewer
samples; consequentially one sample’s classification represented
>2.5% accuracy. This led to more widespread class ratios, from
36 to 52%, and thus a higher standard deviation. Best predictions
reached 83.8% with “Full community” and 82.7 and 82.6% with
“Full combined” and “Top combined”, respectively. Predictions
on the holdout set were slightly better than the corresponding
validation scores, except for “Top combined” and “Top genus”.
The largest difference between validation and holdout scores was
an increase of 4% for “Non-Top25 community”. Validation and
holdout scores met the same range from 70 to 85%.

The means of the balanced accuracies in the validation set
were significantly different from each other (adjusted p < 0.005)
except “Full community” to “Full combined” (D) and “Top25
community” to “Top combined” (E) in the validation set. This
extended to all groups in the holdout set except for “Full
combined” to “Top combined” (J).

The distribution of information among samples was then
assessed by comparing the validation scores for the six training
data sets. The results showed that “Full community” was more
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FIGURE 2 | Correct TNT classifications per input data in the validation and holdout test set. Red indicates community data, blue symbolizes sediment data and
red-blue combined variables. Of each data type, either all variables were utilized by the model (“Full”), or only the best variables based on variable importance (“Top”)
or all variables except Top (“Non-Top”). Classification performance is displayed as mean and standard deviation of balanced accuracy, the classification results of the
six different data set splits were averaged. The validation values are out-of-bag estimates. The letters indicate which groups were significantly (adjusted p < 0.005)
different to all other groups within the data set. The shaded area indicates the distribution of samples containing TNT among the six data set splits. n indicates the
number of models calculated.

accurate for each set (Figure 3). Scores varied by up to 5%
between the datasets for “Full sediment” (75.1–80.5% mean
balanced accuracy) and “Full community” (77.9–83.2%), but
the variation was not well correlated between sediment and
community data. For example, comparing data set 1 and 2,
the “Full sediment” classification performance dropped whereas
the “Full community” balanced accuracy was maintained. These
findings signal that the available sediment parameters and taxa
abundances did not supply equivalent information.

Grain Size Distribution as the Major
Driver of Community Composition
After successful classifications were achieved using community
information, TNT was investigated with regard to its potential
as important driver of the microbial community composition; as
such influence would facilitate the process of prediction. PCA
ordination of the Top25 community was performed using the
sample proximity obtained by an unsupervised RF classification.
PC1 explained 56.1% variation. Along PC1, the grain size
fractions <125 µm were separated from those >250 µm
(Figure 4A). The latter spread along PC2, which explained
18.8% variation. The former fractions co-correlated with further
sediment parameters; some of those were important variables
for RF when using Full sediment (vanadium, cobalt, and total
nitrogen). Significant correlations with munition compounds
were not found. The highest accordance among munition

compounds with the community composition ordination was
shown by 2,6-DNT with R2 of 0.033 and p of 0.07. TNT
(R2: 0.014, p: 0.38) was detected across all clusters, but
predominantly present in mine mound samples. Only a few core
samples contained TNT.

The multicorer samples comprised smaller sized particles
than most surface sediments. They were sliced at 2 cm, from
the sediment-water interface to 22 cm depth (Figure 4A, West
and East areas, no black outline) and formed a prominent
cluster, with communities driven by the grain size distribution
and presumably the redox potential declining with depth. The
region did not play a role for clustering, as cores were collected
kilometers east and west of the mine mound, which itself is
centrally located in the restricted area (Supplementary Figure 1).

The samples from the mine mound area (a cluster of about
70 mines) were mostly taken within a defined distance of 0–
5 m to a mine. Although this is a part within the restricted area,
the communities mostly grouped together. Several transects with
sampling intervals of 20 m were conducted across the restricted
area, surrounding the mine mound (Figure 4A, Restricted Area,
no black outline). The corresponding communities formed a
distinct cluster, too. Three more samples with no detected TNT
were collected multiple kilometers away toward northwest. To
validate these results using a more traditional approach, the same
data was subjected to a non-metric multidimensional scaling
(nMDS) using Bray–Curtis dissimilarity, which lead to the same
conclusions (Supplementary Figure 5).
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FIGURE 3 | Violin plots with median and interquartile range of correct TNT
classifications for six different validation sets. Full community (red) always
performed better than Full sediment (blue) and their performances changed
independent of each other toward the different validation set compositions.
The dot represents the mean balanced accuracy; n indicates the number of
models calculated.

