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The concurrence of structurally complex petroleum-associated contaminants at
relatively high concentrations, with diverse climatic conditions and textural
soil characteristics, hinders conventional bioremediation processes. Recalcitrant
compounds such as high molecular weight polycyclic aromatic hydrocarbons (HMW-
PAHs) and heavy alkanes commonly remain after standard soil bioremediation at
concentrations above regulatory limits. The present study assessed the potential of
native fungal bioaugmentation as a strategy to promote the bioremediation of an aged
industrially polluted soil enriched with heavy hydrocarbon fractions. Microcosms assays
were performed by means of biostimulation and bioaugmentation, by inoculating a
defined consortium of six potentially hydrocarbonoclastic fungi belonging to the genera
Penicillium, Ulocladium, Aspergillus, and Fusarium, which were isolated previously from
the polluted soil. The biodegradation performance of fungal bioaugmentation was
compared with soil biostimulation (water and nutrient addition) and with untreated
soil as a control. Fungal bioaugmentation resulted in a higher biodegradation of total
petroleum hydrocarbons (TPH) and of HMW-PAHs than with biostimulation. TPH (C14-
C35) decreased by a 39.90± 1.99% in bioaugmented microcosms vs. a 24.17± 1.31%
in biostimulated microcosms. As for the effect of fungal bioaugmentation on HMW-
PAHs, the 5-ringed benzo(a)fluoranthene and benzo(a)pyrene were reduced by a
36% and 46%, respectively, while the 6-ringed benzoperylene decreased by a 28%,
after 120 days of treatment. Biostimulated microcosm exhibited a significantly lower
reduction of 5- and 6-ringed PAHs (8% and 5% respectively). Higher TPH and HMW-
PAHs biodegradation levels in bioaugmented microcosms were also associated to
a significant decrease in acute ecotoxicity (EC50) by Vibrio fischeri bioluminiscence
inhibition assays. Molecular profiling and counting of viable hydrocarbon-degrading
bacteria from soil microcosms revealed that fungal bioaugmentation promoted the
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growth of autochthonous active hydrocarbon-degrading bacteria. The implementation
of such an approach to enhance hydrocarbon biodegradation should be considered
as a novel bioremediation strategy for the treatment of the most recalcitrant and highly
genotoxic hydrocarbons in aged industrially polluted soils.

Keywords: aged-polluted soil, high molecular weight polycyclic aromatic hydrocarbons, mycoremediation,
native-fungal-bioaugmentation, fungal-bacterial interactions, indigenous hydrocarbonoclastic fungi

INTRODUCTION

The bioremediation of soil polluted with petroleum hydrocarbon
has many advantages compared to physicochemical techniques,
but it also presents challenges due to the heterogeneity
and variable concentration of contaminants, as well as the
diverse site environmental conditions (Atlas and Philip, 2005;
Singh, 2006). The tendency of heavy hydrocarbon fractions
to adhere onto the soil organic and mineral particles, a
process dubbed as pollution aging, reduces their bioavailability
to microorganisms and, consequently, hinders the overall
biodegradation efficiency (Hatzinger and Alexander, 1995). As
a result, biodegradation rates may slow down and end-point
concentrations of heavy petroleum fractions might stabilize at
values that represent an unacceptable risk to the environment
(Nocentini et al., 2000). This scenario is quite common in
soils with a high initial concentration of hydrocarbons (Viñas
et al., 2005a; Ren et al., 2018). In these cases, compounds
that are recalcitrant to biodegradation, such as polycyclic
aromatic hydrocarbons (PAHs) of high molecular weight (HMW,
which have more than three benzene rings), heavy alkanes
(the saturated aliphatic fraction with carbon chain-lengths
that range C30-C40), and the unresolved fraction (complex
mixtures of saturated hydrocarbons), might still be present at
concentrations above regulatory limit values defined in many
countries. Poor biodegradation of hydrocarbon pollutant in
soil conditions is often the result of limited bioavailability and
non-optimal environmental conditions, rather than because of
the lack of biodegrading microflora (Manilal and Alexander,
1991). Therefore, many investigations have focused on the
microorganisms that have an ability to biodegrade residual
hydrocarbons in soil for cleaning up contaminated sites under
growth-limiting conditions (Dhawale et al., 1992; Boonchan et al.,
2000; Zheng and Obbard, 2002). Previous studies have shown
the advantages of fungi over bacteria for the biodegradation of
HMW-hydrocarbons in contaminated soils (Aranda et al., 2017;
Prenafeta-Boldú et al., 2019): (i) secretion of several low substrate
specificity enzymes (e.g., laccases, lignin peroxidases, and Mn
peroxidases) (Harms et al., 2011); (ii) osmo- and xerotolerance
of several fungal species that confers an ability to grow in rather
extreme and fluctuating environments (Worrich et al., 2017;
González-Abradelo et al., 2019; Peidro-Guzmán et al., 2020); and
(iii) the capacity of filamentous fungi to form mycelial networks
that are often hydrophobic and that might cover several hectares
of soil, enhancing the access to hydrocarbon contaminants (Wick
et al., 2007; Furuno et al., 2012; Bielèik et al., 2019). These
abilities are of particular interest in case of the less water soluble

HMW-PAHs, which are strongly adsorbed onto the organic
matter and are therefore less available for microbial metabolism
(Ghosal et al., 2016).

Previous studies have focused on the capacity of white
rot fungi (WRF), generally belonging to the basidomycetes,
to unspecifically degrade PAHs through extracellular lignin-
modifying enzymes (Tortella et al., 2005; Cerniglia and
Sutherland, 2010). However, these abilities might be limited in
polluted soils that are devoid of lignocellulosic matter and/or
humidity, reducing their competitiveness against the resident
microbiota (Marco-Urrea et al., 2015). Other fungal groups,
mainly ascomycetes belonging to the classes Sordariomycetes
(i.e., Fusarium) and Eurotiomycetes (i.e., Aspergillus and
Penicillium), and the former phylum of the zygomycetes,
are found ubiquitously—also in polluted soils—, and can
metabolize a broad spectrum of organic compounds, such
as sugars, cellulose, starch, proteins and lipids, as well as
hydrocarbons, including PAHs, by the action of intracellular
P450 cytochrome monooxygenases (Aranda et al., 2017).
Previous bioaugmentation studies selected autochthonous
saprophytic ascomycetes from soils with a prolonged pollution
history, assuming that they are more likely to survive and
metabolize PAHs than organisms introduced from elsewhere
(Atagana et al., 2006; D’Annibale et al., 2006; Mancera-López
et al., 2008; Fayeulle et al., 2019). However, hydrocarbon
biodegradation in fungi is of co-metabolic nature in most cases
and requires the concurrence of an additional carbon and energy
source. Hence, other microbial populations are needed to further
biodegrade the PAH partly oxidized intermediates. Furthermore,
bioaugmentation with allochthonous fungi has been linked to
both an important increase of heterotrophic bacteria and of
pollutant degradation (D’Annibale et al., 2006; Federici et al.,
2007; Ma et al., 2015). These results pointed to the relevance of
the fungal-bacterial interactions, and to the potential of fungal
inoculants as bioremediation enhancers in polluted soils.

The biochemical mechanisms of extracellular lignin modifying
enzymes (i.e., laccase, manganese peroxidase and lignin
peroxidase) produced by lignin-degrading basidiomycetes
have commonly been described as the prevailing metabolic
routes for PAH biodegradation in fungi (Reddy, 1995; Kües,
2015). However, in PAH polluted soil under field conditions,
lignin modifying enzymes are expressed poorly due to the
scarcity of lignocellulosic substrates, so that these fungi might
be outcompeted by other specialized hydrocarbon-degrading
microorganisms with alternative pathways, such as ring
hydroxylating oxygenases in bacteria, and cytochrome P450
monooxygenases (CYPs) that have been deeply assessed in
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several Ascomycota for PAHs biodegradation (Marco-Urrea
et al., 2015). In fact, CYP enzymes play pivotal roles in
fungal metabolism, encompassing housekeeping reactions,
detoxification of chemicals, and adaptation to environmental
conditions (Durairaj et al., 2016). Among Ascomycota fungi,
CYP-mediated hydrocarbon biodegradation is the prevalent
mechanism described in species that belong to the genera
Fusarium, Aspergillus, and Penicillium (Aranda, 2016; Loss
et al., 2019). The fungal CYP biodegradation pathway of PAHs
encompasses two main phases. First, hydrocarbons are subjected
to an initial oxidation by CYPs and epoxide hydrolases, which
transform PAHs to hydroxy, dihydroxy, dihydrodiol, and
quinone derivatives, and by the subsequent action of transferases
and quinone reductases (Aranda et al., 2017). Then, the oxidized
metabolites are conjugated with other molecules and stored in
organelles and lipid-vesicles, inside the fungal cell as previously
described in Fusarium solani (Verdin et al., 2005; Fayeulle et al.,
2014), or secreted in a more soluble and biodegradable form
(Meulenberg et al., 1997; Capotorti et al., 2005). Regarding
aerobic PAHs biodegradation pathways in bacteria, they are
characterized by an initial oxidation of the aromatic ring
via the incorporation of molecular oxygen by dioxygenase
enzymes to form cis-dihydrodiols-based metabolites that are
further converted to diol-dihydroxylated compounds, such as
catechol intermediates that are then cleaved by dioxygenases
to generate products that enter the TCA cycle (Kanaly and
Harayama, 2000; Peng et al., 2008; Vila et al., 2015). Therefore, a
complex mixture of metabolites associated to different catabolic
pathways from fungi and bacteria, may form in biostimulated
and bioaugmented soils, and could lead to different soil
ecotoxicity scenarios.

