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The human microbiome has emerged as a central research topic in human biology and
biomedicine. Current microbiome studies generate high-throughput omics data across
different body sites, populations, and life stages. Many of the challenges in microbiome
research are similar to other high-throughput studies, the quantitative analyses need
to address the heterogeneity of data, specific statistical properties, and the remarkable
variation in microbiome composition across individuals and body sites. This has led
to a broad spectrum of statistical and machine learning challenges that range from
study design, data processing, and standardization to analysis, modeling, cross-
study comparison, prediction, data science ecosystems, and reproducible reporting.
Nevertheless, although many statistics and machine learning approaches and tools
have been developed, new techniques are needed to deal with emerging applications
and the vast heterogeneity of microbiome data. We review and discuss emerging
applications of statistical and machine learning techniques in human microbiome studies
and introduce the COST Action CA18131 “ML4Microbiome” that brings together
microbiome researchers and machine learning experts to address current challenges
such as standardization of analysis pipelines for reproducibility of data analysis results,
benchmarking, improvement, or development of existing and new tools and ontologies.

Keywords: machine learning, microbiome, ML4Microbiome, personalized medicine, biomarker identification

INTRODUCTION

The microbiome has long been defined as a community of
commensal, symbiotic, or pathogenic microorganisms that
inhabit a particular body site or environment (Lederberg and
McCray, 2001). The current apprehension of the microbiome
encompasses the totality of microorganisms and their
interactions, interplay with the host and the surrounding
environment, and is further influenced by constant co-evolution
(Berg et al., 2020). Understanding the composition, balance, and
role of the microbiome in human health and disease has become
a field of extensive research over the past decade (Wang and
Kasper, 2014; Gagnière et al., 2016; Sampson et al., 2016; Barratt
et al., 2017). The potential for applications in biomedicine and
biotechnology has been especially evident from gut microbiome
studies. Furthermore, microbiome research has become an
important subject of popular science and led to the acceleration
of development in different biotechnology industry sectors.

Some of the key topics in this field cover early life (Tamburini
et al., 2016), mechanisms of colonization resistance against
pathogens (Buffie and Pamer, 2013; Kim et al., 2017), and stability
and individuality of adult microbiota (Mehta et al., 2018), and
its associations with diseases, diet, medication, and lifestyle in
various populations across the globe (Segata et al., 2011; Schmidt
et al., 2018; Cullen et al., 2020). Moreover, the research focus is
shifting toward considering the role of genetics and environment

(Org et al., 2015; Roslund et al., 2020), as well as of diet (Singh
et al., 2017), and to translate this knowledge into microbiota-
based clinical solutions (Lynch et al., 2019).

Compared to many other fields of multi-omic studies,
microbiomes are dynamic ecosystems with active host regulation.
This adds interesting new dimensions and complexity to
the analyses and interpretation of data. Thus, the field
also requires additional ecological perspectives. The advances
in high-throughput sequencing technologies have accelerated
microbiome research (Malla et al., 2019), but the volume of
data and their complexity sets challenges for analysis. Adaptive
statistical and machine learning (ML) methodologies can help
us to overcome many of these barriers, but these methodologies
need to be adjusted to the specific properties of microbiome data.

Microbiome Data Properties and
Analysis Challenges
Two commonly used strategies for microbiome profiling include
the sequencing of a highly conserved region, such as the bacterial
16S ribosomal RNA (16S rRNA), and the untargeted sequencing
of genetic material present in the sample, as in shotgun
metagenomics (see Box 1 for more information) (Nayfach et al.,
2019). The quality of microbiome data and profiling is influenced
by experimental, biological, and environmental factors (Poussin
et al., 2018). Further variation arises from differences in sequence
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BOX 1 | Common data types in microbiome research.
Amplicon data. Amplicon based approaches are the most widely used high-throughput method for microbiome studies. Amplicon studies comprise data from
specific regions of various types of marker genes used for taxonomic profile determination of microbiome: 16S ribosomal RNA (16S rRNA) gene for prokaryotes; 18S
ribosomal RNA (18S rRNA) gene for eukaryotes; internal transcribed spacers (ITS) for fungi. These data are characterized by variability in the selected regions,
amplification primers and amplification protocols. Due to the sequence similarity, the data are often organized into operational taxonomic units (OTUs) (Schmitt et al.,
2012). The two most popular approaches for obtaining groups of related OTUs are based on (i) aligning sequences to a reference database or (ii) clustering
sequences based on sequence identity (de novo approach). Once OTU clusters are defined, taxonomic information is given for the representative sequences of each
OTU to deduce the phylogeny. However, probabilistic techniques such as DADA2 (Callahan et al., 2016) have recently gained more attention, and are now
increasingly used to replace the standard OTU clustering approaches by ASVs, which are un-clustered error-corrected reads. Although amplicon sequencing is
cost-effective, the reliability of bacterial classification decreases below genus level, and this methodology does not directly quantify bacterial genes and functions.

