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The crude extract of Streptomyces chrestomyceticus exhibited strong and broad activities 
against most “ESKAPE pathogens.” We conducted a comprehensive chemical investigation 
for secondary metabolites from the S. chrestomyceticus strain and identified two novel 
albofungin (alb) derivatives, i.e., albofungins A (1) and B (2), along with two known 
compounds, i.e., albofungin (3) and chloroalbofungin (4). The chemical structures of the 
novel compounds were elucidated using HRMS, 1D and 2D NMR, and electronic circular 
dichroism spectroscopy. The draft genome of S. chrestomyceticus was sequenced, and 
a 72 kb albofungin (alb) gene cluster with 72 open reading frames encoding type II 
polyketide synthases (PKSs), regulators, and transporters, and tailoring enzymes were 
identified using bioinformatics analysis. The alb gene cluster was confirmed using the 
heterologous expression in Streptomyces coelicolor, which successfully produced the 
compounds 3 and 4. Furthermore, compounds 1–4 displayed remarkable activities against 
Gram-positive bacteria and antitumor activities toward various cancer cells. Notably, 
compounds 1 and 3 showed potent activities against Gram-negative pathogenic bacteria. 
The terminal deoxynucleotidyl transferase (dUTP) nick-end labeling and flow cytometry 
analysis verified that compound 1 inhibited cancer cell proliferation by inducing cellular 
apoptosis. These results indicated that albofungins might be potential candidates for the 
development of antibiotics and antitumor drugs.
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INTRODUCTION

The rise of multidrug-resistant pathogen infections brings a 
considerable burden on public health and generates high economic 
costs globally. Among these infections, the nosocomial infection 
is usually caused by a group of “ESKAPE pathogens,” comprising 
Gram-positive and Gram-negative bacteria, including Enterococcus 
faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 
baumannii, Pseudomonas aeruginosa, and Enterobacter species 
(Rice, 2008). These ESKAPE pathogens carry antimicrobial 
resistance genes and prevalently exist in the hospital environment 
(Santajit and Indrawattana, 2016). Also, the widespread and 
inappropriate use of antibiotics leads to antimicrobial resistance, 
which becomes a severe public health problem. Therefore, new 
antibacterial agents targeting the “superbugs” should be developed 
urgently (Prestinaci et  al., 2015).

We mined the actinomycetes, which are Gram-positive bacteria 
generating many bioactive secondary metabolites with chemical 
diversity and novel structures originating from marine and soil 
environments, to find novel antibiotics (Genilloud, 2017). 
Streptomyces, a genus of actinomycetes, is one of the most 
important sources of new antibiotics for decades, producing 
over two-thirds of natural antibiotics (e.g., neomycin, kanamycin, 
vancomycin, and rifamycin), which successfully entered the 
market and are applied in clinical therapies (de Lima Procópio 
et  al., 2012). Albofungin, which was isolated from Actinomyces 
species, belongs to the polycyclic xanthone polyketide family, 
featuring a highly oxygenated hexacyclic xanthone ring (Fukushima 
et  al., 1973). This family of compounds usually exhibits diverse 
biological activities, such as antibiotics, antifungal, anthelmintic, 
and potent antitumor activity (Masters and Bräse, 2012; Winter 
et al., 2013). However, the antitumor mechanism behind albofungin 
has not been investigated. Apoptosis, is regarded as an important 
part of various processes of a biological organism, including 
normal cell renewal, development of the immune system, and 
chemical-induced cell death. Apoptosis is a form of programmed 
cell death and different from necrosis, wherein cells die due 
to injury. During the apoptosis process, normal cells undergo 
chromatin condensation, nuclear fragmentation, and blending, 
and form an apoptosis body (Elmore, 2007).

The antiSMASH provides a comprehensive analysis of the 
microbial genomes for revealing various secondary metabolites 
encoded by their biosynthetic gene clusters before recognizing their 
structures (Medema et al., 2011; Blin et al., 2019). The biosynthesis 
of type II polyketides usually starts with loading the acetate onto 
the acyl carrier protein and transferring to the active sites of the 
ketone synthase. Afterward, malonyl-CoA is used as an extender 
unit to provide extended polyketide chains. The long polyketide 
chain is subsequently maintained through cyclization by cyclase, 
reduction by keto-reductase, and aromatization by aromatase to 
form the backbone of the aromatic polyketide (Zhang et al., 2017). 
Various tailoring enzymes, such as oxygenase, reductase, 
methyltransferase, halogenase, and glycosyltransferase enzymes, 
participate in the modifications of the polyketide backbone to 
generate diverse aromatic polyketides (Shen, 2003; Risdian et al., 2019).