The objective of this study was to test the extent to which
an autochthonous fungal inoculum can promote a greater
biodegradation of high molecular weight hydrocarbons, mainly
5–6 ring PAHs, in an industrially aged oil-polluted soil, and
to identify the predominant bacterial populations that can be
biostimulated by the activity of the bioaugmented fungi, in
comparison to a more conventional biostimulation approach
(nutrient and water supplementation), and in contrast to
untreated soil as a control. The assessments were performed
in microcosms and an array of culture-dependent methods,
ecotoxicological assays, and molecular profiling techniques were
implemented for the isolation, cultivation, and characterization
of complex microbial populations and biochemical parameters.

MATERIALS AND METHODS

Soil Material
Soil samples were taken in Mendoza, Argentina, from a deposit
of soils previously treated by landfarming for 1 year and kept in
outdoor piles during 10 years under extreme climatic conditions
(i.e., dry arid climate, average rainfall below 200 mm, with
almost 3,000 h of sunshine throughout the year, summer average
temperature of 28 and 7◦C in winter, with daily temperature
fluctuations of +12 and +42◦C in summer and 2 and 15◦C
in winter). The soil was air dried and sieved with a 6 mm

grid previous to microcosm experiments and 2 mm grid for
characterization analysis. Soil samples were stored aerobically at
4◦C in the dark until use.

Analytical Methods for Soil
Characterization
The soil samples were characterized according to the following
standard physicochemical parameters and methodologies
(APHA et al., 2005): texture; pH; electric conductivity; total
nitrogen; available phosphorous and moisture. Elemental
analysis of C (carbon), H (hydrogen), N (nitrogen), and
S (sulfur) was performed with a LECO Truspec CHNS
(LECO Corporation, United States). Based on the chemical
characteristics of the soil hydrocarbon contamination, the
TNRCC Method 1005 (Texas Natural Resource Commission,
2001) was used for extraction and quantitative analysis of Total
Petroleum Hydrocarbons (TPH), as well as for the evaluation of
the relative distribution of each TPH in the sample extracts. This
method used n-pentane (chromatographic grade, Sintorgan,
Buenos Aires, Argentina) as solvent, which was then analyzed
by gas chromatography/flame ionization detection (GC/FID)
for identifying and quantifying hydrocarbons between nC6
and nC35 by comparing chromatographic profiles with those
from reference n-alkane references (C8-C40 standard kit,
AccuStandard Inc., New Haven, CT, United States). PAHs
were identified and quantified by gas chromatography/mass
spectrometry (GC/MS) under the selected ion monitoring mode
(SIM), by measuring m/z area signal of 16 EPA priority PAHs
according to the EPA Method 8270D. Before the n-pentane
extraction, 20 µg g−1 of o-terphenyl and α-androstene
(AccuStandar Inc., New Haven, CT, United States) were added
in an acetone solution (1 mg mL−1) to each sample as surrogate
internal standards. Acetone was allowed to evaporate and 10 g
of soil were suspended in 10 mL of n-pentane in a sealed
screw PTFE cap glass vial, shaken by vortex during 5 min
and allowed to settle overnight. Thereafter, 2 mL of sample
extracts were transferred to auto sampler vials for further
chromatographic analysis.

The biodegradation of saturated compounds (alkanes) was
verified using a Clarus 500 Perkin Elmer GC/FID. Compounds
were separated on a HP-5 capillary column [25 m by 0.32 mm
(i.d.), 0.25-µm film thickness (Hewlett-Packard)]. Column
temperature was held at 42◦C for 5 min and then programmed
to reach 300◦C at a rate of 10◦C min−1. This final temperature
was held for 80 min. Detector and inlet temperatures were set at
320 and 300◦C, respectively. The helium flow was 1.1 mL min−1

and the injection volume was 1 µL. Concentration ranges of
aliphatic hydrocarbons were calculated from the total areas of the
peaks in the chromatograms corrected with internal standards
areas and standards of aliphatic hydrocarbons (C12-C40 range)
of known concentration.

A HP-5 capillary column [30 m by 0.32 mm (i.d.) Hewlett-
Packard] with 0.25-µm film thickness and helium as a carrier gas
(10 psi) were used. Column temperature was held at 50◦C for
5 min and then programmed to 250◦C at a rate of 10◦C min−1.
This final temperature was held for 35 min. Injector, transfer line
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and analyzer temperatures were set at 320◦C. Injection was in
splitless mode keeping the split valve closed for 30 s. The targets
for this analysis were the 16 priority EPA PAHs. The obtained
reconstructed ion chromatograms were numerically compared
with internal standards (16 EPA PAHs standard, AccuStandar
Inc., New Haven, CT, United States) for the biodegradation
estimation of each analyte in soil samples.

The total TPH concentrations estimated according to the EPA
Method 418.1, referred hereafter as TPH-IR, were considered as
kinetic biodegradation parameter.

Isolation of Autochthonous Fungi
Dry soil (10 g) was added to 100 mL of a sterile NaCl 0.09%
(w/v) solution in a 200 mL Erlenmeyer flask and shaken for
20 min on a shaker. After solid particles were allowed to
settle for 30 min, serial dilutions were prepared and 100 µL
of each dilution were spread homogeneously on the surface
of three replicate malt yeast extract agar plates (MYEA: 2%
malt extract, 0.2% yeast extract, 1.5% agar, pH 7.0) and on
mineral agar amended with phenantrene, as standard PAH,
(20 mg PHE crystals L−1, PHEN medium) as the sole carbon
and energy source [PHEN composition per L: 4.5 g KH2PO4;
0.5 g K2HPO4; 2.0 g NH4C; 0.1 mg MgSO·7H2O; 120 mg
FeCl3; 50 mg H3BO3; 10 mg CuSO4·5H2O; 10 mg KI; 45 mg
MnSO4·H2O; 20 mg Na2MoO4·H2O; 75 mg ZnSO4·H2O; 50 mg
CoCl2·6H2O; 20 mg AlK(SO4)2·12H2O; 13.25 g CaCl2·H2O;
10 g NaCl]. PHEN agar was also supplemented with a solution
of sterilized chloramphenicol (0.02%) and was autoclaved at
120◦C for 20 min before dispensing into Petri dishes. PHEN was
selected according to previous studies being the most common
PAH source to distinguish viable PAH-degrading bacteria and
fungi on agar plates (Viñas et al., 2005b; Hesham et al., 2016;
Agrawal et al., 2018) and in base of previous analyses of the
industrial soil where it was one of the PAH with the highest
concentration and prevalence.

Inoculated agar plates were incubated at 25◦C during 15 days
(MYEA) and 21 days (PHEN) days sheltered from light. The
observation of morphological characteristics of several colonies
(hyphal tips, mycelium shape, color, surface, elevation, form,
and grown velocity) that appeared to belong to different
representative isolates were transferred to new MYEA plates.

Colonies were subcultured in MYEA until pure cultures were
obtained. Twelve strains were morphologically described as being
different on MYEA slants and only one of them was able to grow
on PHEN agar. Strains grown only on MYEA agar were labeled
correlatively from A1 to A11, and B1 corresponded to the one
growing on PHEN agar. All isolates were maintained on MYEA
slants incubated at 20◦C.