An ordination based on only the sediment parameters
including the munition compounds was generated to compare
with the microbial community ordination. Again, no separation
based on TNT presence was observed (Supplementary Figure 6).
Furthermore, the mine mound and the overall restricted area
sediments clustered alongside, with eastern samples placed in
proximity. In this ordination the multicorer samples to the east
and west were clearly separated, with west and far northwest
samples forming a remote cluster.

The seasonal conditions during sampling should be
mentioned, as they might have influenced the community
composition more strongly than the sediment parameters.
The restricted area was sampled mostly manually in June and
September 2017 at the sediment surface by divers; three more
sediments were obtained using Van Veen grab samplers. The
mine mound samplings by divers took place in December 2016
and November and December 2017, which could explain the
division between mine mound and restricted area microbial
communities. The cores were collected on 1 day in October 2017.

Random Forest was able to predict TNT using only
sediment parameters, although no driving influence by munition
compounds were detected in the ordinations. Therefore,
Spearman rank-order correlation was performed to investigate
which variables significantly (p < 0.01) correlated with TNT.
A cluster of munition compounds consisting of TNT and its
metabolites 2-ADNT, 4-ADNT, 2,4-DANT, and 2,6-DANT was
identified, which also showed a loose positive correlation with
RDX (Supplementary Figure 7). Another cluster consisted of
DNB, HMX, TNB, 2,4-DNT, and 2,6-DNT. The latter two
munition compounds are co-contaminants of TNT. However,
the munition compounds were not part of the RF input

data set. Furthermore, some weaker correlations with TNT
were identified.

The results confirmed that community compositions were
primarily controlled by factors other than the presence
of TNT; therefore, supervised classification was applied to
still extract such a potential impact. Both community and
sediment data-based ordination demonstrated as well, that the
distribution of TNT containing samples was appropriate to utilize
machine learning.

Community Information Important in
Combined Data Sets
Foregoing results indicated that a potential impact of TNT
was masked by stronger drivers. Therefore, it was essential to
investigate the variables that enabled RF predictions. Potential
microbial fingerprints (in case of community data) indicative for
the presence of TNT were examined. The variable importances,
extended by maximal relative abundances and taxonomic lineage
of the genera are provided in Supplementary Figure 8.

The most supportive genera (Figure 5) were Cocleimonas
(1.65% maximal relative abundance), the unclassified
Anaerolineae SBR1031 A4b (0.11%) and an unclassified
Gemmatimonadaceae (0.38%). Relative abundances of the Top25
genera ranged from 5.65% for the unclassified Cyanobacterium
Sericytochromatia to 0.09% for the unclassified Planctomycete
Gimesiaceae. The important sediment variables contained grain
size fractions, elemental contents, and total nitrogen as a sum
parameter for various nitrogen compounds. Among these,
arsenic and the 63–125 µm fraction were most important. This
grain size fraction correlated with sum parameters of sulfur and
carbon and element contents of e.g., molybdenum and uranium
in direction of the multicorer samples.

The 50 most important Full combined variables were then
compared against the foregoing top Full community and Full
sediment variables. Interestingly, out of 50 variables only
6 were sediment parameters [arsenic (#9), zinc (#21), 63–
125 µm fraction (#35), vanadium (#40), mercury (#45), and
cobalt (#48)], all of them were part of the Top9 sediment.
The achieved classification score of Full combined was as
accurate as by Full community input (Figure 2). The 44
genera included all of the Top25 community genera. Further
genera were related to them on family or order level, for
example Flavobacteriaceae, Clostridiales, Sphingomonadaceae,
and Desulfobulbaceae. Overall, recovered variables in the
combined data set were as important as in individual data
sets. Sediment importance ranking concurred, although they
were calculated using two different methods for Full community
and Full combined.