The diverse bioactivities and unique structures of  
polycyclic xanthones attracted researchers to further investigate 

their biosynthesis. The biosynthetic gene clusters of antibiotics 
FD-594, lysolipin, and xantholipin from Streptomyces spp. were 
cloned and sequenced, and bioinformatics analysis revealed their 
putative functions of the open reading frames (Lopez et al., 2010; 
Kudo et  al., 2011). The mutagenesis and metabolite analysis of 
five pathway-blocked mutants further identified the biosynthesis 
pathway of xantholipin (Zhang et  al., 2012). In our study, the 
crude extract of Streptomyces chrestomyceticus shows strong 
bioactivities against “ESKAPE” Gram-positive and Gram-negative 
bacteria ranging from the micromolar concentration to the 
nanomolar concentration. The genome-based antiSMASH analysis 
reveals a gene cluster (alb, 72  kb) in S. chrestomyceticus for the 
biosynthesis of type II polyketide polycyclic xanthones. Furthermore, 
we  have conducted a chemical investigation on the crude extract 
of S. chrestomyceticus and discovered two novel albofungin 
derivatives [albofungins A (1) and B (2)] together with two known 
compounds, namely, albofungin (3) and chloroalbofungin (4). 
Herein, we have reported the isolation, purification, and structure 
elucidation for 1 and 2 from S. chrestomyceticus and their 
antibacterial activity. Notably, these compounds also exhibit potent 
antitumor activity. Further, cell death mechanism study reveals 
that compound 1 inhibits cancer cell proliferation by inducing 
apoptosis. Moreover, we have successfully conducted a heterologous 
expression for the whole albofungin biosynthetic gene cluster in 
Streptomyces coelicolor and proposed a possible biosynthesis pathway 
based on the genome analysis of albofungin derivatives.

EXPERIMENTAL SECTION

General Experimental Procedures
Preparative high performance liquid chromatography (HPLC) was 
performed using the Phenomenex Luna C18 column (100A, 
250  ×  21.2  mm, 5  sm) by using the Waters 2695 Separations 
Module, and the eluate was monitored at a UV wavelength of 
210  nm (Waters 2998 Photodiode Array Detector; Milford, 
United  States). 1H NMR was performed on the 500 and the 
800 MHz Varian spectrometers, and 13C NMR spectra were obtained 
on the 200  MHz Varian spectrometers. Standard 2D NMR 
experimental spectra, including HSQC, heteronuclear multiple 
bond correlation (HMBC), and COSY, were collected at 25°C. 
MS data were recorded from the Bruker ultrafleXtreme ultrahigh-
resolution TOF LC-MS system. Optical rotations were determined 
using the Jasco P-2000 Polarimeter. Circular dichroism spectra 
were obtained using the Chirascan circular dichroism spectrometer.

Extraction and Isolation of Compounds 1–4
The culture of S. chrestomyceticus BCC 24770 (25 L) was extracted 
using the same volume of ethyl acetate three times and then 
evaporated under reduced pressure to obtain a dried crude 
extract (27 g). This crude extract was dissolved in MeOH, loaded 
into the C18 silica gel column chromatography for fractionation 
with an increasing gradient of MeOH:H2O (20:80–100:0) to 
obtain nine fractions (Fractions 1–9). All fractions were 
systematically analyzed using HPLC, and fractions 5–7 with 
similar UV patterns were further separated. Fraction 5 was 
loaded to the Sephadex LH-20 column (eluted with MeOH) 
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to generate four subfractions (Fractions 5–1 to 5–4). Fraction 
5–4 was subjected to preparative HPLC (45% acetonitrile–55% 
H2O with 0.5‰ trifluoroacetic acid) to yield compound 1 
(15  mg). Fraction 6 was further purified with 50% acetonitrile 
using preparative HPLC to obtain compounds 2 (2  mg) and 
3 (2.1 g). Fraction 7 was purified using preparative HPLC (60% 
acetonitrile with 0.5‰ trifluoroacetic acid) to yield compound 
4 (670  mg).

Analytical Data
Albofungin A (1): yellow powder; [α]25

D-417 (c 1.2, MeOH); 
UV λmax (MeOH) nm 227, 252, 300, and 376; 1H and 13C 
NMR data, see Table  1; HRMS m/z 507.1398 (M  +  H)+ 
(calculated for C26H23N2O9, 507.1359).

Albofungin B (2): yellow powder; [α]25
D −126 (c 0.5, MeOH); 

UV λmax (MeOH) nm 227, 252, 300, and 376; 1H and 13C 

NMR data, see Table  1; HRMS m/z 520.1602 (M  +  H)+ 
(calculated for C28H26NO9, 520.1563).