Preparation of Fungal Inoculum
The inoculum consisted of a suspension of mycelia from a
defined fungal consortium of twelve selected fungal isolates,
prepared as described by Potin et al. (2004). Every one-week-
old MYEA and PHEN Petri dish cultures of the twelve isolates
was washed with 4 mL of sterile deionized water. Mycelium
fragments were removed from the spore suspension by filtration
through sterile glass wool. 100 µL of every spore suspension

were mixed to form a single one which was estimated using
a Thoma chamber. Before inoculation into de soil, the spore
suspension was mixed with a solution of glucose and sucrose,
each at 5 mg g−1 soil, as carbon source and kept in agitation
for 36 h at 25◦C in order to induce spore germination and
hyphal elongation. The germinated spores were microscopically
controlled and added to the soil in calculated volumes to give
an equal contribution of each strain (1:12) and a final total
spore concentration of 104 spores g soil−1. None lignocellulosic
amendment was added to the soil.

Microcosms Assays
All the microcosm treatments were conducted in triplicate with
1,200 g of 6 mm sieved soil inside 5 L glass recipients with
plastic lids and was incubated for 120 days at room temperature.
Three different microcosm treatments were designed: (i)
bioaugmentation (B), consisting of soil inoculated with fungi up
to an initial concentration of 104 spores per gram of soil. Soil
moisture was maintained regularly at 20% w/w by gravimetry and
K2NO3 and K2HPO4 were added on days 30 and 90 to prevent the
C:N:P ratio descended below 100:10:1; (ii) biostimulation (BS),
in which soil moisture was maintained regularly at 20% w/w
by gravimetry, and K2NO3 and K2HPO4 were added on days
30 and 90 to prevent the C:N:P ratio descend below 100:10:1,
the optimal for bacterial biostimulation (Bossert and Bartha,
1984; Morgan and Watkinson, 1989; Mills and Frankenberger,
1994; Chaineau et al., 2005); and (iii) a control (C) formed by
air-dried untreated contaminated soil (13% humidity), with the
aim to evaluate abiotic losses of hydrocarbons in the absence of
enough water content. In each microcosm, air renewal occurred
weekly through manual removal by using cleaned and sterilized
stainless-steel spatulas under sterile flow cabinet. As microcosm
B includes biostimulation by the addition of nutrients plus
bioaugmentation, BS also represented a control treatment for
B. Soil samples from each microcosm (120 g) were collected
manually with clean and sterilized (ethanol 70%) stainless steel
spatulas on days 0, 30, 60, and 120 for microbiological and
physicochemical analysis.

Ecotoxicological Characterization
Acute hydrocarbon toxicity in soil microcosms was assessed
on soil samples collected on days 0, 30, 60, and 120 by
quantifying the EC50 with the MicrotoxTM Basic Solid-Phase
Test (Microtox BSPT, AZUR Environmental, CA, United States).
This Vibrio fischeri based bioluminiscence inhibition assay has
been previously described as a versatile and suitable test to
detect polar compounds that could be accumulated in soil during
biodegradation processes (Parvez et al., 2006; Sabaté et al., 2006).
Soil samples were diluted at an initial and final concentration
of 200 and 0.781 g soil L−1, respectively, and were osmotically
corrected. Cells were resuspended with Microtox resuspension
agent and analyzed spectrophotometrically according to the
instructions of the manufacturer. Statistical regressions between
Microtox readings and TPH concentrations were obtained by
log-log plots using the Statistical software (IBM, United States).
The resulting EC50 values were defined as the antilog of the
regression line‘s intersection point.
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Quantification of Microbial Populations
in Soil
Soil microbial counts were performed using a miniaturized most
probable number (MPN) method in 96-well microtiter plates,
with eight replicate wells per dilution (Wrenn and Venosa,
1996). Total heterotrophs were counted in tryptone soy broth
and aromatic hydrocarbon-degraders were counted in liquid
mineral medium (BMTM) containing a mixture of phenanthrene
(0.5 g L−1), with fluorene, anthracene, and dibenzothiophene
(each at a final concentration of 0.05 g L−1) according to
Viñas et al. (2005b).

The PAHs were administered in a pentane solution that was
allowed to evaporate in each well, where the BMTM mineral
medium was subsequently added. Aged soil was used as the
starting point (day 0). MPN plates were incubated at room
temperature (25 ± 2◦C) for 30 days. Positive grown wells
were detected by turbidity (heterotrophs) and by the presence
of coloration (brownish/yellow) for PAH degraders. Microbial
population in soil microcosms were quantified on days 0, and
after 30, 60, and 120 days of incubation. Since no antifungal agent
was added to the medium, the total heterotrophs quantification
includes both bacteria and fungi.

Screening of Ligninolytic Enzymes
Pure strains of previously isolated fungi were cultivated
on mineral agar amended with ABTS [2,2′-azine-bis (3-
etilbenztiazoline-6-sulfonic acid)], tannic acid, and Red Orange
(RO) to screen their laccase, phenol oxidase, and manganese
peroxidase secretion. These chromogenic agar methods were
characterized by developing a pigmentation in the oxidized
state that was green for ABTS, dark orange for tannic acid,
and an orange red halo for RO. The culture mineral medium
was prepared as described by Prenafeta-Boldú et al. (2001). Per
liter of dematerialized water: 4.5 g KH2PO4; 0.5 g K2HPO4;
2.0 g NH4C; 0.1 g MgSO4·7H20; 120 mg FeCl3; 50 mg H3B03;
10 mg CuSO4·5H2O; 10 mg KI; 45 mg MnSO4·H2O; 20 mg
Na2MoO4·H2O; 75 mg ZnSO4·H2O; 50 mg CoCl2·6H2O; 20 mg
AlK(SO4)·12H2O; 13.25 g CaCl2·H2O; 10 g NaCl; 2 g Glucose;
100 mg nicotinic acid; 200 mg calcium pantothenate; 25 mg
cyanocobalamin; 100 mg inositol; 20 mg p-amino benzoate;
50 mg thiamin·HCl; 25 mg pyridoxin·HCl; 10 mg biotin; 10 mg
riboflavin; 10 mg folic acid;10 mg thioctic acid and 16 g agar).
This medium was supplemented with ABTS (500 mg), tannic acid
or orange red chromogenic substrate (100 mg each) according to
Pointing (1999). A collection strain of Trametes versicolor (ATCC
20869TM) was used as a positive control for ligninolytic activity
(laccase, Mn peroxidase and polyphenol oxidase).

Molecular Methods
A 250 mg sample of biomass from each fungal isolate and of soil
from each microcosm was placed in a sterile tube and stored at
−20◦C prior to analysis. DNA was extracted by a bead beating
protocol using the PowerSoilTM DNA extraction kit (MoBio
Laboratories, Inc., Carlsbad,CA, United States), following the
manufacturer’s instructions. A further purification of soil DNA

extracts was needed using the Clean DNA Wizard Kit (Promega,
WI, United States) to avoid PCR inhibition.

Total genomic DNA from the original soil and from
microcosm test samples were characterized by PCR-DGGE
(Polymerase Chain Reaction and Denaturing Gradient Gel
Electrophoresis) using specific primers for amplifying the
hypervariable V3–V5 region of the bacterial 16S rRNA gene
(F341GC/R907: Yu and Morrison, 2004). For the identification of
isolated fungal strains, the ITS1-ITS2 rRNA region was amplified,
which also contains the 5.8S coding region (ITS1F-ITS4R Esteve-
Zarzoso et al., 1999). All the PCR reactions were performed
with a Mastercycler (Eppendorff, Hamburg, Germany) and each
reaction mix (25 µL mix/reaction) contained 1.25 U of Ex Taq
DNA polymerase (Takara Bio, Otsu, Shiga, Japan), 12.5 mM
dNTPs, 0.25 µM of each primer and 100 ng of DNA. The
obtained amplicons from the 16S rRNA were loaded in an 8%
(w/v) polyacrylamide gel with a chemical denaturing gradient
ranging from 30 to 70% [100% denaturant contains 7 M urea
and 40% formamide (w/v)], and electrophoretically resolved in a
DGGE-4001 equipment (CBS Scientific Company, Del Mar, CA,
United States). The electrophoresis was carried out at 60◦C and at
100 V for 16 h in a 1X TAE buffer solution (40 mM Tris, 20 mM
sodium acetate, 1 mM EDTA, pH 7.4).

The DGGE gel was stained for 45 min in 1 × TAE
buffer solution containing SybrGoldTM (Molecular Probes, Inc.,
Eugene, OR, United States) and then scanned under blue light by
means of a blue converter plate (UV Products Ltd., Cambridge,
United Kingdom). Predominant bacterial DGGE bands were
excised with a sterile filter tip, resuspended in 50 µL sterilized
Milli-Q water and stored at 4◦C overnight. A 1:50 dilution of the
supernatant was subsequently reamplified by PCR as described
previously and sequenced by using the R907 primer.

