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Soil fungi predominate the forest topsoil microbial biomass and participate in
biogeochemical cycling as decomposers, symbionts, and pathogens. They are
intimately associated with plants but their interactions with aboveground and
belowground plant traits are unclear. Here, we evaluated soil fungal communities and
their relationships with leaf and root traits in nine forest ecosystems ranging from tropical
to cold temperate along a 3,700-km transect in eastern China. Basidiomycota was the
most abundant phylum, followed by Ascomycota, Zygomycota, Glomeromycota, and
Chytridiomycota. There was no latitudinal trend in total, saprotrophic, and pathotrophic
fungal richness. However, ectomycorrhizal fungal abundance and richness increased
with latitude significantly and reached maxima in temperate forests. Saprotrophic
and pathotrophic fungi were most abundant in tropical and subtropical forests and
their abundance decreased with latitude. Spatial and climatic factors, soil properties,
and plant traits collectively explained 45% of the variance in soil fungal richness.
Specific root length and root biomass had the greatest direct effects on total fungal
richness. Specific root length was the key determinant of saprotrophic and pathotrophic
fungal richness while root phosphorus content was the main biotic factor determining
ectomycorrhizal fungal richness. In contrast, spatial and climatic features, soil properties,
total leaf nitrogen and phosphorus, specific root length, and root biomass collectively
explained >60% of the variance in fungal community composition. Soil fungal richness
and composition are strongly controlled by both aboveground and belowground plant
traits. The findings of this study provide new evidence that plant traits predict soil fungal
diversity distribution at the continental scale.
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INTRODUCTION

Interactions between plants and soil fungi are vital to the normal
functioning of plant-soil systems such as forest ecosystems.
Fungal life cycles are intimately linked to those of land plants
(Barberan et al., 2015). In forest soils, fungi participate in
crucial ecosystem processes as decomposers, symbionts, or
phytopathogens (Tedersoo et al., 2014; Schimann et al., 2017).
Saprotrophic fungi decompose complex organic matter and
render carbon and other nutrients bioavailable to plants (Cairney
and Meharg, 2002; Goldmann et al., 2015). Ectomycorrhizal
(EcM) fungi form mutualistic relationships with host plants.
They infect roots and promote plant nutrient and water uptake
(Nehls, 2008; Goldmann et al., 2015). Plant pathogenic fungi and
mutualists worked together in driving spatiotemporal patterns
of plants (Chen et al., 2019). Soil fungi mediate soil structure
development at various spatial scales and control water and
nutrient flow and root growth and distribution (Ritz and Young,
2004). Their detritus substantially adds to forest soil organic
carbon stocks (Clemmensen et al., 2013). Fungi are ubiquitous
and play pivotal roles in ecosystem services. Nevertheless, the
factors influencing their global-scale diversity and biogeography
remain unclear (Cox et al., 2016).

Recent studies documented numerous biotic and abiotic
factors that influence soil fungal diversity and community
structure across wide spatial scales and in response to limited
dispersal and geographic isolation (Cox et al., 2016), climate
(temperature and precipitation; Tedersoo et al., 2014; Zhou
et al., 2016), soil properties (texture, bulk density, pH, nutrient
availability, and organic matter content) (Leifheit et al., 2014;
Guo et al., 2019), and plant diversity (Peay et al., 2013; Cline
et al., 2018). Plants affect soil fungi via organic matter inputs
such as litter and rhizodeposits (Wardle et al., 2004; Bardgett
and van der Putten, 2014). They also alter local soil abiotic
conditions such as soil structure, moisture, pH, and oxidation-
reduction potential (Waring et al., 2015). Therefore, plant
diversity influences the quantity and composition of plant inputs
and could, by extension, also affect soil fungal diversity. However,
plant and fungal communities strongly depend upon climatic and
edaphic variables. Thus, the relationships between plant species
and soil fungal diversity may be contingent upon the spatial
scale and the type of diversity. Plant-fungal α- and β-diversity
relationships occur at the local and regional scales (Cline et al.,
2018). In contrast, only global-scale β-diversity but no α-diversity
relationships have been detected (Tedersoo et al., 2014; Prober
et al., 2015). These findings suggest that plant diversity may
be not a reliable indicator of the interactions between plants
and soil fungi. However, there is growing consensus that plant
functional traits determine diversity effects (Cardinale et al.,
2012; Bardgett and van der Putten, 2014; Li et al., 2017). This
postulate is consistent with the fact that natural ecosystems are
inherently complex.