X-Ray Crystallography
3 and its chloro-substituted derivative, 4, were crystallized using 
MeOH under room temperature for about 7 days at a controlled 
evaporation rate. Yellowish plates were observed at the bottom 
of the glass tube. Powder diffractograms were obtained on 
single-crystal powders at room temperature using Cu-Kα 
radiation on the PANAlytical X’Pert PRO diffractometer with 
a 1D X’celerator detector or the PANAlytical Aeris benchtop 
powder X-ray diffractometer. The single-crystal X-ray structures 
of 3 and 4 were determined at 100  K on the Rigaku Oxford 
Diffraction Supernova operating with a microfocus Cu-Kα 
source and the Atlas detector. Their absolute stereochemistries 
were confirmed using the refined Flack parameter value.

TABLE 1 | 1H and 13C NMR Data for 1–3 in DMSO-d6.

1a 2b 3c

Position δC, type δH (J in Hz) δC, type δH (J in Hz) δC, type δH (J in Hz)

1 163.3, C 165.9, C 163.3, C
2 109.2, C 109.3, C 109.2, C
3 156.8, C 157.6, C 156.8, C
4 112.9, C 113.2, C 112.8, C
5 111.4, C 111.8, C 111.6, C
6 149.7, C 149.6, C 149.6, C
7 109.8, C 109.9, C 109.8, C
8 182.3, C 182.1, C 182.1, C
9 119.6, C 120.4, C 120.3, C
10 59.0, CH 4.83, t (3.5) 58.8, CH 4.83, m 58.8, CH 4.82, t (3.5)
11 28.2, CH2 a 1.72, m

b 1.81, m

28.0, CH2 a 1.73, m

b 1.83, m

27.9, CH2 a 1.72, m

b 1.81, m
12 26.6, CH2 a 1.94, m

b 2.08, m

22.8, CH2 a 2.06, m

b 2.08, m

22.8, CH2 2.06, m

13 65.5, CH 4.58, m 74.7, CH 4.44, dd (8.9, 6.6) 74.7, CH 4.40, dd (8.8, 6.8)
14 167.1, C 165.2, C 165.1, C
16 142.9, C 142.7, C 142.7, C
17 130.3, C 130.3, C 130.3, C
18 129.9, C 130.1, C 130.1, C
19 72.1, CH 4.97, dd (13.1, 4.7) 72.1, CH 4.96, dd (13.1, 4.7) 72.1, CH 4.95, dd (13.1, 4.7)
20 35.9, CH2 a 2.76, t (13.6)

b 3.23, dd (13.9, 4.7)

35.9, CH2 a 2.75, t (13.4)

b 3.22, dd (13.9, 4.7)

36.0, CH2 a 2.75, t (13.4)

b 3.22, dd (13.9, 4.7)
21 140.4, C 140.9, C 140.4, C
22 113.8, CH 7.01, s 113.6, CH 6.98, s 113.9, CH 7.00, s
23 136.2, C 137.1, C 139.5, C
24 105.3, CH 6.62, s 106.5, CH 6.62, s 105.3, CH 6.59, s
25 141.6, C 141.3, C 141.7, C
26 18.9, CH3 2.45, s 20.1, CH3 2.45, s 19.0, CH3 2.44, s
27 90.5, CH2 5.42, d (5.9)

5.60, d (5.9)

90.4, CH2 a 5.42, d (5.9)

b 5.61, d (5.9)

90.7, CH2 a 5.40, d (5.9)

b 5.60, d (5.9)
NH2 5.90, s
N-CH3 30.3, CH3 3.54, s
3-OH 13.58, s 13.97, s 13.57, s
6-OH 13.07, s 12.93, s 12.94, s
10-OH 5.14, d (4.7)
13-OCH3 57.8, CH3 3.56, s 57.8, CH3 3.55, s

a1H and 13C data were recorded at 500 and 200 MHz, respectively. b1H and 13C data were recorded at 800 and 200 MHz, respectively. c1H and 13C data were recorded at 500 and 
100 MHz, respectively.
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Genomic DNA Extraction and Putative 
Gene Cluster for Polycyclic Xanthone
The BCC 24770 was cultured at the GYM agar plate for 7  days 
at 30°C, and the mycelium was used for the genomic DNA 
extraction by following the protocol in the TIANamp Bacteria 
DNA Kit (DP302). The quality and the quantity of DNA were 
evaluated using the BioDrop μLITE (BioDrop, Cambridge, 
United Kingdom). A 350 bp inserted-size library was constructed 
using the qualified DNA. The library was further sequenced on 
the Illumina NovaSeq 6000 platform to generate paired-end reads 
with a length of 150  bp. The Trimmomatic version 0.38 (Bolger 
et  al., 2014) was used to trim low-quality reads based on the 
raw sequencing reads with default settings and remove the 
adapters with “ILLUMINACLIP: Truseq3-PE-2.fa.” Clean reads 
were used for assembling the bacterial genome by using the 
SPAdes version 3.13.0 (Bankevich et  al., 2012) with the settings 
“–careful −k 47,67,87,107,127.” The MaxBin version 2.2.7 (Wu 
et al., 2015) was further used to remove the potential contamination 
of the raw assembled contigs via genome binning. The assembly 
quality, including the contamination and the completeness, was 
assessed using the CheckM version 1.0.13 (Parks et  al., 2015). 
The genomic DNA was analyzed using the antiSMASH1 and 
revealed a gene cluster 8.1 for putative polycyclic xanthone.