Sanger sequencing of amplicons of isolated fungal strains were
performed with the ITS4 primer. Sequencing was accomplished
using the ABI Prism Big Dye Terminator Cycle-Sequencing
Reaction Kit v. 3.1 (Perkin–Elmer Applied Biosystems, Waltham,
MA, United States) and an ABI 3700 DNA sequencer (Perkin–
Elmer Applied Biosystems, Waltham, MA, United States),
according to the manufacturer’s instructions. Sequences were
edited using the BioEdit software package v. 7.0.9 (Ibis
Biosciences, Carlsbad, CA, United States). The sequences were
aligned with the NCBI genomic database using the BLAST search
alignment tool (Altschul et al., 1990) and were related to the
phylogenetic groups using the RDP Naive Bayesian Classifier
(Wang et al., 2007). The 16S rRNA bacterial and ITS1 rRNA
fungal gene nucleotide sequences determined in this study were
deposited into the Genbank database under accession numbers
F779671-JF779675 and JF729186- JF729196.

Statistical Analysis
The normal distribution of the data was determined with
the Kolmogorov-Smirnov test and the statistically significance
of differences between treatments were evaluated by one-way
analysis of variance (ANOVA). The homoscedasticity between
the groups was studied using the Levene test. The post hoc tests
were carried out using Tukey, when there was homoscedasticity,
and by using Games Howel when there was none. In the case of
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non-normal distributions, the Kruskal–Wallis test was used to
determine whether or not the consequences of treatment were
significant. ANOVA and post hoc analysis with Tukey’s multiple-
range test with a significance level of 0.05, was applied to the
results to determine their statistical significance, (P < 0.05) by
the use of SSPS V15, IMB SPSS Statistics, United States. DGGE
bands of the samples were processed by GeneTools analysis
software (Syngene, United Kingdom) and they were studied
by multivariate detrended correspondence analysis (DCA) by
using the Canoco Software (version 5, Microcomputer Power,
NY, United States).

RESULTS AND DISCUSSION

Soil Characterization
The soil was loamy clay, neutral (pH: 7.6), with a high
electric conductivity (1,416 µS cm−1) and a low content
of heavy metals. Chemical analysis showed a total nitrogen
and phosphorous content of 300 mg-N kg−1 and 6 mg-
P kg−1, respectively, a moisture of 12% (w/w), and a
water holding capacity 34% (w/w). Elemental analysis yielded
a molar ratio C(carbon):H(hydrogen):N(nitrogen):S(sulfur) of
13:3:0.2:0.6, which indicated that the C:N ratio was slightly
above the recommended values (25:1:1 to 38:1:1), according

to Atagana (2009) and Alexander (1999), for the fungal
PAHs bioremediation under an optimum water and oxygen
content. The comparative elemental analysis of a pristine soil
sample taken near the polluted site under study indicated
that the carbon content in the later was increased from
2% up to 13% (Supplementary Table 1). Likewise, the total
nitrogen content in the contaminated soil was fivefold higher
with respect to the non-polluted soil. Such high values
might be explained by the fertilization applied during the
previous landfarming activities. Further increases in nitrogen
content in bioaugmented and biostimulated microcosms (BS),
in relation to the control, were due to the addition of
inorganic nutrients.

The content of aliphatic and aromatic hydrocarbon fractions
evidenced that readily degradable compounds had already been
removed from soil during previous landfarming treatments in the
polluted site. Concentrations of all PAHs subjected to regulation
exceed the threshold values proposed by the Argentinian
and European legislation for agricultural and residential soils
(Table 1). Heterotrophic and hydrocarbonoclastic microbial
populations quantified by the MPN were relatively high
(heterotrophs: 2 × 107 MPN g soil−1, alkanes and PAHs
degraders: 8 × 105 and 1 × 104 MPN g soil−1 respectively),
indicating that there was an abundant indigenous microbial
population with hydrocarbon-degrading capabilities.

TABLE 1 | Aliphatic and aromatic hydrocarbon composition of the initial contaminated soil.

Aliphatics PAHs

N◦ of C Content (mg Kg−1)a N◦ of rings Mean (mg Kg−1)a Thresholdb (mg Kg−1)

C10-C11 1.00 (±)2.22 Naphtalene (NA) 2 N.D.e 0.10–5.00 – 50.00

C12-C13 31.00(±)1.94 Acenaphtylene (ACY) 3 N.D.e N.S.f

C14-C15 654.00(±)32.00 Acenaphtene (ACE) 3 N.D.e N.S.f

C16-C17 2,462.00(±)83.23 Fluorene (FLO) 3 N.D.e N.S.f

C18-C19 1,986.00(±)51.80 Phenanthrene (PHE) 3 9.00(±)0.00 0.10–5.00 – 50.00

C20-C21 1,473.00(±)58.60 Anthracene (ANT) 3 N.D.e 0.10–5.00 – 50.00

C22-C23 912.00(±)18.67 Fluoranthene (FLT) 4 N.D.e N.S.f

C24-C25 906.00(±)12.60 Pyrene (PYR) 4 10.41(±)1.46 0.10–5.00 – 50.00

C26-C27 1,396.00(±)94.16 Benzo(a) anthracene (BAA) 4 7.36(±)0.76 0.10–1.00 – 10.00

C28-C29 1,797.00(±)30.92 Chrysene (CHR) 4 14.22(±)0.76 N.S.f

C30-C31 1,571.00(±)21.07 Benzo(b,k)fluoranthene (BF) 5 6.45(±)0.68c 0.10–1.00 – 10.00

C32-C33 3,488.00(±)63.70 Benzo (a)pyrene (BAP) 5 17.50(±)0.42 0.10–1.00 – 10.00

C34-C35 225.00(±)41.50 Dibenz(a,h)anthracene (DBA) 5 N.D.e 0.10–1.00 – 10.00

Indeno(1,2,3-cd)pyrene (IND) 6 N.D.e 0.10–1.00 – 10.00

Benzo(g,h,i)perylene (BPL) 6 23.23(±)0.22 0.10–1.00 – 10.00

Total Alkanes 2,060.00(±)104.35d Total 3,4-rings PAHs 40.99

TPH C10-C35 16,114.00(±)1,936 Total 5,6-rings PAHs 47.18

TPH (IR)
TPH thresholdb

45,000k
10,000

Total resolved PAHs 88,17

aMeans and standard deviations of three replicates; soil dry weight basis.
bThreshold Argentinian values for domestic-agricultural-industrial use soil respectively.
cBenzo(b)fluoranthene and Benzo(k)fluoranthene are detected in the same peak.
dSum of resolved alkanes.
eNon detectable: concentration under Detection limit: 0.01 mg Kg−1.
f Not specified: concentration not specified by Argentinian legislation.
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Isolation and Molecular Identification of
Fungi
Twelve morphologically different fungal strains were isolated
successfully from the aged polluted soil and were maintained
as pure cultures in MYA slants. Only one of these strains,
labeled as B1, was able to grow on PHEN agar, while the
remaining were labeled correlatively from A1 to A11. The
identification of these fungi was attempted by sequencing
the ITS1 rRNA region. Only five of the 12 isolated fungal
strains turned out to be different after sequencing (Table 2).
All sequences showed high similarity (99–100%) with other
sequences from type material deposited in GenBank. Sequence
matches from the isolated fungi corresponded to Penicillium
spp., Penicillium crysogenum, Ulocladium spp., Ulocladium
atrum, Aspergillus terreus (three strains), Fusarium oxysporum
(four strains), and Aspergillus parasiticus (three strains).
These fungi are rather fast-growing and highly sporulating
ascomycetes and might, therefore, not be representative of
the dominant or active fungal hydrocarbonoclastic diversity
of the soil. Nevertheless, all these species have commonly
been described as HMW-PAHs degraders (D’Annibale
et al., 2006; Cerniglia and Sutherland, 2010; Romero et al.,
2010). Of particular interest is the genus Fusarium in that
several strains from this group have been associated to the
biodegradation of petroleum hydrocarbons, as reviewed
recently by Prenafeta-Boldú et al. (2019). This extremely
diverse and ubiquitous genus is widely distributed in soils
but also in plant material, either as harmless saprobe or as

a pathogen. The assimilation of benzo(a)pyrene as the sole
source of carbon and energy by a F. solani strain has been
demonstrated under laboratory conditions (Rafin et al., 2000).
The involvement of CYPs, lignin peroxidases, and laccase
enzymes was suggested as fundamental for the biodegradation
process in this fungus (Rafin et al., 2008). Furthermore, the
translocation of the 4-ringed pyrene along mycelial networks
of the closely related Fusarium oxysporum has also been
demonstrated (Guivernau et al., 2012). The relatively high
frequency of isolation of Fusarium strains in this work could
be an indication of the predilection of this genus toward PAHs
polluted environments.