Plant functional traits are measurable and associated with
productivity or adaptation to the environment (Violle et al., 2007;
He et al., 2019). Community-weighted means (CWM) of plant
functional traits represent the dominant community trait values
and reflect “optimal” trait strategies under local environmental

conditions (Díaz et al., 2007; Garnier and Navas, 2012). The
latter parameters are related to community- and landscape-scale
soil biological communities and ecosystem processes (de Vries
et al., 2012; Pei et al., 2016; Buzzard et al., 2019; He et al., 2019).
Combinations of plant traits indicate the quantity and quality of
litter input affecting the soil microbial community (Wardle et al.,
2004; Orwin et al., 2010; Reich, 2014). It is necessary to determine
the extent to which plant traits explain variations in soil processes.
However, few studies have attempted to evaluate the connections
between plant functional traits such as leaf and root morphology
and nutrient content and soil fungal community structure across
broad environmental gradients (Chua and Potts, 2018; Buzzard
et al., 2019; Van der Plas et al., 2020; Wang et al., 2020).

The leaves that constitute the bulk of forest litter determine
litterfall quantity and quality. Variations in leaf traits directly
and indirectly affect soil-substrate quality by influencing the soil
microbial community and biogeochemical processes (Buzzard
et al., 2019). CWM of leaf traits such as specific area, dry matter
content, and nitrogen concentration explain most of the variation
in litter decomposition rate (Quested et al., 2007; Fortunel
et al., 2009; Eichenberg et al., 2015), soil nutrient cycles, and
belowground processes (Laughlin, 2011; de Vries et al., 2012;
Makkonen et al., 2012; Freschet and Cornelissen, 2013). Recent
studies confirmed the relationships among leaf N concentration,
biomass, specific area, and soil fungal community (de Vries
et al., 2012; Pei et al., 2016; De Long et al., 2019). Unlike leaves,
roots make contact with the soil and directly participate in
soil ecological processes (Bardgett et al., 2014; Moreau et al.,
2015; de Vries et al., 2016; Bardgett, 2017). Trees allocate
substantial amounts of their recently assimilated carbon (C) to
their roots. Fine root decomposition and root exudates are major
C contributors to forest soil microbial communities and regulate
microbial metabolism (Pollierer et al., 2007; Hogberg et al., 2008;
Freschet and Cornelissen, 2013; Ponge, 2013). The priming effect
of easily metabolizable C inputs from roots control soil organic
matter decomposition and nutrient release (Fontaine et al., 2007;
Cheng, 2009; Kuzyakov, 2010). Root traits are closely associated
with various soil processes (Bardgett et al., 2014; Faucon et al.,
2017; Yang et al., 2021). The chemical traits of fine roots are
the best indicators of community-level root decomposition and
root exudates (Prieto et al., 2016). Fine root decomposition is
negatively correlated with lignin and positively correlated with
root nitrogen (N) and phosphorus (P) levels (See et al., 2019). The
root C:N ratio explains root exudate quality and quantity (Vale
et al., 2005; Legay et al., 2014). Fine roots with large specific root
lengths (SRL) are positively correlated with fungal: bacterial (F:
B) ratios (Legay et al., 2014).

Clarification of the linkages between plant functional traits
and soil microbial communities could be capable of identifying
the most relevant plant drivers in the prediction of ecosystem
process changes based on plant community responses (Lavorel
and Garnier, 2002; Funk et al., 2017). However, previous studies
focused primarily on the effects of plant traits on aboveground
plant litter decomposition. In contrast, there is relatively little
information about the relationships between the combined
attributes of plant shoots and roots and those of soil fungi
(Legay et al., 2014; Yang et al., 2020). Hence, the present study
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explored the relationships between soil fungal diversity and
plant traits across the wide latitudinal and temperature gradients
of the North-South Transect of Eastern China (NSTEC). The
NSTEC includes forest types ranging from cold temperate to
tropical and contains experimental sites varying in climate,
edaphic, and plant factors. Here, we hypothesize that (a) changing
plant functional traits directly affect soil fungal diversity and
community composition from tropical to cold temperate forests,
and (b) root traits more strongly and directly influence soil fungal
community compositions than leaf traits.

MATERIALS AND METHODS

Study Area and Plant and Soil Sampling
Nine forest sites in protected national nature reserves along the
NSTEC were selected to represent typical vegetation and soil
characteristics of (1) cold temperate coniferous forests (Huzhong,
HZ), (2,3) temperate conifer broadleaf mixed forests (Liangshui,
LS; Changbai, CB), (4,5) warm temperate deciduous broadleaf
forests (Dongling, DL; Taiyue, TY), (6) subtropical deciduous
evergreen mixed forest (Shennong, SN); (7,8) subtropical
evergreen broadleaf forests (Jiulian, JL; Dinghu, DH), and
(9) tropical monsoon forests (Jianfeng, JF). The forest sites
spanned broad latitudinal (18◦44′–51◦46′N, 128◦53′–108◦51′E;
Supplementary Figure 1) and climatic (Supplementary Table 1)
gradients. The mean annual temperatures (MAT) and mean
annual precipitation (MAP) levels ranged from−3.67 to 23.15◦C
and from 473 to 2,266 mm, respectively. Climatic variables
including MAT and MAP were acquired from the CERN
meteorological database.