Cell Culture
HeLa, MCF 7, and Hep G2 cells were cultured in Dulbecco’s 
modified Eagle medium (DMEM) supplemented with 10% fetal 
bovine serum (FBS) and 1% penicillin and streptomycin at 
37°C and 5% CO2.

Cell Viability and TdT-Mediated dUTP Nick 
End Labeling Assays
The cell viability assay was performed using the MTT assay. 
Cells were seeded into 96-well plates at a density of 5,000 
cells per well, cultured in DMEM with 10% FBS and 1% 
penicillin and streptomycin, and incubated at 37°C and 5% 
CO2 for 24  h. The compounds with different concentrations 
were added into the culture medium for another 24  h. The 
MTT (20 μl, 5 mg/ml) was added into each well and incubated 
at 37°C for 4  h. The medium was discarded, and formazan 
was dissolved in 150  μl DMSO. The absorbance was measured 
using the Multiskan™ FC microplate photometer at 570  nm. 
The IC50 value was analyzed using the GraphPad Prism software.

For the TdT-mediated deoxynucleotidyl transferase (dUTP) 
nick end labeling (TUNEL) assay, cells were seeded on coverslips 
at the bottom of 24-well plates, incubated at 37°C and 5% 
CO2 for 24  h, and treated with 0.008, 0.016, and 0.032  μM 
of compound 1 for another 24  h. Cells were fixed with 4% 
paraformaldehyde at room temperature for 20  min and 
permeabilized with 0.1% Triton X-100 dissolved in PBS. The 
TUNEL assay was conducted following the manufacturer’s 
instructions (Thermos Fisher Scientific, Foster City, CA, 
United States). After washing twice with PBS, cells were stained 
with Hoechst 33342 (Sigma) and mounted on glass slides. 

1 http://antismash.secondarymetabolites.org/

Images were captured using the Zeiss Cell Discoverer 7 automated 
microscope. The stained positive cell ratio was counted and 
analyzed using the Image J software.

Flow Cytometry Analysis of Cell Apoptosis
The eBioscience™ Annexin V Apoptosis Detection Kit FITC 
(Thermo Fisher Scientific, Foster City, CA, United  States) was 
used to detect cell apoptosis in accordance with the manufacturer’s 
instructions. HeLa and MCF 7 cells were treated with or without 
compound 1  in 6-well plates, incubated at 37°C for 24  h, and 
harvested by washing twice with PBS and once with the Annexin 
V binding buffer. Cells were resuspended in 100  μl Annexin 
V binding buffer and stained with 5  μl Annexin V and 5  μl 
PI. For each experiment, 5,000 stained cells were analyzed 
using flow cytometry (BD FACSAria™ III, BD Biosciences, 
United  States). Each experiment was repeated thrice.

Antibacterial Activity Assay
The minimal inhibition concentration (MIC) was determined 
using the broth microdilution in accordance with the CLSI 
guidelines. Isolated compounds were tested against pathogenic 
bacteria, including MRSA ATCC 43300, S. aureus ATCC 25923, 
S. aureus B04, B. subtilis zk31, K. pneumoniae NRRL-B-3521, 
K. pneumoniae NRRL-B-408, A. baumannii B-65371, 
Enterobacter cloacae NRRL-B-425, Escherichia coli k12, and 
E. coli MG1655. The overnight culture was briefly diluted 
into 1  ×  105  CFU ml−1 in Mueller Hinton broth and added 
with different concentrations of compounds in 96-well plates. 
Plates were incubated at 37°C for 24 h. The lowest concentration 
of the compound with no viable growth was regarded as the 
MIC value.