Screening of Ligninolytic Enzyme
Production
Five out of the twelve isolates were positive for the appearance
of a dark halos around fungal colonies in mineral ABTS
agar, which is an indication of extracellular laccase secretion.
These positive strains included Fusarium oxysporum (strains
A5, A6, A8, and B1), which displayed dark-green halos,
and Ulocladium sp. (strain A2) with a dark-purple halo
(Supplementary Figure 1A). This later strain A2 was the
only one that also displayed a halo in tannic acid agar
(Supplementary Figure 1B), pointing to the secretion of
polyphenol oxidases, whereas all the other tested strains
were negative (Table 2). No indication of Mn peroxidase
secretion was observed through coloration of RO agar in
any of the tested strains, with the exception of the control

TABLE 2 | Preliminary identification of the isolated fungal strains by sequencing of the ITS1-ITS2 rRNA region, and enzymatic screening of the ligninolytic activity.

Isolated fungal
strain

Accession
number

Closest match in GenBank
(accession no.)
Closest type strain in GenBank
(accession no.)

Similaritya

(%)
Phylogenetic

groupb
Enzymatic activityc

Laccase Polyphenol Oxidase Mn Peroxidase

MYEA 1 JF779671 Penicillium sp. BM (GU566211)
Penicillium chrysogenum strain ZJ-T2
(HQ882177)

100
99

Ascomycota/
Eurotiales

− − −

MYEA 2 JF779672 Ulocladium sp. N4 (GQ169445)
Ulocladium atrum strain UMAH
(HM101093)

100
99

Ascomycota/
Pleosporales

+ − ±

MYEA 3,7,9 JF779673 Aspergillus terreus isolate UOA/HCPF
(GQ461911)

99 Ascomycota/
Eurotiales

− − −

MYEA 5,6,8
PHE-MYEA 12

JF779674 Fusarium oxysporum strain BD
(GU566205)

100 Ascomycota/
Hypocreales

+ − ±

MYEA 4,10,11 JF779675 Uncultured Trichocomaceae clone 3B4
(FN689694)
Aspergillus parasiticus isolate ASPpar1
(GQ131879)

100

99

Ascomycota/
Eurotiales

− − −

Control(+)
Trametes versicolor

+ + +

aSequences were matched with the closest relative from the GenBank database.
bSequences were matched with the closest relative from the GenBank database. Phylum/Order is represented.
cEnzyme activities are expressed as (+), (−) or (±) according to the intensity of the color developed in the corresponding medium: laccase (ABTS and Caffeic acid),
polyphenol oxidase (Tannic acid), and Mn peroxidase (Red Orange).
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ligninolytic fungus Trametes versicolor, which tested positive on
all chromogenic agar assays.

Despite limited knowledge at the proteomic level, extracellular
laccases from Fusarium oxysporum have been proposed as one
of the main factors responsible for its virulence as a plant
pathogen. This claim has been substantiated by the finding
of three genes that may encode laccases sensu stricto in a
comparative genomic study of twelve F. oxysporum strains
(Kwiatos et al., 2015). Putative laccase and phenol oxidase
production observed in colonies of the darkly pigmented
Ulocladium sp. (class Dothideomycetes) is also noteworthy.
These two enzymes are involved in the fungal melanization
process and laccases have also been found to be secreted by
other dematiaceous fungi from the Dothydeomycetes (Tetsch
et al., 2005). Fungal laccases have been recognized as industrial
enzymes that might also be of interest in the mycoremediation
of PAH-polluted soils. For example, Li et al. (2018) revealed
that the white-rot fungi Pycnoporus sanguineus transformed
phenanthrene via laccase and CYP, and benz[a]anthracene via
laccase. Despite the fact that further research is needed, our
enzymatic screening provides a first hint toward the involvement
of specific enzyme systems in the fungal biodegradation of
PAHs. In fact, a previous study in aged-creosote polluted soils
by means of 16S rRNA amplicon sequencing, revealed that the
main fungal community in a biostimulated soil was dominated
by native ascomycetes (i.e., Fusarium spp. and Scedosporium
spp.) before and after the biostimulation process. These species
were even dominant after bioaugmentation with ligninolytic
strains—and supplementation with lignocellulosic material—of

the WRF Trametes versicolor and Lentinus tigrinus (Lladó
et al., 2015). Further research must also consider other fungal
enzymes, such as unspecific peroxygenases (UPOs), that act
as the extracellular counterparts of intracellular CYP systems,
and might contribute to the biodegradation of PAHs as well
(Karich et al., 2017).

Biodegradation of Petroleum
Hydrocarbons in Soil Microcosms
Total Petroleum Hydrocarbons and Alkane Fractions
Total petroleum hydrocarbons decreased by a 39.90 ± 1.99%
in fungal-bioaugmented microcosm assays (B) after 120 days
of incubation, in contrast to a 24.17 ± 1.31% in BS, and just
a 2.69 ± 0.13% in the control (C) (Figure 1). After testing
for normality (Kolmogorov–Smirnov test), a one-way ANOVA
comparing treatments B and BS with the control C, and B with
BS, confirmed that the observed differences were statistically
significant (P = 0.004 and P = 0.007, respectively). The differences
between treatments B and BS demonstrates that bioaugmenting
soil indigenous fungi may be more effective in comparison
with a conventional biostimulation approach. These improved
biodegradation results obtained by using multiple indigenous
microorganisms for bioaugmentation agrees with previous
similar studies (Atagana et al., 2006; Mancera-López et al., 2008).

The biodegradation patterns of alkane fractions in
microcosms B and BS were markedly different throughout
time, compared to C. Both treatments (B and BS) displayed
complete biodegradation of the light aliphatic fractions, up to

FIGURE 1 | TPH concentration evolution in microcosm assays along 120 days of incubation.aData are the means of three independent experiments. a,b,cSame
lower-case letters indicate lack of statistically significant difference (P < 0.05) between each biostimulation or bioaugmentation treatment. *Asterisk represents the
occurrence of significant differences between B and BS treatments with control C (P < 0.05). Values are expressed in terms of dry weight.
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C16, and an intense biodegradation of aliphatics up to C28–C30,
while the higher molecular weight fractions (C30–C36 range)
remained largely undegraded (Figure 2). The chromatographic
profile of the soil (Supplementary Figure 2) shows the absence
of resolved alkanes, while only pristane and phytane were
identified initially in the saturated fraction as the main resolved
isoprenoids, which were fully degraded in both treatments after
120 days (B and BS).

Polycyclic Aromatic Hydrocarbons
Biodegradation percentages were calculated in relation to the
PAH contents of the control soil (C) after 120 days, in
order to consider only the effects of soil treatments (B and

BS) (Supplementary Table 2). An increase of total PAHs
biodegradation compared to C was observed in B and BS
microcosms, though biodegradation patterns were different
depending on the number of aromatic rings of PAHs (Figure 3).
In general terms, B displayed a significantly improved removal
(P < 0.05) of the analyzed 16 PAHs, compared with BS
(74.04 ± 1.15% vs. 48.44 ± 0.61% biodegradation respectively).
Bioaugmentation with autochthonous selected fungi, mainly of
the phylum Ascomycota, may thus play an important role in the
bioremediation of PAHs.

Regarding 3- and 4-ringed PAHs (phenanthrene, pyrene,
benzo(a)anthracene and chrysene), fungal bioaugmentation led
to a final average degradation efficiency of 87.56%, which was

FIGURE 2 | Alkane fractions in control soil and treatments after 120 days of incubation in microcosms experiments. Same lowercase letters indicate, between
microcosms and vs. control soil, respectively, lack of statistically significant difference (P < 0.05).

FIGURE 3 | Degradation of PAHs (%) after 120 incubation days in experimental conditions. (Mean values ± SD for three replicates). B, Bioaugmentation; BS,
Biostimulation; PHE, (phenanthrene, three rings PAH); PYR, (pyrene, four rings PAH); BAA, [benzo(a) anthracene, four rings PAH]; CHR, (Chrysene, four rings PAH);
BF, [benzo(b,k)fluoranthene, five rings PAH]; BAP, [benzo(a)pyrene, five rings PAH]; BP, [benzo(g,h,i)perylene, six rings PAH]. Different lower-case letters within
treatments indicate the occurrence of significant differences between them (P < 0.05). Anthracene was at very low values, below the detection limit (i.e., 2 mg Kg-1),
reason why it has not been included in the figure.
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significantly higher than that of 71.51% with biostimulation
(P < 0.05). The removal of benzo(a)anthracene was complete
in both treatments but phenanthrene remained at a final
concentration of 1 mg Kg−1. In the particular case of pyrene
and chrysene, the highest biodegradation levels were observed
in B, with 86.03% and 75.4%, in contrast to the 54.66 and
50.26% observed in BS.