In July 2013, four experimental plots (30 m × 40 m)
were established at each site. The plant species in each plot,
including woody and non-woody species, were surveyed and
species richness was used to describe plant diversity (PD)
(Supplementary Table 1). The leaves and roots of dominant
and common plant species were collected according to a unified
protocol (Zhao et al., 2018). In each plot, 20 surface soil cores
(0–10 cm depth) were collected and pooled (see Tian et al.,
2018) for details of the soil sampling procedure). Soil samples
from each plot were sieved through a 2-mm mesh and blended
into a single representative sample per plot. Visible roots and
organic debris were carefully removed. A subsample of each
soil sample was placed in a 50-mL centrifuge tube, stored in an
icebox, transported to the laboratory, and maintained at −80◦C
for subsequent soil DNA extraction. Physicochemical analyses
were performed on the remaining soil.

Physicochemical Analysis of Plants and
Soils
As described by Wang et al. (2018) and Zhao et al. (2018),
we collected sun-exposed and mature leaves (leaf blades for
trees) and fine roots (diameter < 2 mm) from between five
and ten individuals of each plant species at each site. The leaf
and fine root samples were carefully cleaned and oven-dried
at 60◦C. All samples were ground to fine powder, using a ball
mill (MM400 Ball Mill, Retsch, Germany) and an agate mortar

grinder (RM200, Retsch, Haan, Germany), for element analysis.
The root length was obtained by analyzing the scanned root
samples with WinRHIZO 2009 (Regent Instruments, Quebec,
Canada). SRL was calculated as root dry mass divided by root
length. CWM of leaf and root C, N, and P (leaf C, leaf N,
leaf P, root C, root N, and root P) were determined based on
their respective characteristic values for each species and relative
species abundance (Supplementary Table 1; Zhao et al., 2018).
Root biomass and specific root length (SRL) were obtained from
Wang et al. (2018) (Supplementary Table 1).

The pH of 1:2.5 w/v soil suspensions were measured
with a pH meter. Total soil organic carbon (SOC) and
total nitrogen (TN) were determined with an elemental
analyzer (Vario EL III; Elementar Analysensysteme GmbH,
Langenselbold, Germany). Soil samples were digested with
H2SO4-H2O2-HF and the soil total P concentration (mg kg−1)
was determined by the ammonium molybdate method in an
AutoAnalyzer 3 continuous-flow analyzer (Bran + Luebbe
GmbH, Norderstedt, Germany).

DNA Extraction and Amplicon
Sequencing
Soil DNA was extracted with a PowerSoil kit (MoBio
Laboratories, Carlsbad, CA, United States) according to the
manufacturer’s instructions. Purified DNA quality was evaluated
by calculating the DNA absorbance ratios at 260/280 nm and
260/230 nm in a NanoDrop ND-1000 spectrophotometer
(NanoDrop Technologies Inc., Wilmington, DE, United States).

The primers ITS1F (5′-CTTGGTCATTTAGAGGAAGTAA-
3′) and 2043R (5′-GCTGCGTTCTTCATCGATGC-3′) were used
for amplification. After PCR and purification, a DNA library was
constructed and run on a MiSeq Illumina platform at Majorbio
Bio-Pharm Technology Co., Ltd., Shanghai, China.

Sequencing data were analyzed with Trimmomatic v.0.32
(Bolger et al., 2014) and FLASH v.1.2.4 (Magoč and Salzberg,
2011) software. The soil fungal richness and community
composition were calculated and analyzed with Mothur v. 1.30.11
(Schloss et al., 2009). The number of operational taxonomic units
(OTUs) was obtained with Usearch v. 7.1 (Edgar, 2010) using
the furthest-neighbor algorithm. Each OTU had > 97% sequence
similarity. A randomly selected subset of 32,133 sequences per
sample was used in the subsequent analysis.

Functional fungal guilds were assigned with FUNGuild
(Nguyen et al., 2016). OTUs were assigned to ectomycorrhizal
(EcM) mutualists, saprotrophs, and plant pathotrophs. Fungi
representing < 1% of the OTUs were not considered.