Bacterial Artificial Chromosome Library 
Construction and Screening
Streptomyces chrestomyceticus BCC 24770 was cultivated in 0.4% 
glucose, 0.4% yeast extract, and 1% malt extract for 3  days. 
The BamHIBAC library was constructed by Wuhan Eightstars 
Bio-Technology Co., Ltd. as described (Luo et  al., 2001; Luo 
and Wing, 2003; Shi et  al., 2011). The culture was centrifuged 
at 4,000  rpm for 10  min to remove the supernatant, and the 
mycelium was collected for the genomic DNA plug preparation. 
The restriction enzyme BamHI was used to digest the genome 
partially, and the fragments with appropriate size were selected. 
The pMSBBAC1 vector and DH10B E. coli host were used to 
construct a bacterial artificial chromosome (BAC) library with 
20-fold genome coverage and around 110  ±  5  kb average 
inserts. The BAC library totally contained 2,304 clones in six 
plates (384 clones in each plate). The BAC clones containing 
the albofungin biosynthetic gene cluster were screened using 
library-screening primers (Supplementary Table S1). The primers 
were chosen in both ends and the middle of the gene cluster 
according to antiSMASH prediction, and the genomic DNA 
of S. chrestomyceticus BCC 24770 was used as the template 
for PCR positive control. The positive clones were picked, and 
their plasmids were further extracted for transformation 
and conjugation.
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Heterologous Expression and LC/MS 
Detection
The BAC (120  kb) plasmid 4 L19 was introduced into E. coli 
ET12567/pUZ8002 by electroporation and conjugated to S. 
coelicolor. S. coelicolor was grown on MS agar (2% mannitol, 
2% soya flour, 2% agar, and 10 mM MgSO4) to generate spores. 
The conjugation process was described as follows. Eschericia 
coli ET12567/pUZ8002 containing BAC plasmid 4 L19 was 
cultured in LB medium with 50  μg ml−1 kanamycin, 50  μg 
ml−1 apramycin, and 25  μg ml−1 chloramphenicol. Then, 1% 
of the overnight culture was inoculated into 5  ml LB medium 
(50  μg ml−1 kanamycin, 50  μg ml−1 apramycin, and 25  μg ml−1 
chloramphenicol) to grow until an OD600 of 0.4–0.6 was reached. 
Cultures were centrifuged at 4,000  rpm for 5  mins, and the 
supernatant was discarded. Cell pellets were washed twice with 
LB medium and resuspended in 500  μl LB medium. Spores 
were added into the LB medium at a final volume of 500  μl 
and heated at 50°C for 10  min. Escherichia coli ET12567/
pUZ8002 cells with BAC plasmid 4 L19 and the spores were 
mixed and poured onto the ISP Medium No. 4 agar plate. 
Plates were incubated at 30°C for 16–18  h, and the surface 
of the plates was overlaid with 1  ml sterile water (containing 
0.5  mg nalidixic acid and 1.25  mg apramycin). Plates were 
incubated for another 2 days until the conjugants could be picked 
for growth on the selection plates. The genomic DNA of the 
conjugants was extracted and screened using library-screening 
primers (Supplementary Table S1). Positive conjugants were 
picked and fermented in the AM5 medium for 5  days. The 
cultured mycelium and broth were extracted with ethyl acetate, 
and the extracts were evaporated to perform the UPLC/
MS analysis.

RESULTS

Structure Elucidation
There was a total of four compounds (1–4) isolated from 
S. chrestomyceticus BCC 24770 from the crude extract. 
Compound 1 was isolated as a yellow amorphous powder, 
and its molecular formula was C26H22N2O9 on the basis of 
the high-resolution mass spectroscopy data [m/z 507.1389, 
calculated for C26H23N2O9, (M  +  H)+]. By comparing the 
differences of the 1H and 13C NMR spectra of 1 and 3 
(Table  1), most resonances were quite similar except the 
resonances of a methoxy group (δH 3.56 and δC 57.8) connected 
with C-13  in 3 was missing in 1, which indicated that the 
substitution of C-13 was a hydroxy group instead of a methoxy 
group. Further, extensive 2D NMR spectroscopic analysis 
(Figure  1) confirmed the planar structure of 1.

Compound 2 was isolated as a yellow powder and found 
close to 3  in the LC-MS profile considering its odd molecular 
weight. This finding suggested the odd number of nitrogen 
atoms in the formula. The molecular formula of 2 was found 
to be  C28H25NO9 on the basis of the HRESIMS ion at m/z 
520.1598 (M  +  H)+ (calculated for C28H26NO9). Considering 
that the UV pattern of 2 was identical to that of 3, we supposed 
that they share a similar chromophore and backbone.  

An additional single methyl (δH 3.54 and δC 30.3) in 2 was 
observed by comparing the 1H and 13C NMR spectra of 2 and 
3 (Table  1). Considering the chemical shift of the additional 
methyl, we assumed that the methyl was connected to a nitrogen 
atom. This assumption was confirmed by the key HMBC 
correlations from the methyl proton to C1 (δC 166.1) and C25 
(δC 141.5). In addition, the analysis of the other HMBC 
correlations finally established the planar structure of 2 (Figure 2).

Given that they shared a similar biosynthesis pathway with 
3 and 4, 1 and 2 might reasonably possess the same 
stereochemistry as 3 and 4. The absolute configurations of 3 
and 4 were established as 10-S, 13-R, and 19-R by using the 
X-ray crystallographic analysis in our previous study (Ye et  al., 
2020). The circular dichroism experiment was conducted to 
verify the stereochemistry of 1 and 2. The experimental electronic 
circular dichroism spectra showed that 1 and 2 exhibited a 
similar pattern with 3. The negative cotton effects were at 
220–250, 271–280, and 305–380 nm regions, and positive cotton 
effects were at 200–220, 258–271, and 284–303  nm regions. 
Therefore, the absolute stereochemistries of 1 and 2 were 
determined as 10-S, 13-R, and 19-R (Figure  3).