Recalcitrant 5- and 6-ringed PAHs [benzo(b,k)fluoranthene,
benzo(a)pyrene, benzo(g,h,i)perylene] were biodegraded in
average to a substantially greater extent in B than in BS (53.33 and
7.91% respectively; P < 0.05). The detailed PAHs biodegradation
efficiencies in B and BS were respectively: 36.12 and 8.17% for
benzo(b,k)fluoranthene; 42.27 and 11.73% for benzo(a)pyrene,
and 28.27 and 5.88% for benzo(g,h,i)perylene. This result is
rather coincident with the criterion that correlates the increase in
recalcitrance of PAHs with the molecular weight and number of
aromatic rings, as described previously (Atagana, 2009; Serrano
Silva et al., 2009), though such conclusions have been contested
by other authors (Tiehm et al., 1997; Rafin et al., 2000; Wu
et al., 2008; Hesham et al., 2016; Fayeulle et al., 2019). The
efficient removal of benzo(a)pyrene could be explained by the
relatively high initial concentration of this PAH, which could
generate concentration gradients that enhanced its mass transfer
rate toward microorganisms, as described previously by Li et al.
(2007).

As of the 3- and 4-ringed PAHs biodegradation in BS and
B microcosms, the remaining concentrations comply with
the targets from the European Union and the Argentinian
legislation (Table 1) for soils dedicated to industrial and
agricultural uses. However, in the BS treatment, the 5–
6 ringed PAHs [benzo(b,k)fluoranthene, benzo(a)pyrene
and benzo(g,h,i)perylene] were still above the threshold
values for agricultural and residential soils, while in B only
benzo(g,h,i)perylene remained above regulatory threshold values
and might need prolonged bioaugmentation.

Our results generally agree with similar experiments
comparing bioaugmentation of indigenous filamentous (non-
ligninolytic) fungi vs. biostimulation with nutrients and
water on soils heavily polluted with PAHs, performed by Wu
et al. (2008) and Mancera-López et al. (2008). These studies
confirm that the use of filamentous fungi isolated from PAH-
contaminated soil presents the advantage that they are adapted
not only to the presence of contaminants but also to the
specific environmental conditions of the site. D’Annibale et al.
(2006) showed that fungal bioaugmentation in a contaminated
soil with specific ascomycetes from the genera Allescheriella,
Stachybotrys, and Phlebia resulted in a significant PAH removal
and soil detoxification. However, these results are not consistent
with the findings of Serrano Silva et al. (2009), who used
individual fungi and bacterial as well as a fungal consortium,
and concluded that bioaugmentation did not significantly affect
the biodegradation efficiency for naphthalene, phenanthrene,
anthracene, pyrene, benzo(a)anthracene, and benzo(a)pyrene,
except for Aspergillus, compared to biostimulation. An alternative
bioaugmentation approach for the removal of HMW-PAHs has
been reported by Boonchan et al. (2000) and Li et al. (2007) with a
significantly improved degradation of anthracene, fluoranthene,

pyrene, chrysene, benzo(a)anthracene, benzo(a)pyrene, and
dibenz(a,h)anthracene with a combined fungal-bacterial
consortium that mineralized these compounds as sole carbon
and energy source.

Many strains that are capable of efficient degradation of PAHs
under laboratory conditions exhibit a reduced capacity when
applied in aged polluted soils for 5- and 6-ringed PAHs removal.
This is not only due to the complex chemical structures of 5–
6-ring PAHs and their low water solubility and high stability,
but also because of limited adaptability of the isolated strains
to the soil environment and the competition of soil indigenous
microbial populations (Zhao et al., 2017). In B microcosms,
the inoculation of autochthonous fungi associated to the genera
Penicillium, Ulocladium, Aspergillus, and Fusarium improved
significantly the biodegradation of the 5-ringed PAHs BF, BAP,
and BP, probably because of the good adaptability of the
reintroduced strains. These results are coincident with other
studies focused on BAP degradation by non-ligninolytic fungi
(Boonchan et al., 2000; Rafin et al., 2000; Veignie et al., 2002;
Fayeulle et al., 2014, 2019). Fayeulle et al. (2014) demonstrated
that CYP is one of the enzymes involved in BAP mineralization
by F. solani.

It is noteworthy that the range of TPH biodegradation
observed (EPA 418) in B and BS corresponded to the decrease
of total C observed (13 and 6% reduction), from initial (12.70%
of soil in the polluted soil to 11.10 and 11.96% of total C
respectively) (Supplementary Table 1). This decrease of total
C would reveal that a high mineralization of TPH, which
represents 35% of total C in the polluted soil, occurred in both
treatments. Besides TPH, among the other pollutant fractions
are the polar fraction (containing photooxidation products,
heterocyclic compounds and partial and end products from
microbial metabolism), as well as the resins and asphaltenes.
This fact indicates that most of the observed biodegradation
could be linked to the complete mineralization of hydrocarbons,
minimizing the accumulation of polar metabolites. In this regard,
bioaugmentation was associated to a significant increase in
hydrocarbon biodegradation (P < 0.05) and to a decrease of
ecotoxicity (P < 0.05), when compared to biostimulation and
the untreated control soil. Such results point to the fact that
the initial partial oxidation promoted by the fungal enzymes
from the inoculum could act synergically with the activity of
the native soil microbiota for the subsequent mineralization
of both parental PAHs and TPHs, and the generated partially
oxidized and more bioavailable metabolites. The increased fungal
activity through bioaugmenting native fungi could overcome
the metabolic limitations from bacteria, particularly in what
concerns the initial oxidation of hydrocarbons, which was
especially evident to enhance biodegradation of the parental 5-
and 6-ringed PAHs by cometabolism as recently described (Sun
et al., 2020). On the other hand, bioaugmentation using native
soil organisms avoids the issue of altering the biodiversity of
ecosystems with the introduction of exogenous species, fulfilling
the Nagoya Protocol principles (Smith et al., 2017). Although
the main problem of invasive species concerns primarily the
macrobiota, it is worth highlighting the benefits of using the
native microflora for the restoration of the soil matrix.
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Effects on Soil Ecotoxicity
After 60 days of incubation, no significant differences were
observed in terms of ecotoxicity between the different soil
treatments. However, after 120 days, a remarkable reduction
of ecotoxicity (increase of the EC50 value) was observed with
fungal bioaugmentation (B), compared to biostimulation (BS)
and the control (C) untreated soil (P < 0.05, Figure 4),
so that low toxicity values comparable to the clean soil
were obtained (Figure 4). TPH biodegradation efficiencies
of 34–40% obtained with B also resulted in a significant
decrease in toxicity. This phenomenon could be explained by a
decrease of the content of secondary metabolites, due to higher
mineralization rates of hydrocarbons during biodegradation,
thanks to the synergistic interactions between the autochthonous
soil microbiota and the bioaugmented fungi. The implemented
V. fischeri bioluminescence assay has been reported as the most
sensitive ecotoxicological test for a wide range of environmental
contaminants, compared to other bacterial assays such as
nitrification inhibition, respirometry, ATP luminescence and
enzyme inhibition (Cotou et al., 2002). It has also shown good
correlations with other standard acute toxicity assays across a
wide spectrum of toxicants in soils and sediments (El-Alawi
et al., 2002; Abbondanzi et al., 2003). Although mostly applied
for aqueous phase samples and organic extracts, the test can also
be conducted directly on soil and sediment samples to measure
the toxicity due to the bioavailable fraction (Parvez et al., 2006).
Nevertheless, the availability of PAHs due to the extractive saline
solution of the method rather than their total concentration may
affect the results, as reported by Harkey and Young (2000). In

our case, given the rather low quantitative contribution of PAHs
to TPHs [88.17 mg kg−1 of PAHs on 45,000 mg kg−1 of TPH
(IR) or 16,114 mg kg−1 TPH C10-C35], the polar metabolites or
partial oxidation products affecting the toxicity test could derive
mainly from the hydrocarbons comprised in TPHs and not only
from the HMW-PAHs. This justifies further the use of TPHs
for the statistical regression analysis and Microtox readings.
In this sense, the different degradation of these compounds
described previously between B and BS is also coherent with the
results of this test.