Processing of All Samples Depends on a
Combination of Important Variables
To understand the model’s approach to classify the samples and
to validate a potential indicative fingerprint, the reasons for the
determination of important variables had to be identified. By
analyzing their relative abundances, it became clear that 23 of
25 important genera were in average more abundant in surface
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FIGURE 4 | Principal component analysis (PCA) ordination based on the abundance of the most important 25 genera. Dissimilarity between samples was calculated
using the proximity matrix of an unsupervised random forest. (A) The microbial communities were colored by sample area and shaped to indicate the presence of
TNT. The length and shade of correlating sediment parameters (p < 0.001, R2 > 0.3) represents the goodness of fit. The black outline marks East (yellow) and West
(purple) samples which were not multicorer samples. Similarly, the outline marks Restricted Area samples that were not part of a transect. (B) Using the same
ordination as in panel (A), the fraction of misclassifications per 1,000 (RF, top) and 999 (ANN, bottom) predictions is displayed for each sample. Light blue colored
samples were always correctly predicted, black displays consistently misclassified samples. Please note: the y-axis [PC2 in panel (A)] was stretched to
accommodate the results from both methods.

than core samples, the opposite was true for the clostridium
Anaeromicrobium and TA06 (Supplementary Figures 9I,Y).

Although the abundance of the most important Cocleimonas
could be very low in samples regardless of class, it mostly
occurred in samples with TNT. Second most important
Anaerolineae SBR1031 A4b proved to be more abundant overall
in samples with TNT. Clade TA06, however, was found in as
few as 12 samples, and was abundant in very similar sediments
of both classes (Supplementary Figures 9H,P,Y). The presence
of some genera was linked to grain sizes: Cobetia was present
in medium to finer sediments, Colwelliaceae on the contrary
in coarser samples (Supplementary Figures 9C,G). This goes
along with the finding that in a combined data set the grain size
information was not as important anymore. But other important
genera such as the up to 4.1% abundant Maribacter, Maritimonas
(3.5%), and Blastopirellula (4.6%) were present in 131–142 of 150

samples (Supplementary Figures 9B,D,E). In a similar fashion,
the concentrations of sediment parameters were displayed in
Supplementary Figure 10.

RF Predictions Were Consistent, With
Transect Samples Being Most
Challenging
With achieved classification scores for the presence of TNT well
above 80% the inner works of the model for the important
variables became understandable, but additional information on
misclassified samples was required. By recording the mean of
1,000 predictions, it was possible to identify consistently and/or
incorrectly classified samples (Figure 4B).

Random Forest had cumulatively 24 of 150 samples
misclassified (84% accuracy), including 5 of 35 core samples
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FIGURE 5 | The variable importance and p-values for the classification of TNT presence. Twenty-five genera of the Full community and nine sediment parameters of
Full sediment were selected. The most detailed taxonomic annotation was provided in case none was available at genus rank. Importance and p-values were
generated after Altmann (Full sediment) and Janitza (Full community) for six data splits and subsequently averaged.

and 6 of 58 sediments near the mine mound. These predictions
were robust; a classification was either wrong or correct,
taken 0.5% tolerance into account. Only four samples showed
varying classifications, being incorrectly classified 1.3, 71, 79, and
93% of the time.

A PCA ordination based on a TNT classifying model showed
the attempt to cluster by class: clusters in top right and bottom
center were predominantly TNT-present and in the top left
mostly TNT-absent (Supplementary Figure 11). The center
region displayed communities of both classes intermingled.
Samples of all areas were observed there, but those from the
restricted area were most present with both classes. The samples
in the center region were more often misclassified, mostly
predicted as TNT-absent. Finding two separate clusters for TNT-
present samples indicated that two distinct groups of important
variables contained in the model were required to achieve
classifications of those samples.

The restricted area achieved the highest misclassification
rate. Within a total of 51 sediments for this region, all 13
misclassifications could be attributed to 41 samples collected by
four transects (Supplementary Figure 11, Restricted area, no
black outline, see also Figure 4A). The 200 m long transects, each
consisting of 9–11 sampling points, covered different sections of
the restricted area.