Statistical Analysis
The number of OTUs indicates phylotype richness. Shapiro-
Wilk test and Bartlett’s test were used to check the normal
distributions and homoscedasticity of variances of the richness.
Depending on the normal distribution and homogeneity of
variance, one-way ANOVA and Tukey’s post hoc comparisons
were used to evaluate the significant differences among sampling
sites. Environmental variables were logarithmic transformed and
then we used Pearson correlation to evaluate the correlations
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between fungal richness and environmental variables. The best
ordinary least squares (OLS) multiple regression models for
fungal richness and the environmental factors were selected.
Corrected Akaike Information Criterion (AICc) was used to
identify the best OLS model which penalizes overfitting. For
this purpose, the MASS 7.3–51.6 (Venables and Ripley, 2010)
package in R 3.6.3 (R Core Team, Vienna, Austria) was
used. The variance inflation factor (VIF) was calculated to
remove strongly multicollinear variables and select variables
suitable for OLS multiple regression models. For this purpose,
the CAR 2.1–2 package (Weisberg and Fox, 2011) in R
3.6.3 (R Core Team, Vienna, Austria) was used. Random
forest analyses identified the most important predictors of soil
fungal richness and community composition. For this purpose,
the rfPermute 2.1.81 package (Archer and Kimes, 2008) in
R 3.6.3 was used.

Non-metric multidimensional scaling (NMDS) based on
Bray-Curtis distance at the OTU level assessed the changes
in fungal community composition. Analysis of similarities
(ANOSIM) was performed to evaluate differences in fungal
composition at the OTU level within sample pairs. For this
purpose, the vegan 2.5-6 package (Jari Oksanen et al., 2019) in
R 3.6.3 was used.

A partial Mantel test evaluated the connections between the
fungal community structure and the measured environmental
variables. A canonical correspondence analysis-based variation
partitioning analysis (VPA) was implemented to establish the
importance of spatial, climatic, edaphic, and plant factors in
shaping the fungal community structure. Principal coordinates
of neighbor matrices (PCNM) vectors with significant positive
spatial autocorrelations were taken as proxies for spatial variables
(Borcard et al., 2011). Partial Mantel and VPA were performed
in the vegan 2.5-6 package (Jari Oksanen et al., 2019) in R 3.6.3.
Matrices of the pairwise taxonomic distances between fungal
communities were plotted using the Bray-Curtis dissimilarity
index. The Euclidean distances between plant traits were
constructed in the vegan 2.5-6 package (Jari Oksanen et al.,
2019) in R 3.6.3.

Partial least-squares path models (PLS-PMs) were used
to identify the direct and indirect influences of spatial and
climatic factors, soil properties, and plant traits on soil fungal
richness and community composition (Chin and Dibbern, 2010;
Leguina, 2015; De Long et al., 2019). The aforementioned
parameters represented latent variables in accordance with their
relative importance as indicated by the Random Forest and
Mantel tests. The leaf and root traits in the model were
CWMs. The models were plotted with the plspm 0.4.9 package
(Sanchez, 2012) in R 3.6.3.

RESULTS

Taxon and Phylotype Distribution
We obtained 1,156,788 quality sequences for all soil samples. We
identified an average of 32,133 sequences per sample and grouped
them into 5,266 operational taxonomic units (OTUs) at the 97%
similarity level.

At the phylum level, Basidiomycota were the most abundant
followed by Ascomycota, Zygomycota, Glomeromycota, and
Chytridiomycota (Figure 1A). The dominant classes were
Agaricomycetes, Leotiomycetes, and Zygomycota_incertae_sedis
(relative abundance > 5%), and they accounted for > 60% of all
fungal sequences (Supplementary Figure 2). Eurotiomycetes,
Microbotryomycetes, Sordariomycetes, Dothideomycetes,
Pezizomycetes, Wallemiomycetes, and Archaeorhizomycetes
were detected at relatively low abundances in nearly all of the
soils analyzed (Supplementary Figure 2).

Fungal α-Diversity and Community
Structure
Soil fungal richness significantly varied across the nine
forest ecosystems and displayed no clear latitudinal trend.
Fungal richness was greatest in SN, CB, and JF (p < 0.05;
Figure 1B). At the phylum level, only the relative abundance
of Ascomycota increased with latitude (r = 0.446; p < 0.01;
Supplementary Figure 3). The richness (R2 = 0.13; p < 0.05)
and relative abundance (R2 = 0.14; p < 0.05) of EcM fungi
increased with latitude (Supplementary Figure 4). The
relative abundance of saprotrophic (R2 = 0.17, p < 0.05) and
pathotrophic (R2 = 0.04, p < 0.05) fungi decreased with latitude
(Supplementary Figure 4), while their richness showed no
obvious trend with latitude.