Shotgun metagenomics data. A growing number of studies use shotgun metagenomics and offer untargeted sequence data from the analyzed samples. These
data typically include contamination from host or environmental reads as well. The non-host DNA can be used for taxonomic analysis or functional profiling of all
types of microorganisms present in the microbiome–it allows the analyses of bacteria, viruses, fungi and parasites at the same time. Sequences from metagenomic
data can be classified using existing databases or assembled de novo. This type of analysis offers the possibility to analyze strain or even SNP level dynamics of the
microbiome (Quince et al., 2017; Zeevi et al., 2019) as well as reconstruction of draft genomes, which enables the identification of novel organisms and provides a
way to link functions with taxa. Depending on the aims of the study, shotgun metagenomics can provide a variable amount of data as shallow, deep, or even
ultradeep sequencing (Hillmann et al., 2018).

Metatranscriptome data. Metatranscriptomics characterize the expressed transcripts of the analyzed community at a given time point/conditions transcripts of the
analyzed community by RNA sequencing data. Depending on the sequencing depth, with this method it is possible to obtain information on gene expression levels
both for the microbiome communities and for the host. This requires the highest sequencing depth, most stringent standards for sample storage and processing,
and data analysis workflows and benchmarking for these data are only in the developmental stage. Despite these advantages, metatranscriptomes will need to be
supported by additional shotgun metagenomics measurements for accurate interpretation.

Other-omics data such as metabolomics data, metaproteomics data. These data represent directly measured metabolites or expressed proteins, therefore
providing additional functional information. Similarly, these data can contain information both from the microbiome and the host.

filtering, clustering, taxonomic assignment and binning, as
different bioinformatic tools and pipelines are in use. This lack
of standardization introduces statistical biases, and subsequent
challenges for reproducibility and cross-study comparisons
(Lozupone et al., 2013; Falony et al., 2016; Zhernakova et al.,
2016). Some of the first large microbiome profiling studies, as
the Human Microbiome Project (Turnbaugh et al., 2007) and
the MetaHIT project (Qin et al., 2010), were established as a
population-scale framework to develop metagenomic protocols
(for a more comprehensive list of large-scale microbiome
studies, see Marcos-Zambrano et al., 2021). Despite various
attempts to standardize methods, a gold standard of microbiome
research is yet to be established (Quince et al., 2017;
Knight et al., 2018).

The special characteristics of metagenomic sequencing data
are posing additional challenges for statistical analysis. For
instance, the large inter-individual variability, heteroscedastic
variation (i.e., variance increasing with mean abundance) and
large biological and technical variations are often not properly
approximated by classical Gaussian or log-normal models,
requiring customized analytical approaches. Microbiome data
sets tend to be sparse and skewed, and typically include
many more microbial features compared to the number of
samples or observations collected in most microbiome studies
to date (Supplementary Table S1). Moreover, microbiome
features often exhibit complex and hierarchical dependency
structures in terms of taxonomies or co-variation in abundance
and function. Moreover, unaligned and misaligned sequence
reads, and challenges to distinguish technical and biological
variation especially at the level of low-abundant organisms add
additional challenges to the microbiome analyses. The demand
to represent microbiome data with an arbitrary, but fixed sum
of components without loss of information are known from the
concept of compositional data (Aitchison, 1986; Gloor et al.,

2017). Furthermore, complementary multi-omic and other data
types (Box 1) may require different modeling approaches. The
integration of different types of data often lacks rigorous model
selection procedures, correction for multiple testing, handling
of missing data features/labels, or data harmonization and
integration (Namkung, 2020).

Finally, the reliability and integration of relevant metadata
such as demographics, health, diet, age, medication, lifestyle,
and other factors are critical for drawing informative insights
from microbiome studies. However, these crucial pieces of
information are most often missing or insufficiently machine-
readable in publicly available data resources, thus forming
bottlenecks on data reuse.

Statistics and Machine Learning Aspects
Microbiome research has set fresh challenges for statistical
analysis. Instead of a thorough literature review of this rapidly
expanding and heterogeneous field, we provide hereby a topical
perspective on the application of ML techniques in microbiome
research (for an extensive review, please see Marcos-Zambrano
et al., 2021).

One of the most common applications of ML is dimensionality
reduction, which facilitates the exploration and visualization of
community similarity and distribution across the population of
study samples. Non-linear approaches have become a common
choice due to the inherent complexity of microbial communities,
including methods such as PCoA, UMAP, and other techniques
(Legendre and Legendre, 2012; Becht et al., 2019; Kobak and
Berens, 2019), as well as autoencoders (Oh and Zhang, 2020) have
been taken into use. Many automated analysis pipelines readily
include these methods (Buza et al., 2019; Liao et al., 2019).