In general, the less abundant class in a given region is
prone to misclassification; however, minority class samples were

also predicted correctly. The inconsistently classified samples
can be imagined close to the decision boundaries between
predominantly “present” and “absent” groups (Figure 4B, RF).

The robustness test utilizing an ANN gathered 70 wrongly
predicted samples in 999 classifications. Sixty-four of those were
not robust. More specifically, 30 samples were misclassified less
than 10% of the time and another 11 samples were almost more
frequently than 99.5% misclassified. Furthermore, all samples
incorrectly classified by RF were misclassified by the ANN, too.
Regarding the higher prediction variance of the ANN it should be
noted that RF is an ensemble classifier (see section “Discussion”).

TNT Metabolites Containing Samples
More Likely to Be Classified False
Positive
The presence of ADNTs or DANTs in sediments indicates
that TNT had been present. It was hypothesized that such
former TNT-containing sediments might harbor community
compositions which “look like” TNT was still present after its
dissipation due to resilience. In consequence such samples should
be predicted falsely positive. A “clean” sample on the other hand
contains neither TNT nor its metabolites, indicating that it was
not contaminated with TNT for a longer time.

The RF models predicted eight false positives; two of them
were not consistently misclassified (Figure 6). Interestingly,
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FIGURE 6 | Misclassification rates of samples which were predicted “TNT present” but did not contain the explosive (False positive prediction). Red indicates whether
a false positive samples contained TNT metabolites, i.e., ADNTs and DANTs. Samples containing metabolites were more likely to be misclassified as false positives.

seven of the false positives actually contained TNT metabolites
and the one “clean” sample was only 1.3% times incorrectly
classified. The ANN predicted 36 false positives, 5 of those
without metabolites. Their prediction errors ranged from 0.3
to 25% with an average of 10.6%, compared to a mean
prediction error of 38.3% for the remaining false positives with
metabolites. Furthermore, prediction rates for false positives did
not correlate with the individual or summed concentration of
TNT metabolites.

It was additionally verified whether a higher TNT
concentration goes together with a stronger impact on the
community composition, thereby decreasing the probability
of a false negative prediction. However, the RF predictions
contained only two suitable false negative samples. For ANN
a higher TNT concentration did not lead to better prediction
rates of the sample.

DISCUSSION

In this study, microbial communities were used to predict the
presence of TNT in sediments (at pmol·g−1 levels) in and
around a munitions dumpsite in the German Baltic Sea with
about 84% balanced accuracy. Genera and sediment parameters
being most important to reach this value, and the samples that
were a challenge to the models, could be identified. Moreover,
many TNT false-positive samples had traces of TNT metabolites,
indicating that microbial community compositions may conserve
information of former TNT presence for a longer period.

Model-Relevant Genera Were Related to
TNT-Degrading Taxa
A selection of 9 sediment parameters or 25 bacterial genera
predicted TNT as well (holdout set) or even better (validation)
compared to using all variables. This is a result similar to the
results of Thompson et al. (2019), who conducted a study to

predict concentrations of dissolved organic carbon using most
effectively a subset of the microbial community compositions of
a plant litter decomposition experiment. One reason for such
improved performances could be a lower likelihood of overfitting.