The NMDS clearly separated the nine forest soil samples.
Thus, there were different fungal community structures among
the nine forest types (Figure 2). The ANOSIM analyses
confirmed significant differences between forest pairs in terms of
fungal community structure (p < 0.05; Supplementary Table 3).
The soil samples from the three low-latitude forests (JL, DH, and
JF) were segregated from all others along the first NMDS axis
(Figure 2). Further, the three low-latitude forests (JL, DH, and JF)
were segregated from each other along the second NMDS axis,
and the same was true for the six high-latitude forests (HZ, LS,
CB, DL, TY, and SN).

Association Between Plant Traits and
Fungal α-Diversity
Mean annual temperature and precipitation increased from
north to south. The soil organic carbon, TP and TN were higher
in the temperate forests than the subtropical and tropical forests.
There was no obvious change trend in soil C/N. The pH of the
low-latitude soils was lower than those of the high-latitude soils
(Supplementary Table 1). The CWM of leaf and root C and root
N presented no latitudinal trend. In contrast, the leaf N, P and
root P levels were relatively lower in the subtropical and tropical
forest soils. The CWM root biomass and SRL were relatively
lower in the low-latitude forest soils (Supplementary Table 1).

Pearson’s correlations disclosed several significant
associations among fungal functional richness and biotic
and abiotic environmental factors (Figure 3A). Total fungi and
functional fungal guilds were negatively correlated with soil C/N
(p < 0.05) but positively correlated with TP (p < 0.05). SRL
(p < 0.05) was positively correlated with fungal richness except
for EcM fungi. Soil pH (p < 0.05) was positively correlated with
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FIGURE 1 | Relative abundance of dominant fungal phyla (A) and phylotype richness (B) of nine forest ecosystems along north-south transect in eastern China. The
sampling sites from south to north in order are JF, DH, JL, SN, TY, DL, CB, LS, and HZ. Different lowercase letters indicate significant differences among means
(p < 0.05). Error bars represent standard error of the mean.

EcM and saprotrophic fungal richness. Total fungal richness was
positively correlated with root biomass (p < 0.05). EcM fungal
richness was negatively correlated with leaf C, and positively
correlated with leaf N and P content (p < 0.05). Saprotrophic
fungal richness was negatively correlated with plant (including
root and leaf) C content, and was positively correlated with
leaf N (p < 0.05). Pathotrophic fungal richness was positively
correlated with root N and negatively correlated with leaf C
content (p < 0.05). There was no significant correlation between
fungal and plant richness.

FIGURE 2 | Non-metric multidimensional scaling (NMDS) based on
Bray-Curtis distance at the OTU level illustrating soil fungal community
structure. Abbreviations for sampling sites from north to south are as follows:
HZ, Huzhong; LS, Liangshui; CB, Changbai; DL, Dongling; TY, Taiyue; SN,
Shennong; JL, Jiulian; DH, Dinghu; and JF, Jianfeng.

After all variables were entered into a best ordinary least
squares (OLS) multiple regression (Supplementary Table 2),
total fungal richness was explained mainly by soil C/N (45.3%)
followed by SRL (23.1%), spatial factors (20.4%), SOC (8.7%), and
root carbon content (2.6%). EcM fungal richness was determined
mainly by soil C/N (51.9%), pH (25.7%), SOC (12.7%), root
carbon content (2.2%), and spatial factors (7.5%) (p < 0.001).
Saprotrophic and pathotrophic fungal richness were affected
by C/N, SRL, SOC, and principal coordinates of neighboring
matrices (PCNM4) (p < 0.001).

Random forest tree and PLS-PMs analyses identified the main
predictors and the direct and indirect effects of the variables
explaining fungal richness (Figures 3B, 4A). SRL, soil C/N, and
spatial factors were selected as significant predictors of soil total,
saprotrophic, and pathotrophic fungal richness. SRL explained
19.0, 10.0, and 13.0% of the variations in the richness of total
fungi, saprotrophs, and pathotrophs, respectively (Figure 3C).
Root P, soil TP, C/N, and spatial factors were the major predictors
of EcM fungal richness (Figure 3B).

Spatial factors, climate, soil properties, and plant traits
explained 45% of the variations in soil fungal richness
(Figure 4A). Only soil TP and C/N, root biomass, and SRL
directly influenced soil fungal richness. Spatial factors and climate
were indirectly associated with fungal richness as they affected
plant nutrient concentration which is related to root biomass and
SRL. The soil explained most of the fungal richness followed by
root traits and leaf N and P.