Clustering has found many applications in microbiome
research, ranging from data preprocessing to downstream
community analyses. A popular method is the denoiser DADA2
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(Callahan et al., 2016), designed to identify unique 16S rRNA
amplicon sequence variants (ASVs) (Davis et al., 2018). In
metagenome sequencing studies, probabilistic methods have
been used to assemble contigs into genome bins based
on information of abundance and sequence information;
CONCOCT (Alneberg et al., 2014) implements non-parametric
clustering based on a variational Gaussian mixture model. The
advantage of the non-parametric approach is the automated
determination of the cluster number based on the model,
rather than post hoc evaluation indices such as the Kalinski-
Harabasz or Silhouette index. In the downstream analysis of
microbiome data, a notable application of clustering algorithms
has been the identification of microbiome community types,
used to stratify individuals into specific subgroups based on
microbiome composition (Holmes et al., 2012; Costea et al.,
2018). Recently, more detailed assemblage models have been
developed to identify latent factors and sub-communities that
can complement ecosystem-wide stratification that focuses on
overarching community types. Examples include phylofactor
(Washburne et al., 2019), tipping elements (Lahti et al., 2014),
non-negative matrix factorization, latent Dirichlet allocation, and
other latent mixture models (Sankaran and Holmes, 2019).

Classification methods are commonly used in taxonomic
assignment of metagenomic reads to annotate genome sequences
(Treangen et al., 2013; Tamames et al., 2019) or in the production
of metagenome-assembled genomes (Murovec et al., 2020).
Another application is sample classification in diagnostic or
prognostic studies (Pasolli et al., 2016; Aryal et al., 2020).
Common ML algorithms such as random forest, support vector
machines (SVM), elastic net, and LASSO have all been used
for disease-prediction tasks (Pasolli et al., 2016), and automated
feature selection schemes have been reported to perform will
in comparison with standard tests in disease prediction (Ai
et al., 2017). Instead of hard classification, some applications
focus on detecting estimated percentage contribution, or soft
classification, of each potential source environment related
to the sample (Knights et al., 2011; Shenhav et al., 2019;
McGhee et al., 2020).

Deep learning (DL) is increasingly applied in microbiome
research Convolutional Neural Networks (CNNs) (Armour
et al., 2019) have recently been augmented with phylogenetic
tree information (Reiman et al., 2018), or combined neural
networks with random forests (Rahman and Rangwala, 2020).
Variable evaluation metrics including accuracy, precision,
recall, F1-score and area under curve (AUC), have been
used, highlighting the need for standardized benchmarks
regarding well-defined modeling tasks; systematic evaluations
have been carried out for instance for metagenome-based
disease prediction and differentiation of body sites based
on microbiome composition (Asgari et al., 2018; Reiman
et al., 2018; Díez López et al., 2019; LaPierre et al., 2019).
DL has been also applied to classify antibiotic resistance
genes (ARGs) derived from metagenomic data (Arango-
Argoty et al., 2018) and to overcome the lack of well-
curated taxonomic trees for newly discovered species in
metagenome assembled genomes (Murovec et al., 2020).
DL has also been used to predict how gut microbiome

responds to perturbations by antibiotics (Rahman et al., 2018).
Whereas DL methods are notoriously data-hungry, recent
applications have shown promising performance with moderate
training sample sizes.

A vast number of microbiome studies quantify associations
between the abundances of specific metagenomic and functional
features, and key covariates such as health and disease,
and other factors including diet, medication, geography,
or stool consistency (Turnbaugh et al., 2007; Qin et al.,
2010; Falony et al., 2016; Zhernakova et al., 2016). The
analysis covers a vast spectrum of standard ML methods
with additional adaptations to microbiome data. Popular
approaches include adaptations of linear discriminant
analysis (Segata et al., 2011), negative binomials (Love
et al., 2014), and Dirichlet distributions (Fernandes et al.,
2014), and non-parametric methods (Weiss et al., 2017; Lin
and Peddada, 2020). Non-parametric regression models,
such as Gaussian processes, have been also used to study
associations between microbiome diversity and external
conditions (Arbel et al., 2016). Common techniques for
community comparisons include regularized discriminant
analysis (RDA) (Legendre and Legendre, 2012), random
forest (Sze and Schloss, 2018; Topçuoğlu et al., 2020), and
gradient boosting (Qin et al., 2020; Topçuoğlu et al., 2020).
Further strategies have been developed in order to consider
hierarchical dependencies between taxonomic groups to
control for multiple testing and to identify the appropriate
taxonomic levels for associations (Sankaran and Holmes, 2014;
Washburne et al., 2017).