The subset was identified by the variable importance
metric, which indicates correlation with the response variable.
A potential causation between TNT presence and identified
important genera is attributable to TNT as a source for biomass
generation, energy supply or toxic stress (George et al., 2009;
Gallagher et al., 2010). The bacterial enzymatic degradation of
TNT is mediated by nitroreductases. Nitroreductases and other
common enzyme families have been reported as responsible
for the reduction of nitro groups (Esteve-Núñez et al., 2001),
which are among the first steps of microbial TNT transformation.
Such enzymes are widely distributed among microorganisms,
rendering microbial TNT metabolization possible in marine
sediments (Roldán et al., 2008). In fact, TNT degradation
products as ADNTs and DANTs were present in Kolberger
Heide sediments. The ability to degrade TNT was specifically
proven for more than 20 different genera, ranging from anaerobic
members of the family Clostridiaceae to aerobic members of the
family Pseudomonadaceae (Esteve-Núñez et al., 2001). Relatives
of these organisms are important for the models of our study;
for instance, the Top25 and Top50 members Anaeromicrobium
and Clostridiaceae sensu stricto 13, respectively, are phylogenetic
members of the Clostridiaceae. Top25 Altererythrobacter is
also phylogenetically related to TNT-degrading Sphingomonas
sanguinis (Habineza et al., 2017). However, deriving bacterial
activities from phylogenetic relations has to be handled carefully
as phylogeny can be an unreliable indicator of bacterial ecology,
although tools like PICRUSt2 demonstrated the prediction
of the functional potential of a 16S rRNA gene-derived
community profile (Douglas et al., 2020). Thus, it is also
possible that the obligate anaerobic Anaeromicrobium acted
as redox indicator for reduced conditions in the investigated
sediments or that the abundance of the identified taxa would
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also have correlated with the presence of naturally occurring
aromatic compounds.

It was furthermore shown that multiple genera were required
to separate classes in all samples, because some important
taxa, such as clade TA06, were only detected in 12 samples.
Consequently, their contribution to classification was limited.
However, these genera were likely important, because they
allowed classification of otherwise similar samples. In this regard,
other variables could not replace this information.

The prediction of TNT was still successful using the available
sediment information alone. We assume that, in this case, many
samples were separated first and foremost by the grain size
distribution, as the finer multicorer samples contained many
TNT-free sediments, compared to the coarser mine mound
samples, consisting of many TNT-contaminated sediments. The
other parameters further on separated within those groups
specifically. In order to supplement microbial community
variables one might intuitively assume that at least grain size
and, where appropriate, redox conditions should be measured as
major proxies to inform the model. However, the combined usage
of community compositions and sediment parameters did not
lead to predictions more accurate than by using the community
data on its own. It turned out that the second most important Full
sediment variable (63–125 µm grain size fraction) was only the
35th most important Full combined variable and the other grain
size fractions were not included in the Top50. These findings
show that taxa abundances can replace the grain size information
because it is reflected by the community data.

More information would be required to conclusively
determine the reason why samples from the mine mound area,
which is located in the center of the restricted area, formed a
distinct cluster in the unsupervised PCA ordination (Figure 4A).
This was noticeable, as the transect samples formed another
distinct cluster, though the transects geographically encircled
the mine mound. We suggest the sampling of the mine mound
in a different season than the conduct of the transects as a
main reason for varying assemblages (Meyer-Reil, 1983), but
the proximity to mines as factor cannot be ruled out. Such an
influence, however, was not displayed by the measured sediment
variables (Supplementary Figure 6), where sediments from the
mine mound and the restricted area clustered more similarly.

The Microbial Fingerprint Requires
Further Data to Become Indicative
A meaningful indicative microbial fingerprint is equivalent with
the abundances of important variables per response class, if
they are causally related. Yet the clade TA06 was detected in
12 of 150 samples, which increases the likelihood of being
only coincidentally useful; in other words, the sample size is
too small to know whether overfitting occurred (Dietterich,
1995). Thus, there is a need to reduce the potential of
spurious relationships. To receive a reliable, generalizable and
informative fingerprint we propose to: (a) maximize the sample
to variable ratio by using a minimum number of taxa while still
reaching acceptable predictions, e.g., using backward elimination
(Guyon et al., 2002); (b) add samples of further targeted sites and

conditions, which cover all response classes; and (c) perform
regression instead of classification as long as the concentration
of the response variable is appropriately distributed and covered.
Regression yields a more informative relation between response
and community composition and avoids arbitrary limits between
response classes.