Antibacterial and Antitumor Activities of 
Albofungin Derivatives
We examined the isolated albofungin derivatives for their 
bioactivities against most of the notorious ESKAPE bacteria, 
including S. aureus, K. pneumoniae, A. baumannii, and E. cloacae, 
which are the leading causes of healthcare-associated infections 
around the world (Santajit and Indrawattana, 2016). All compounds 
(1–4) exhibited strong bioactivities at a nanomolar range on 
the tested Gram-positive bacteria (Table  2). The compounds 
with a rare N-aminoamide linked in the A ring having better 

FIGURE 1 | Structures of compounds 1–4.
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activities (1, 3, and 4 vs. 2) suggested that the existence of 
N-aminoamide was essential for their bioactivities against 
Gram-positive bacteria.

Among the tested compounds, 1 showed the most potent 
activities toward Gram-negative bacteria, including K. pneumoniae 
NRRL-B-3521, K. pneumoniae NRRL-B-408, A. baumannii 
B-65371, E. cloacae NRRL-B-425, E. coli k12, and E. coli MG1655 
at a low micromolar range (Table  3). We  suspected that 1 
could penetrate the outer membrane of bacteria easier due to 
the hydroxyl group in the F ring rather than a methoxy group 
compared with the 3.

Moreover, we  tested the antitumor activities of albofungin 
derivatives toward HeLa (cervical carcinoma), MCF 7 (breast 
carcinoma), and HepG2 (hepatocellular carcinoma) cells. All 
compounds displayed significant antitumor activities with the 
IC50 ranging from 0.003  μM to 0.9  μM (Table  4).

Induction of Apoptosis in HeLa and MCF 7 
Cells by Compound 1
Polycyclic xanthone compounds had very potent antitumor 
activities toward various cancer cell lines. Among the isolated 
albofungin derivatives, 1 exhibited the lowest IC50 value toward 

FIGURE 2 | 1H-1H COSY and key HMBC correlations of compounds 1 and 2.

FIGURE 3 | CD spectra of compounds 1 and 2 compared with 3 in methanol.
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HeLa cells in a dose- and time-dependent manner. Thus, the 
cell death mechanism behind this compound was further 
investigated. The Annexin V/PI double staining and flow 
cytometry analysis were performed to determine whether 1 
could trigger apoptosis in HeLa and MCF 7 cells. After 24  h 
treatment of 1, the apoptosis rate significantly increased from 
7.8 to 57.4% in MCF 7 cells and from 3.3 to 48.6% in HeLa 
cells in a dose-dependent manner (Figures  4A,B).

Furthermore, we  used the TUNEL assay to verify the results. 
The TUNEL assay can detect the DNA fragmentation generated 
from double-strand DNA breaks in cells undergoing apoptosis 
by labeling the 3′-hydroxyl termini. The Hoechst 33342 was 
used to detect all apoptotic or nonapoptotic cells. After 24  h 
of treatment, the apoptosis cell rate was approximately 36.6% at 
0.008 μM concentration and nearly 66.5% at 0.032 μM concentration 
(Figures 4C,D). This data indicated that 1 could trigger apoptosis 
in HeLa and MCF 7 cells in a dose-dependent manner.

Proposed Albofungin Biosynthesis 
Pathway
Considering the chemical structures of the isolated albofungin 
derivatives, we proposed their biosynthesis pathway (Figure 5). 
The draft genome of S. chrestomyceticus was sequenced to 

support our hypothesis. A total of 17,075,412 clean reads were 
used to assemble a draft genome with 70 contigs of 9.34  Mb 
(100% genome completeness). The draft genome predicted 7,906 
genes. The antiSMASH analysis for the whole genome predicted 
41 biosynthetic gene clusters (Supplementary Table S3), 
including two Type II polyketide synthases (PKSs) biosynthetic 
gene clusters. One of the Type II PKS biosynthetic gene clusters 
(8.1) showed 48% similarity to the xantholipin (MIBiG accession: 
BGC0000279) and the lysolipin I  (MIBiG accession: 
BGC0000242) biosynthetic gene clusters, which consisted of 
72 open reading frames (Supplementary Table S4), including 
a minimal PKS gene, modification tailoring genes, regulator, 
and transporter genes.