Hydrocarbon-Degrading Microbial
Populations
Bioaugmentation caused an increase of two to three orders of
magnitude of the total bacterial heterotrophic population counts,
compared to those from the initial soil, up to values of 2.54× 108

MPN g soil−1 and 1.84 × 109 MPN g soil−1 after 30 and 60 days
of incubation, respectively (Table 3). In addition, from day 60–
120, the alkane-degrading bacterial populations increased by one
order of magnitude and stabilized at 7.8 × 107 MPN g soil−1.
Similarly, PAHs-degrading bacteria increased one and three
orders of magnitude at days 30 and 60, respectively, but decreased
down to a basal level of 7.1× 104 MPN g soil−1 after 120 days.

In the biostimulation treatment, the aliphatic-degrading
bacterial populations increased in numbers by two orders of
magnitude, up to 1.4 × 106 MPN g soil−1, while the total
heterotrophs initially decreased by one order of magnitude with
respect to the control soil without treatment, remaining stable
until day 120, at 6× 105 MPN g soil−1. The addition of water and

FIGURE 4 | Microtox ecotoxicity solid phase assays of soil (EC50 values expressed as mg soil L−1) in the different treatments over 120 days of incubation. Dotted
line represents EC value of clean soil (56,682 mg L−1) collected in the vicinity of polluted site. Brown bar: contaminated control soil; Orange Bar Bioaugmentation;
Green Bar (Biostimulation). Different lower-case letters within treatments indicate the occurrence of significant differences between them (P < 0.05).
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nutrients did not cause a biostimulation of the PAHs-degrading
bacterial populations, which remained stable in the order of
104 MPN g soil−1 throughout the study time. Interestingly,
during fungal biaugmentation the aliphatic-degrading bacteria
achieved the highest counts in the late stages (60–120 days),
with values above 107 MPN × g−1 (2.5 magnitude order higher
than those observed in the BS treatment). Such high bacterial

counts were also coincident with the maximum biodegradation
of TPH of late stages in B (Figure 1). These results demonstrate
that the inoculation of the autochthonous fungi promoted
the establishment of active hydrocarbon-degrading bacterial
populations that biodegraded both aliphatic hydrocarbons (late
stages) and PAHs (early and late stages) in aged-polluted soils.
Similarly, D’Annibale et al. (2006) also described an increase

TABLE 3 | Time-course evolution of the most probable number (MPN) of specific microbial populations during microcosm incubations.

Treatment Process days Heterotrophs (MPN ml−1)a Aliphatic degraders (MPN g soil−1)a PAHs degraders (MPN g soil−1)a

Soil 0 1.26 ± 0.17 × 106 aA 1.50 ± 0.18 × 104 aA 1.04 ± 0.19 × 106 Aa

30 1.30 ± 0.18 × 106 aA 1.05 ± 0.18 × 106 bA 1.50 ± 0.18 × 104 bA

60 6.30 ± 0.18 × 105 bA 8.30 ± 0.19 × 104 aA 6.90 ± 0.19 × 104 bA

120 1.20 ± 0.17 × 105 bA 7.00 ± 0.17 × 103 cA 6.30 ± 0.18 × 104 bA

Bioaugmentation 30 2.54 ± 0.19 × 108 aB 1.50 ± 0.18 × 104 aB 1.50 ± 0.18 × 107 aB

60 1.84 ± 0.19 × 109 bB 4.70 ± 0.19 × 105 bB 5.16 ± 0.18 × 107 aB

120 2.9 ± 0.20 × 108 aB 7,80 ± 0,41 × 107 cB 7.10 ± 0.19 × 104 bA

Biostimulation 30 7.20 ± 0.17 × 107 aB 1.40 ± 0.17 × 106 aB 1.20 ± 0.17 × 105 aA

60 6.30 ± 0.18 × 105 bA 1.10 ± 0.17 × 106 aB 1.80 ± 0.18 × 104 aA

120 6.00 ± 0.19 × 105 bA 1.20 ± 0.18 × 105 bB 1.30 ± 0.19 × 104 aA

aMeans and standard deviations of three replicates; soil dry weight basis.
Same lowercase and uppercase letters indicate, within every microcosm, lack of statistically significant difference (P < 0.05) for every microbial population along time and
vs. control soil, respectively.

FIGURE 5 | DGGE profiles of bacterial 16S rDNA from microcosmos assays at 0, 30, 60, and 120 days of incubation. A standard ladder (L) has been added at both
gel ends in order to check the DNA migration homogeneity. Bacterial bands have been named from B1 to B11.
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of hydrocarbon-degrading bacterial populations after fungal
bioaugmentation, which could be linked to a potential increase
of PAHs bioavailability due to the generation of more polar
metabolites by hydrocarbon-degrading fungi (Meulenberg et al.,
1997; Capotorti et al., 2005).

Effects of Fungal Bioaugmentation on Bacterial
Biodiversity
The DGGE profile of bacterial ribotypes shows that the
original hydrocarbon-contaminated soil (C) had a stable
community of bacteria, with a relatively low number of
predominant bands, which evolved during the biodegradation of
aromatic and saturated hydrocarbons toward a more complex
microbial community structure (Figure 5). This relatively low
initial biodiversity may be explained because, despite recent
landfarming practices, this soil was exposed to relatively high

contamination levels and extreme climatic conditions for several
years. It must also be highlighted that with the DGGE technique
only the predominant organisms, which usually account for more
than 1% of the total relative abundance, can be depicted. For
this reason, in highly diverse environments such soil samples,
discrete fingerprint bands may not always be discernible, leading
to smearing or poorly resolved patterns (Green et al., 2010). Such
unresolved DGGE patterns were observed in this work for the
fungi (results not shown), but the long-term effects of fungal
bioaugmentation were seen on the bacterial population shifts,
indicating that at least some strains of the re-introduced fungi
survived the microcosm experimental conditions.

Four relevant DGGE bands present in the control soil samples
were successfully sequenced and phylogenetically assigned
(Table 4). The sequence from the intense band 1 was identical to
the type strain of Bacillus thioparans and, though less dominant

TABLE 4 | Identification of excised and amplified DGGE bands (Figure 5) through nucleotide sequence BLAST to the GenBank database.

Band Accession
number

Detectiona Closest match in GenBank (accession no.)
Closest type strain in GenBank (accession no.)

Similarityb (%) Classification (Phylum/Order)

CS BS BA

1 JF729186 + + + Bacillus thioparans strain BMP-1 (NR_043762) 100.00 Firmicutes/ Bacillales

2 JF729187 + + + Uncultured bacterium clone SPN0-300day-48 (MF085114)
Sphingobium aquiterrae SKLS-A10 (MF980915)T

Sphingobium cloacae JCM 10874 (AP017655)T

Sphingobium phenoxybenzoativorans SC_3 (NR_135895)T

Sphingobium baderi LL03 (NR_118315)T

Sphingobium wenxiniae JZ-1 (NR_116773)T

Sphingobium faniae strain JZ-2 (FJ373058)T

99.53
98.60

Proteobacteria/ Sphingomonadales

3 JF729188 – + + Promicromonospora viridis NEAU-JGR1 (NR_164914)T

Promicromonospora thailandica S7F-02 (NR_113177)T
99.77 Actinobacteria/ Micrococcales