In our study, the 150 samples were split into six different
training and test sets. The test set is usually the ultimate
benchmark for the predictive potential of the model, but it was
likely that not all samples in our data set were equally different
from each other. Therefore, the hyperparameters as well as the
important variables were based on averaged results from the six
sample set compositions. This approach can be seen as extra layer
of repeated cross validation and helps to maximize the generality
of the fingerprint and the chosen settings. It also resulted in
more reliable prediction accuracies, as for an individual sample
split mean balanced accuracies >90% were achieved. Important
is that by this approach a training sample of one split is also a
test sample of another split. This results ultimately in information
leakage, although in a rather indirect way (Kaufman et al., 2011).
We argue that this approach is justifiable for our small data set,
where the detection of a generalized TNT-indicative microbial
fingerprint as proof of principle was the priority. But in larger
data sets, or to compare different prediction methods, regular
approaches with a fixed hold out test set should be applied. It
should also be remembered that if such a model would be actually
deployed, the data to be predicted, e.g., from the next sampling
campaign, would not yet exist.

With regard to an indicative fingerprint, we conclude that
the presented data set probably contains essential parts of it,
but is not yet suited to distinguish accidentally valuable from
truly influenced variables. However, we conclude that the first
steps were successfully taken to determine a microbial fingerprint
indicative of TNT contamination in Kolberger Heide.

An Indicative Microbial Community
Fingerprint May Differ Between Habitats
Given the existence of such a fingerprint, part of its value is
to use it for other areas of interest. In this regard, the usage
of microbial community compositions has both advantages and
drawbacks. Advantageous is that the features were assigned
at least a partial taxonomy; thus, are interpretable and
relatable to literature or cultivation dependent complimentary
investigations. Yet, using taxa infers using a proxy, depending
on many influences such as nutrients, salinity, redox, pH,
temperature (Lindh and Pinhassi, 2018), or as described in this
study, grain size.

In order to create meaningful fingerprints, communities likely
need to originate from a somewhat similar habitat under specific
conditions. But, importantly, our models still could predict
using data from various habitats—as from deeper multicorer
and surface sediment samples—albeit the variable importance
would be a mixture of habitat fingerprints and therefore less
interpretable. Additionally, the important taxa might not occur
everywhere. To address this issue, higher tax ranks can be
used, which are more likely to be found in various areas.
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Ghannam et al. (2020), for instance, used phyla to differentiate
geographic locations on global scale. In our spatially restricted
samples the phylum rank also achieved 76.9% mean balanced
accuracy, which is still well above coincidence. But the context of
the response variable should be considered, as a higher taxonomic
rank is reasonable to cover taxa globally. However, in a previous
study we detected distinct reactions to the herbicide glyphosate
at OTU-level for Pseudomonas, which were not distinguishable
anymore on genus level (Janßen et al., 2019a). An alternative is
to combine important variables from all taxonomic ranks and
train with those. The usage of ASVs in this study would have led
to slightly more accurate predictions, but the goal was to utilize
a data set which could be amended by additional community
compositions targeted with various primer sets or processed
by other bioinformatic pipelines. The resulting additional taxa
would be incompatible with the already generated ASVs, but
could be combined on genus rank.

Furthermore, it is conceivable to target functions (genes or
transcripts) directly by shotgun sequencing instead of using taxa
as proxy. Alneberg et al. (2020) demonstrated that functional
genes from metagenome assembled genomes predicted salinity
and depth in Baltic Sea waters. For our study, metatranscriptomes
would have been very helpful to identify the used (expressed)
degradation pathways among the diverse functional potential
of sediment communities. However, this approach would have
required that the sediment samples were conserved for high-
quality mRNA retrieval which, unfortunately, were non-existent.

Misclassified Samples Define Further
Sampling Campaigns
Two mechanistically different ML algorithms were able to predict
the presence of TNT in Kolberger Heide sediments using 25
genera. The samples misclassified by RF were also misclassified
by the ANN, indicating that the data were insufficient in that
case, independent of the algorithm in use. RF worked directly
with the relative abundances as input, a form of transformation or
normalization could have had a positive effect on the prediction
scores (Gloor et al., 2017). However, the performed z-score
transformation for the ANN model input at least did not excel the
RF predictions (Supplementary Figure 13). The more consistent
predictions of RF stem in part from it being an ensemble classifier
(Breiman, 2001). Thus, all the individual predictions of the tree
models are not published, as they are for ANNs, but reduced to a
single prediction based on a majority vote. As ANNs do not have
this leveling mechanism by default, more variance in cumulated
classifications was observed.