The acyl-CoA carboxylase (Alb51, Alb58) might catalyze 
carboxylation of acetyl-CoA to malonyl-CoA, which begins 
the biosynthesis pathway. The biosynthesis study of polycyclic 
xanthone FD549 and lysolipin revealed that the polyketide 
chain was formed by the catalysis of type II PKS (Lopez 
et  al., 2010; Kudo et  al., 2011). Thus, the existence of a 
minimal PKS gene set coding for a ketosynthase α (Alb37), 
a ketosynthase β/chain length factor (Alb36), and an acyl 
carrier protein (Alb44) is supposed to be  responsible for 
condensation of 13 malonate and synthesizing a polyketide 
precursor. Cyclases (Alb35, Alb38, and Alb39) then catalyzed 
the cyclization of the extended linear polyketide chain. The 
Baeyer–Villiger oxidation was involved in the xanthone scaffold 
formation reported by the biosynthesis of lysolipin I  and FD 
549. Among the three FAD-dependent monooxygenases (i.e., 
Alb23, Alb27, and Alb66), Alb23 showed 80.41, 70.73, and 
42.2% to XanO4, LlpOVIII, and PnxO4, respectively. The 
P450 monooxygenase (Alb61) was responsible for generating 
the methylenedioxy bridge, and an asparagine synthetase 
homolog (Alb21) was involved in the amide ring formation. 

TABLE 2 | Minimal inhibition concentration (MIC) of albofungin compounds (1–4) against pathogenic Gram-positive bacteria.

Anti-Gram-positive bacterial activities (MIC, nM)

Compound 1 Compound 2 Compound 3 Compound 4

MRSA ATCC 43300 <0.1 30 <0.1 0.1
Staphylococcus aureus ATCC 25923 0.4 30 <0.1 0.1
Staphylococcus aureus B04 6.3 30 <0.1 3.6
Bacillus subtilis ZK31 <0.1 <0.1 <0.1 0.1

Vancomycin was used as a positive control.

TABLE 3 | MIC of albofungin compounds (1–4) against pathogenic Gram-
negative bacteria.

Anti-Gram-negative bacterial activities (MIC, μM)

1 2 3 4

Klebsiella 
pneumoniae 
NRRL-B-3521

0.16 >38 0.77 >36

Klebsiella 
pneumoniae 
NRRL-B-408

0.16 >38 0.77 >36

Acinetobacter 
baumannii 
B-65371

0.32 7.7 7.7 >36

Enterobacter 
cloacae 
NRRL-B-425

0.32 >38 7.7 >36

Escherichia 
coli k12

0.32 >38 1.5 36

E. coli 
MG1655

0.79 >38 1.5 >36

Kanamycin was used as a positive control.

TABLE 4 | IC50 of albofungin compounds (1–4) against human cancer cell lines.

IC50 (μM)

HeLa

(cervix)

MCF 7 (breast) HepG2

(liver)

1 0.003 0.005 0.02
2 0.016 0.012 0.33
3 0.008 0.006 0.038
4 0.018 0.007 0.9

Cisplatin was used as a positive control.
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A B

D

C

FIGURE 4 | Compound 1-induced apoptosis in HeLa and MCF 7 cells. (A) Flow cytometry analysis of HeLa and MCF 7 cells treated with or without compound 1 
for 24 h and stained with FITC–Annexin V/PI. Distribution of necrotic (i.e., Q1, annexin V−, and PI+), late apoptotic (i.e., Q2, annexin V+, and PI+), viable (i.e., Q3, 
annexin V−, and PI−), and early apoptotic (i.e., Q4, annexin V+, and PI−) cells. (B) Quantitative result of apoptosis rate in HeLa and MCF 7 cells analyzed using flow 
cytometry. Data were presented as mean ± SD from three independent experiments. *p < 0.05, **p < 0.01, and ***p < 0.001 compared with the control group. 
(C) HeLa cells treated with compound 1 for 24 h and stained with TUNEL (red) to detect apoptotic cells. The nucleus was stained with Hoechst 33342 (blue). 
(D) Quantitative result of apoptosis rate in HeLa cells analyzed using the TdT-mediated deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay. Data 
were presented as mean ± SD from three independent experiments. *p < 0.05, **p < 0.01, and ***p < 0.001 compared with the control group.

A chlorine atom substituted on ring A was catalyzed by 
the halogenase. Bromine was introduced to confirm the 
function of halogenase, and we  detected the characteristic 
bromoalbofungin signal right close to the 4 on the LCMS 
profile (Supplementary Figure S21) in the fermentation of 
S. chrestomyceticus BCC 24770 (0.01% potassium bromide, 
0.4% glucose, 0.4% yeast extract, and 1% malt extract). Four 
regulatory genes (i.e., alb22, alb45, alb57, and alb63) and 
one transporter gene (alb7) were assumed to participate in 
the biosynthesis of albofungins.