4 JF729189 – + + Olivibacter sp. DB4 (MG571618)
Olivibacter ginsenosidimutans BS18 (JQ349042)T

98.04
94.52

Proteobacteria/ Sphingomonadales

5 JF729190 + + + Uncultured bacterium clone AMOH12 (AM935143)
Immundisolibacter cernigliae TR3.2 (NR_156801)T

100.00
90.35

Proteobacteria/
Immundisolibacterales

6 JF729191 – – + Uncultured bacterium clone 16S-T6-1-H5 (KC664088)
Streptacidiphilus bronchialis DSM 106435 (CP031264)T

Streptomyces barkulensis RC 1831 (NR_133869)T

Streptomyces griseoplanus NRRL-ISP 5009 (NR_118417)T

Streptomyces atacamensis C60 (NR_108859)T

Streptomyces qinglanensis 172205 (NR_109303)T

Streptomyces fenghuangensis GIMN4.003 (NR_117502)T

Streptomyces nanhaiensis SCSIO 01248 (NR_108633)T

Streptomyces radiopugnans R97 (NR_044013)T

96.52
96.23

Actinobacteria/ Streptomycetales

7 JF729192 – + + Sphingopyxis macrogoltabida NBRC 15033 (NR_113720)T 100.00 Proteobacteria/ Sphingomonadales

8 JF729193 – – + Uncultured bacterium clone SPN2000-90day-62 (MF314694)
Fermentimonas caenicola ING2-E5B (NR_148809)T

Lascolabacillus massiliensis SIT8 (NR_144720)T

99.79
95.28

Bacteroidetes/ Bacteroidales

9 JF729194 – + + Uncultured bacterium clone 4-54 (KC521985)
Ohtaekwangia koreensis (NR_117435)T

99.52
93.79

Bacteroidetes/ Cytophagales

10 JF729195 – – + Uncultured bacterium clone CMJG7 (AM935906)
Azoarcus olearius DQS4 (CP016210)T

99.73
90.72

Proteobacteria/ Rhodocyclales

11 JF729196 + + + Uncultured bacterium clone (JX310909)
Fermentimonas caenicola ING2-E5B (NR_148809)T

Lascolabacillus massiliensis SIT8 (NR_144720)T

100
96.42

Bacteroidetes/ Bacteroidales

T Type strain.
aBand detection (+) above 1% of relative intensity in the control soil (CS); biostimulated microcosms (BS) and bioaugmented microcosms (BA).
bSequences were matched with the closest relative from the GenBank database.
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than in the control soil, was still visible in most biostimulated and
bioaugmented microcosm samples. This thiosulfate-oxidizing
bacterium has previously been found to also degrade and grow
with crude oil as its sole carbon and energy source (Syakti
et al., 2019). Another dominant ribotype from the control soil
was distantly related to Immundisolibacter cernigliae as the
closest known species (band 5, 90% sequence homology), but
it was identical to an uncultured bacterium in the phylum
Proteobacteria from a pilot-scale bioremediation process of a
hydrocarbon-contaminated soil (Militon et al., 2010). It might
thus correspond to an undescribed Proteobacterium that occupies
environmental niches that are rich in petroleum hydrocarbons.
Two additional ribotypes were detected with lower amounts
in the control soil, but the band intensity increased upon
biostimulation. Band 2 was highly homologous to a number
of species from the genus Sphingobium (98.60%) and was also
practically identical to the sequence of an uncultured bacterium
obtained from a PAHs contaminated soil. Similarly, the sequence
from band 11 somewhat matched those from type strains in
the Fermentimonas (95.28%) and Lascolabacillus genera, but it
was highly similar to an uncultured bacterium from a PAHs
contaminated soil.

As for the biostimulated and bioaugmented microcosms,
the microbial communities displayed a more dynamic pattern,
which progressively evolved from the original control soil. The
ribotype sequences from bands 3 and 4 became particularly
intense after 60 days of biostimulation. The sequence of the
band 3 was practically identical to those from two type
strains of the genus Promicromonospora, while the second was
closely related to Olivibacter. Not surprisingly, species from
these genera have previously been described to be enriched
in environments polluted with oil hydrocarbons (Szabó et al.,
2011; Wu et al., 2017). Band 7 was also present in both

biostimulated and bioaugmented microcosms and corresponds
to Sphingopyxis macrogoltabida. This species is closely related
to the previously mentioned Sphingobium and other related
Sphingomonads in that they have commonly been described in
association with petroleum hydrocarbons (Kertesz and Kawasaki,
2010). Interestingly, band 6 appeared to be specific from
the soil bioaugmented with fungi and was somewhat related
to a number of species in the genus Streptomycetes and
Streptacidiphilus. Members from these taxa display a filamentous
growth and are well-known as secondary metabolite producers
in response to syntrophic/antagonistic interactions with fungi
(Jones et al., 2017). As with the previous, bands 8 (Bacteroidales),
9 (Cytophagales), and 10 (Rhodocyclales) they all share the fact
that they were enriched during fungal bioaugmentation, but
their sequences are closely related to yet undescribed bacteria
that nevertheless have been found in different hydrocarbon
polluted environments.

A gradient analysis was performed on the bacterial
community DGGE profiles from Figure 6 by multivariate
detrended correspondence analysis (DCA). A “species relative
abundance” matrix of 47 ribotypes was generated from the bands’
positions and relative intensity. Sample and sequenced ribotype
scores were represented in a biplot that encompassed a 36%
of the explained variation and the first axis represented a beta
diversity (gradient length) of 5.08 (Figure 6 and Supplementary
Table 3). In general, sample scores were chronologically
arranged through the main axis, thus showing that incubation
time affected the microbial community dynamics. This effect was
evident with biostimulation but it was particularly marked with
fungal bioaugmentation, in that bacterial profiles from samples
taken at equal times tended to be more differentiated compared
to those from the control soil. The DCA biplot also depicts
the enrichment of bands 8 (Bacteroidales), 9 (Cytophagales)

FIGURE 6 | Detrended correspondence analysis (DCA) on the relative DGGE band intensity of bacterial ribotypes from microcosm samples taken at different time
and with treatments, as detected from the DGGE profiles (Figure 5). Only those bands with a relative band intensity higher than 1% were considered.
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and 10 (Rhodocyclales) in bacterial populations upon fungal
bioaugmentation.

Bioaugmentation is often considered to tackle bioremediation
of the most recalcitrant compounds (Atlas and Philip, 2005), and
under extreme environmental conditions. In the present study,
bioaugmentation with autochthonous fungi may facilitate the
establishment of fungal and bacterial consortia responsible for
a more efficient oxidation and complete biodegradation of both
TPH and HMW-PAHs. A similar strategy has been proposed
previously by Boonchan et al. (2000) and Sasek et al. (1998). Even
when the culturable isolated strains may not be representatives
of the dominant or active fungal diversity of the soil, the active
fungal biomass introduced with bioaugmentation prompted
changes in bacterial and fungal soil population, resulting
in the selective and sustained growth and biodegradation
activity that explains the success of the experimental approach
taken in this study.

CONCLUSION

Bioaugmentation of indigenous fungi in an aged oil-polluted soil
caused an important shift of the bacterial populations, which
was also linked to a significant increase of the TPH (C10–C35)
and HMW-PAHs biodegradation efficiency, when compared to
a standard biostimulation alternative strategy. Biodegradation of
PAHs has commonly been associated to the ligninolytic system
of the WRF. However, pilot and full-scale projects investigating
the bioremediation of TPHs and PAHs after soil bioaugmentation
with white-rot fungi (WRF) have often yielded unconvincing
results. Bottlenecks in these bioremediation processes included
the inability of the WRF to compete with the native soil microbes,
along with specific nutritional requirements of lignocellulosic
materials. In addition, the metabolism of hydrocarbons by WRF
is also related with the generation of toxic metabolites, which
might create an elevated ecotoxicity problem.

In this microcosm study we demonstrated that
bioaugmentation of autochtonous fungal species might enhance
the bioremediation of aged hydrocarbon pollution and overcome
the vastly described inconveniences of white-rot fungi’s use for
the remediation of aged-industrially-polluted soils enriched
in heavy hydrocarbons. Cytochrome P450 and fungal laccases
may play a very relevant role in the fungal bioremediation of
oil hydrocarbons, without increasing the ecotoxicological risk.
Furthermore, the fact that the selected fungi were rather fast
growing and cosmopolitan species might facilitate the isolation,
scaling-up and feasibility of bioaugmentation at field conditions,
overcoming the previously mentioned limitations of using WRF.
This study also corroborated the hydrocarbonoclastic potential
of using Fusarium, Aspergillus and Penicillium strains under
soil conditions. Previous studies in the laboratory have shown
that species from these genera, particularly F. solani, were able
to assimilate benzo[a]pyrene as the sole source of carbon and
energy. Melanized fungi, such as the bioaugmented Ulocladium
sp., have also been associated to hydrocarbon biodegradation
due to the oxidative enzymatic machinery required for the
biosynthesis of melanin (laccases, phenol oxidases, etc.).

Besides the direct action of fungi on biodegradation,
molecular profiling by DGGE also demonstrated that fungal
bioaugmentation with indigenous fungi exerted an important
influence on the soil bacterial populations toward a more diverse
and synergistic microbial community. Enriched hydrocarbon-
degrading bacteria during fungal bioaugmentation were
associated to a number of undescribed species in the orders
Cytophagales, Bacteroidales, and Rhodocyclales, which have
nevertheless been previously detected in similar hydrocarbon
polluted sites through molecular means. This finding provides a
first insight on the dimension of the yet unknown biodiversity
and interactions between hydrocarbonoclastic microbial
communities, which deserves further fundamental and applied
research. The further integration of selective microbial isolation
and screening methods with recent advances on high throughput
DNA/RNA-seq approaches will allow for a detailed description
of hydrocarbonoclastic fungi and bacteria from polluted soils,
in terms of their taxonomy, ecophysiology, and function. Such
information will be the key for the design of optimized and
minimally invasive bioremediation techniques.
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