It seems reasonable to explore the microbial community
composition by proximity matrix-based ordinations, using
the same distance metric that is used for the supervised
classification. It allows correlating environmental variables,
the addition of context data and provides an understanding
on the data set dynamics. Combined with the classification
robustness it becomes a powerful approach to determine model
limitations as well as their overcoming (e.g., more transect
samples, Supplementary Figure 11). It can be compared to the
supervised ordination, which indicates the separation by TNT

presence or absence and confirmed that many of the samples
consistently misclassified were not well separated. For more
insights, decision boundaries can be added [for one model at a
time (Hastie et al., 2009)].

Resilience of TNT Presence as a Tool to
Detect Historical Contaminations
In addition to investigating whether the composition of microbial
communities can indicate TNT-contaminated sediments, it was
of interest to us whether these indications could be maintained
for a longer period of time, even if the sediment only contained
TNT metabolites or was already TNT-free again. In this case,
samples would be characterized as being false-positive. Indeed,
based on our approach it became apparent that especially
samples containing no metabolites at all had a lower chance of
a false positive prediction. Unfortunately, the sample size did
not allow a meaningful test of significance yet. The possible
implications are relevant though, as shown by Smith et al. (2015),
who successfully classified microbial communities affected by
the Deepwater Horizon oil spill. Their RF models classified
samples falsely positive, which were once contaminated, yet
subsequently the hydrocarbon concentrations had returned to
background levels.

To investigate such a phenomenon based on ecological
resilience (Shade et al., 2012) at Kolberger Heide, it should
be considered whether TNT and its metabolites result in
similar variable importance and fingerprints due to their
structural similarity as nitroaromatic compounds. In such a
case, a test of true resilience after a TNT contamination—
and therefore the time span to detect such—would require to
work with once contaminated samples then free of TNT and
its metabolites. Another reason for a prolonged taxa detection
after TNT has been degraded could be a metabolic shift
toward other carbon and energy sources. Such a shift from
denitrification to fermentation was described by Orsi et al.
(2017). Methodologically, it should also be ensured that the
TNT metabolites were not formed e.g., in the water column and
subsequently adsorbed to the sediment.

Importance of Microbiological Surveys
as a Key Component in Environmental
Monitoring
The Kolberger Heide munitions dumpsite is a stressor to blue
mussels (Mytilus edulis, Strehse et al., 2017; Appel et al., 2018)
and dab (Limanda limanda, Koske et al., 2020); our study
verified the presence of explosives and their transformation
products in sediments as well. Furthermore, mines at Kolberger
Heide have been proposed as point sources of mercury
due to, e.g., mercury(II) fulminate fuses (Bełdowski et al.,
2019). However, despite spottily occurring concentrations up
to 4,503 µg Hg·kg−1 dry sediment, no correlation with the
distance to mines was detected (Supplementary Figure 12).
Additionally, most mines on-site are registered as discarded
munition material (Kampmeier et al., 2020). In comparison to
unexploded ordnance, those were not fused and therefore should
not contain mercury(II) fulminate.
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2,4,6-Trinitrotoluene was found strongly correlated with
DANTs and ADNTs, though (Supplementary Figure 7). The
presence of TNT metabolites proves that Kolberger Heide also
represents a disturbance toward the microbial community, as
it reacted to the explosives. But it is not clear yet to which
extent the community is affected. A potential impact of TNT
was surpassed by the main driving grain size distribution and
correlating factors, which is expected for such low levels of TNT.
Wikström et al. (2000) reported small amounts of degradation
and increased microbial growth following the addition of TNT
to lake microcosms. However, they did not find a permanent
alteration of microbial communities based on random amplified
polymorphic DNA analysis. In a study evaluating the toxicity
of Harz soil extracts containing TNT, the Aliivibrio fischeri
luminescence test (EN ISO 11348) reported a long-term EC20
of 60–90 ng·g−1 or 264–396 pmol·g−1 [assuming 1 mL = 1 g
(Frische, 2002)]. Such concentrations were met in the Kolberger
Heide in exceptional cases, e.g., at the detonation site. A summary
of various studies investigating a disturbing or toxic impact on
soil microorganisms can be found in the article of Kuperman et al.
(2009), although effects were only observed at soil TNT content
103–106-fold higher than measured in the current study.