Heterologous Expression of the Albofungin 
Biosynthetic Gene Cluster
We used the genomic DNA of S. chrestomyceticus BCC 24770 
for BAC library construction (total 2,304 clones) to identify 
the biosynthetic gene cluster for albofungin derivatives. We used 
three pairs of primers (i.e., Lib-screen-up F/R, Lib-screen-
middle F/R, and Lib-screen-down F/R) to perform PCR 
screening for the clones, including the middle and left/right 

boundary region, and obtain the entire gene cluster. One 
positive clone 4 L19 was selected (Supplementary Figure S22). 
The plasmid 4 L19 was further transformed into the S. coelicolor 
M1146 for heterologous expression. We  randomly selected 
eight conjugants from each heterologous host grown on the 
ISP Medium No. 4 plate with apramycin and nalidixic acid 
to perform a three-round PCR screening. The conjugants 
successfully integrated with intact albofungin biosynthetic 
gene clusters were fermented, and their secondary metabolites 
were extracted. We  compared the HPLC and the UPLC-MS 
results of the metabolite profiles of mutant strains and wild-
type heterologous hosts and found that two new peaks appeared 
in the mutant strain S. coelicolor M1146-4 L19 metabolites 
(Figure  6; Supplementary Figure S23). The retention times 
of these two new peaks were the same with those of the 3 
and 4. We  further confirmed the compounds using their UV 
patterns and exact masses. Therefore, the albofungin 
biosynthetic gene cluster was verified in the genome of 
S. chrestomyceticus.
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DISCUSSION

The compounds from the polycyclic xanthone family, such as 
simaomicin, cervinomycin, and xantholipin, were reported to 
have strong activities against Gram-positive bacteria and antitumor 
activities on various cancer cell lines (Terui et al., 2003; Koizumi 
et  al., 2009; Hu et  al., 2020). Sharing an oxygenated angular 
hexacyclic backbone containing a rare N-aminoamide, 3 and 
its derivatives show potent antibacterial activity against a broad 
spectrum of Gram-positive and Gram-negative pathogenic bacteria, 
including K. pneumoniae, A. baumannii, E. cloacae, and S. aureus. 
The albofungin is a bacterial transglycosylase inhibitor (Wu 
et  al., 2018). Therefore, the discovery of novel albofungin 
derivatives and their structure-activity relationship analysis 
provided instructions for chemical modifications of the albofungin 
backbone to generate derivatives with improved bioactivities.

The heterologous expression has achieved significant advances 
in the genomic era, promoting the discovery of novel natural 
products and paving the way for validating the functions of 
the entire biosynthesis pathway in an engineered host (Luo 
et al., 2016; Tu et al., 2016). This strategy enables the improved 
study of the gene functions in the pathway through genetic 
mutations (Huo et  al., 2019). The BGCs of polyketides are 

usually larger than 40  kb. Therefore, using the BAC vectors 
to construct genomic libraries is an efficient approach for 
capturing these large BGCs (Xu et  al., 2016). In this study, 
the BAC library construction remarkably achieved large BGCs 
capturing and heterologous expression in the S. coelicolor M1146, 
which provides opportunities to understand the unique post-PKS 
modifications in the albofungin biosynthesis.

CONCLUSION

In conclusion, our work reported the isolation, purification, 
and structure elucidation of two novel albofungin derivatives, 
1 and 2 from S. chrestomyceticus. Their antibacterial activity 
was evaluated, and the antitumor mechanism was further 
explored. Briefly, all compounds exhibited potent antibacterial 
and antitumor activities. Compound 1 showed activities against 
Gram-positive and Gram-negative pathogenic bacteria from 
the micromolar range to the nanomolar range. Also, the working 
mechanism of the antitumor activity of these compounds was 
proven through the upregulated apoptosis in HeLa and MCF 
7 cells. These results suggested that albofungin derivatives could 
be potential candidates for the development of broad-spectrum 

A

B

FIGURE 5 | (A) Gene cluster of albofungin from BCC 24770 and (B) proposed albofungin biosynthesis pathway.
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A

B

FIGURE 6 | (A) Construction of the bacterial artificial chromosome (BAC) library and screening for clones containing the entire albofungin biosynthetic gene cluster 
and heterologous expression of BAC-4 L19 in Streptomyces coelicolor. (B) HPLC profiles of the metabolites of Streptomyces chrestomyceticus BCC24770 and 
recombinant strains.

antibiotics and antitumor drugs. We also conducted the genome-
based analysis and heterologous expression of the gene cluster 
encoding the biosynthesis of albofungins. Based on the 
characterization of the albofungin biosynthesis pathway, 
we hypothesized that the minimal PKS genes (i.e., alb36, alb37, 
and alb44), regulator, and transporter genes (i.e., alb7, alb22, 
alb45, alb57, and alb63) and other tailoring genes participated 
in the albofungin biosynthesis. Therefore, further genetic 
characterization work is required to test this hypothesis and 
decipher unusual modifications, such as the involvement of 
N-aminoamide in the biosynthesis of albofungins.
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