Association Between Plant Traits and
Fungal Community Composition
The dissimilarities among soil fungal communities were
significantly correlated with the Euclidean distances among
plant traits (Figures 5B,C). Hence, the latter influence
fungal community structure. Variation partitioning modeling
(Figure 5A) revealed that spatioclimatic and edaphic variables
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FIGURE 3 | (A) Environmental variables correlated with total and major fungal functional richness in nine forest ecosystems. Correlation and significance were
determined by Pearson’ tests. (B) Random forest analysis identifying best individual predictors of fungal richness including plant traits, soil properties, and climatic
and spatial factors. (C) Scatterplots showing relationships with most significant drivers. MSE: mean square error. *p < 0.05.

and plant traits explained 20.5, 13.7, and 16.5% of the
variation in fungal community composition, respectively.
Plant traits alone explained 3.8% of the variation in fungal
community composition and contributed to 12.7% of

the total variation by interacting with the edaphic and
spatioclimatic variables.

Leaf P content, soil TP, climate, and spatial factors were
selected as significant drivers of the first soil fungal community
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FIGURE 4 | Partial least-squares path models showing (A) relationships of fungal richness and (B) community composition (two axes from non-metric
multidimensional scaling) with climatic and spatial factors, plant traits, and soil properties of nine forest ecosystems. The solid line represents a positive correlation,
the dotted line represents a negative correlation. Green line in (B) indicates paths to composition a1. Blue line indicates paths to composition a2. Black line indicates
paths common to compositions a1 and a2. GOF: goodness-of-fit. Arrow widths are proportional to strengths of causal relationships supplemented by standardized
path coefficients (*p < 0.05; **p < 0.01; ***p < 0.001). R2 indicate explained variances in response variables.

NMDS axis. Climate, spatial factors, and root traits were the
predictors of the second NMDS axis (Figure 6). PLS-PMs
explained 69 and 60% of the variance in the first and second
soil fungal community NMDS axes, respectively (Figure 4B).
The root and leaf traits directly affected soil fungal composition.
Root biomass allocation had the largest direct effect (composition
a2, path coefficient = 0.43). Leaf traits indirectly affected fungal
composition (composition a2) by altering root traits (Figure 4B),
besides, leaf traits had direct effects on fungal composition
(composition a1). Soil TP, SOC, and pH had the greatest direct
effects of all variables on soil fungal community composition
(composition a1, path coefficient =−0.41).

DISCUSSION

Plants are assumed to play an important role in structuring
soil microbial communities, but most studies have only

used aboveground plant community instead in exploring the
relationships between microbes and plants at the community
level (López-Angulo et al., 2020). This study comprehensively
evaluated the effects of above and belowground plant traits on
soil fungal community, and demonstrated that aboveground
leaf traits (nutrients) and belowground root traits (biomass,
SRL, and nutrients) largely influenced topsoil fungal richness
and community composition in forest ecosystems (Figure 7).
Spatial and climatic factors exerted indirect effects on soil fungal
community mainly via affecting soil properties, nutrient and
energy exchange between roots and leaves (Figures 4, 7).

In contrast to global-scale soil fungal biogeographic patterns
(Tedersoo et al., 2014; Bahram et al., 2018), there was no
trend in the richness of overall soil fungi, major taxonomic
and functional fungal groups with latitude along the nine forest
ecosystems studied here besides EcM. EcM fungal richness
increased with latitude and reached maxima in temperate
forests (Supplementary Figure 4). Most EcM fungi belong to
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FIGURE 5 | (A) Variation partitioning modeling identifying relative contributions of plant traits, climatic and spatial factors, and soil properties as predictors of soil
fungal community composition at OTU level. (B) Relationship between Bray-Curtis community dissimilarity and Euclidean distance matrix for plant traits. Each data
point represents Bray-Curtis dissimilarity score for two samples and Euclidean distance between them. (C) Environmental variables correlated with total and major
functional fungal community structures in nine forest ecosystems. Correlations and significance were determined by Mantel tests based on 999 permutations.

stress-tolerant taxonomic groups (Beck et al., 2013; Treseder
et al., 2014). Moreover, the number of colonizable roots increases
with the number of EcM plants which, in turn, furnish carbon for
EcM fungi in temperate forests (Tedersoo et al., 2012; Tedersoo
et al., 2014). In this type of ecosystems, EcM play a dominant role

FIGURE 6 | Random forest analysis identifying best individual predictors of
fungal community composition in nine forest ecosystems. MSE: mean square
error. Community compositions a1 and a2 represent first and second NMDS
axes. Compositional variation is represented by Bray-Curtis distance matrix at
OTU level. *p < 0.05.

in N and P acquisition from the soil and transfer to host plant
roots (Tedersoo et al., 2012).