The information of a potential munition compounds impact
could have been recorded by microbial communities. Such
information could be utilized in cases were direct measurements
are problematic to realize: it was reported that TNT is hard
to detect just in centimeters distance from containments
because it slowly dissolves but is rapidly transformed or bound
to sediment (Porter et al., 2011; Gledhill et al., 2019). In
fact, TNT can be bio-transformed in minutes (Elovitz and
Weber, 1999). Therefore, measured TNT concentrations may
not fully capture the impact toward the environment and the
microbial community specifically. Furthermore, it should be
kept in mind that many more sediments contained munition
compounds other than TNT; the impact on the environment
has to be considered for all munition compounds in terms of
combined effects and quantity, especially with the background
of continuously corroding of metal housings. There is even
an urgent demand to merely identify the actual munition
compounds composition of the dumped ammunitions (Beck
et al., 2019). The release of munition compounds might also be
intermittent (“sudden release”), which emphasizes the advantages
of a resilient indicative fingerprint.

We suggest that microbial community data should be
included with monitoring strategies and could potentially act
as an information repository to complement the snapshot
which is generated by standard monitoring methods. In
return, monitoring provides a standardized solution to retrieve
more and even specifically required samples to overcome the
most severe hindrance for ML: limited sample size. With
sufficient data, supervised machine learning could identify
impacts of contaminants without being main community
drivers. Depending on available context information, the
sequenced community data can be utilized to train for further
variables as Smith et al. (2015) demonstrated, when they
predicted 18 highly significant and 8 significant geochemical
features such as element concentrations or conductivity of

groundwater wells using community data. In this study, the
munition compounds showed challenging and partly correlated
distributions with strongly imbalanced classes, therefore, the
prediction of other compounds than TNT led to overoptimistic
results. However, the important consequence is that a single
community composition can be utilized as source of information
on potentially all relevant shaping environmental factors.
This affects the cost/benefit ratio, where the costs for the
applied munition compound detection method alone are in
the same order of magnitude as those for 16S rRNA amplicon
sequencing. An extensive discussion on the opportunities of
including sequencing methods into monitoring strategies and
a cost comparison for analytical and sequencing methods are
presented in Janßen (2020).

It should be reminded, that the herein presented results
were achieved using a Kolberger Heide site-specific data set.
The models generated based on these data sets do not apply
to other geographical areas, yet. However, this limitation is
solely due to sample size and distribution and justifiable for
a proof of principle. By producing more data from different
geographic areas, target compounds and habitats, models can
be trained for e.g., the detection of TNT in the Baltic Sea.
These models then could be used for monitoring as described
above. With regard to munitions, the problem of sea-dumped
and leaking munition is not restricted to the Kolberger Heide,
yet rather a global problem (Strehse et al., 2021) that already
affects humans via incorporation into the marine food chain
(Maser and Strehse, 2021).

CONCLUSION

This study demonstrated successfully the prediction of TNT
presence in Kolberger Heide sediments using microbial
community information, and highlighted regions of the
munitions dumpsite where further samples should be
collected. A possible TNT indicative fingerprint on genus
rank was identified as successful proof of principle. Finally, a
potential for TNT-dissipation resilient community compositions
was observed.

The importance of environmental monitoring including the
implementation of the aforementioned approach was laid out,
harnessing its predictive potential. In this regard, resilient
microbial communities would allow to fill gaps between sporadic
samplings; thus, to identify contamination events not measurable
at all times. As surplus, each monitoring event would generate
more training data for more accurate predictions. This may
ultimately lead to a more fundamental monitoring of marine
ecosystems; based on highly resolved biological variables and
potentially automatable or autonomously operable.
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