Various climatic and soil factors may affect soil fungal
richness and community composition. Of these, temperature
and precipitation are the most important on a large scale
(Tedersoo et al., 2014; Zhou et al., 2016; Bahram et al., 2018).
Climatic conditions directly determine fungal species survival
and soil colonization. They also affect soil fungal communities
by indirectly influencing local vegetation. Soil C/N and pH also
predict topsoil fungal richness and community composition at
the global scale (Tedersoo et al., 2014; Bahram et al., 2018).
Fungal distribution is limited by resource availability and soil C/N
strongly influences soil fungal richness (Tedersoo et al., 2014). In
contrast, the soil fungal community was relatively less responsive
to pH than the soil bacterial community (Tedersoo et al., 2014;
Bahram et al., 2018).

Plant inputs to the soil determine soil microbial C
requirements (Cline et al., 2018). Previous studies showed that
SRL is positively correlated with root exudation (Guyonnet et al.,
2018) and negatively correlated with fine root lifespan (Luke
McCormack et al., 2012). The positive association between SRL
and soil fungal richness observed here was consistent with the
fact that plant traits regulate the amount of easily metabolizable
substrate available to the soil fungal community. Root litter and
exudates are more readily metabolized than aboveground litter
by soil microbes (Cotrufo et al., 2013). However, in this study,
leaf traits only indirectly influenced fungal richness by allocating
photosynthate to the roots. Moreover, plant richness was not
related to fungal richness. A recent study (Delgado-Baquerizo
et al., 2018) underscored the importance of aboveground plant
community traits such as diversity, cover, and leaf traits in
the prediction of soil microbial community diversity. Only
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FIGURE 7 | Conceptual framework of aboveground and belowground plant traits’ effects on topsoil fungal communities in forest ecosystems across a wide range of
latitudes.

plant cover had a negative effect on soil fungal diversity and
the associations between plant species and soil fungal richness
varied with sampling site (Delgado-Baquerizo et al., 2018). The
outcome of the present study corroborated the preceding results.
Here, we showed that belowground plant traits accounted for
most of the variation in soil fungal richness. Taken together, these
findings suggest that soil fungal richness is driven (i) directly
by root traits as the roots furnish resources via exudates and
decomposition, and (ii) indirectly by leaf traits as the leaves
allocate photosynthate to the roots. Besides nutrient traits,
specific leaf area and dry matter content were related to soil
fungal community (de Vries et al., 2012; Pei et al., 2016; De
Long et al., 2019). The limitation of this study is that leaf traits
only include three nutrient traits; however, root traits include
extra morphological and biomass. This may cause bias in the
assessment of the relative importance of leaf and root traits in
affecting soil fugal communities.

Since different fungal groups have different plant C sources,
are they related to different plant traits? We found significant
correlations between SRL and richness of saprotrophic and
pathotrophic fungi (Figure 3A). This observation is consistent
with a resource strategy based on plant material metabolism
(Goldmann et al., 2015; Schimann et al., 2017). Saprotrophic
fungi derive their energy from plant litter decay and soil organic
matter. Pathotrophic fungi rely mainly on living host plants
for their metabolic energy. Nevertheless, there were significant
correlations among root P, leaf N, and EcM fungal richness. This
finding is consistent with a resource strategy that depends upon
plant photoassimilates. EcM fungi utilize photosynthate in fine
roots and provide the host plant with N and P. Host plants can
increase their C allocation to roots in order to acquire more P
(Kou et al., 2018).

Spatial distributions of soil fungi are the results of the
combined effects of fungal diversification, climate, soil

geography, and plant community selection (Tedersoo et al.,
2014). In the present study, most of the variation in the
soil fungal communities in the nine forest ecosystems was
the result of relative differences in their spatial and climatic
factors. The soil fungal community compositions differed
between the evergreen broad-leaved forest (JL, DH, and JF)
and others (HZ, LS, CB, DL, TY, and SN) primarily because
of the dramatic differences between these two ecosystems
in terms of their climate and soil properties. Spatial and
climatic factors influence soil fungal communities mainly
by indirectly altering soil properties and plant traits. Plant
species richness and leaf and root traits directly and jointly
affect soil fungal community compositions (Figure 7). These
results are consistent with those of previous reports. Plant
diversity (He et al., 2017) and leaf N affect fungal community
composition (Delgado-Baquerizo et al., 2018). Furthermore,
we demonstrated that both aboveground and belowground
plant traits contributed to variation in soil fungal community
composition as they determine the amounts of plant resources
entering the soil. In accordance with Legay et al. (2014), the
present study showed that it is the root traits rather than leaf
traits that drive soil fungal community structure. Roots directly
impact easily metabolizable C resources (root decomposition
and exudates) (de Vries et al., 2012; Grigulis et al., 2013;
Delgado-Baquerizo et al., 2018).

Soil fungi are vital links in the food web and energy channels.
Soil fungal richness and community composition are mediated
by fungal predators, competitors, and prey (de Vries et al.,
2013). Microbial consumers and bioturbators such as protozoa,
nematodes, and earthworms influence soil fungi by mineralizing
soil nutrients and augmenting soil nutrient bioavailability (de
Vries et al., 2013). Nevertheless, the aforementioned processes
and interactions have not been fully elucidated and merit
further investigation.
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CONCLUSION

Here, we detected no obvious latitudinal trend in soil fungal
richness. Nevertheless, the present study demonstrated that the
soil fungal community composition of low-latitude evergreen
forests markedly differed from those of high-latitude deciduous
and coniferous forests. Abiotic and biotic factors collectively
explained 45% and > 60% of the soil fungal richness and
community composition, respectively. Root biomass and specific
root length exerted the strongest direct effects on soil fungal
richness and community composition at the community level.
Leaf nitrogen and phosphorus substantially affected richness
mainly via their influences on root biomass allocation, while
they exerted both direct and indirect effects on community
composition. Moreover, spatial and climatic factors mainly
affected soil and plant properties which, in turn, influenced
soil fungal community composition. The results of this study
demonstrated that plant traits predict soil fungal community
distribution at the regional scale. Hence, plant traits could
improve the accuracy and reliability of predicting of soil fungal
communities in forest ecosystems across a wide range of latitudes.
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Supplementary Figure 1 | Distribution of typical forest ecosystems along the
North-South Transect of eastern China (NSTEC). The abbreviations of sampling
sites from north to south are as follows: HZ, Huzhong; LS, Liangshui; CB,
Changbai; DL, Dongling; TY, Taiyue; SN, Shennong; JL, Jiulian; DH,
Dinghu; JF, Jianfeng.

Supplementary Figure 2 | Relative abundances of the dominant fungal classes.

Supplementary Figure 3 | Relationships between relative abundance (%) and
latitude for dominant fungal phyla.

Supplementary Figure 4 | Relationships between richness and relative
abundance with latitude for fungal functional guild.

Supplementary Figure 5 | A priori path model for plant traits explains latitudinal
patterns in topsoil fungal communities. Arrows indicate causal directed
relationships between variables. The climate (1), soil (2), plant diversity (4) (Harrison
et al., 2020), and plant traits (5) (7) (8) (Wang et al., 2018; Zhang et al., 2018) vary
with latitude across wide spatial scales. These biotic and abiotic factors influence
soil fungal community, including geographic isolation (6) (Cox et al., 2016), climate
(10) (Tedersoo et al., 2014; Zhou et al., 2016), soil properties (15) (Leifheit et al.,
2014; Guo et al., 2019), and plant diversity (18) (Peay et al., 2013; Cline et al.,
2018). Plant diversity influences the quantity and composition of plant inputs (19)
(20) (21) (Wardle et al., 2004; Bardgett and van der Putten, 2014). CWM of leaf
traits such as specific area, dry matter content, and nitrogen concentration can
impact soil fungal community by influencing litter decomposition (25) (Quested
et al., 2007; Fortunel et al., 2009; Eichenberg et al., 2015), soil nutrients cycles,
and belowground processes (de Vries et al., 2012; Pei et al., 2016; De Long et al.,
2019). Fine root decomposition and root exudates are major C contributors to
forest soil microbial communities and regulate microbial metabolism (Freschet and
Cornelissen, 2013; Ponge, 2013). The chemical traits of fine roots are the best
indicators of community-level root decomposition and root exudates (24) (Prieto
et al., 2016; See et al., 2019). Fine roots with large specific root lengths (SRL) are
positively correlated with fungal: bacterial (F: B) ratios (27) (Legay et al., 2014). In
addition, plant diversity (3) (4) (13) (Harrison et al., 2020) and leaf nutrients (5) (9)
(14) (Zhang et al., 2018), root nutrients (8) (12) (17) (Zhang et al., 2018) and root
biomass allocation (7) (11) (16) are all strongly depend upon climatic and edaphic
variables. Leaf and root traits often show coordinated variation in stoichiometry
(22) (Freschet and Cornelissen, 2013). Leaf and root nutrients, scale with plant
photosynthetic and relative growth rates (23) (26) (Reich, 2014).
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