Other emerging applications include spatio-temporal
modeling of microbiome variation both at the individual
and population levels as well as the biogeographical variation
within and across body sites; agent-based models provide
interesting opportunities in this area (Juhász et al., 2014; Lin
et al., 2018). Probabilistic joint species distribution models
have also been recently applied in the microbiome context
(Björk et al., 2018). Bayesian ML techniques can help to deal
with uncertainties related to the limited information in short
and sparse time series or spatial sampling. The uncertainty,
the limited sampling density, or the limited amount of labeled
examples when training a model can also be addressed through
semi-supervised methods. Prospective analyses predicting long-
term incident of health and disease risk based on microbiome
composition have remained scarce due to the lack of large-
scale cohorts with long-term follow-ups, but the need for
prospective analysis methods is now emerging (Liu et al.,
2020; Salosensaari et al., 2020). Mendelian randomization and
related techniques are finding applications to understand the
causal role of gut microbiome in disease (Sanna et al., 2019;
Hughes et al., 2020).

DISCUSSION

Statistics and ML provide tools to extract useful information
from scarce, noisy, and limited data. In particular, within
microbiome data, this has to be balanced with the complexity
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and limited understanding of the host-regulated ecological
processes and the high levels of individual variation. ML
has great potential to improve disease diagnosis and identify
personalized biomarkers, due to its ability to detect informative
patterns in the data with limited prior knowledge of the
underlying system.

One of the main shortcomings is, however, the use
of inappropriately small datasets, as apparent from the
example studies (and their corresponding datasets) listed in
Supplementary Table S1. Data accumulation will further
enhance the use of more advanced ML technologies. Efficient
data structures and making microbiome data Findable,
Accessible, Interoperable, and Reusable (FAIR)1 can provide
invaluable support for the open development of statistical
and ML tools to help to advance the field (Shetty and
Lahti, 2019). Consequently, data repositories maintained
by large consortia could serve as a central resource for the
research community (Meyer et al., 2008; Mitchell et al.,
2020). However, to this aim, the submission of the metadata
must follow controlled vocabulary and minimal standards
(ten Hoopen et al., 2017).

Some of the main challenges in detecting associations
between specific microbiome features and key covariates are
related to choosing appropriate distributional assumptions
including sparsity and compositionality, appropriate
feature selection, controlling for technical biases such as
read count variations, the potential confounding effects,
and multiple testing. Successful solutions often present
combinations of statistical techniques that have been
specifically tailored to fit the particular characteristics of

1https://microbiomedata.org/fair/

microbiome data. Besides, over-fitting, incomplete model
selection or performance assessment can lead to poor
generalizability of the results in previously unseen data sets
and lack of reproducibility. It is essential to understand
the principles underlying each method and follow the
recommended guidelines in order to ensure compliance
with the modeling assumptions (Rule et al., 2019) and avoid
overfitting (Eetemadi et al., 2020). Another important driver
for the field is the development of suitable data structures in
statistical programming languages, such as the R/Bioconductor
ecosystem as curatedMetagenomicData (Pasolli et al.,
2016) and the phyloseq (McMurdie and Holmes, 2013) or
TreeSummarizedExperiment classes (Huang et al., 2020), that
permit standardization and efficient collaborative development
of methods.

The microbiome field is moving from associations to
causality, mechanisms, and prediction, and ML will aid in
this transition. Data obtained from ML methods can help to
propose new hypotheses to be tested in experimental models,
as well as to accelerate the translation of the microbiome
data into clinical practice. Its optimal use will presumably
trigger the improvement of the searching of biomarker
candidates for disease diagnostics, prognostics, and the use of
statistical inference for causal insights (Pearl, 2009; Walhout
et al., 2013), as with the increasing need to model temporal
and dynamical variation. But these advances will appear
through validation of the results obtained by sequencing (e.g.,
using an independent approach such as qPCR), followed by
combinations with other omics, especially with metabolomics
and metatranscriptomics.

Interpretability by non-experts is an essential consideration
when ML models are put in practice by translational researchers.

FIGURE 1 | Approach of the Action ML4Microbiome to the implementation of machine learning methods in microbiome research, driving change of the field in
personalized medicine.
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To overcome existing trade-offs between model interpretability
and performance (Topçuoğlu et al., 2020) an active collaboration
and joint education/training of researchers from statistical,
biomedical and clinical fields is essential. Therefore, one
main priority is the development of user-friendly tools for
translational and clinical personnel, who may have limited
experience with bioinformatics methods. In this line, popular
software like mothur (Schloss et al., 2009, QIIME2 (Bolyen
et al., 2019), and MicrobiomeAnalyst (Chong et al., 2020), the
R/Bioconductor ecosystem (Qin et al., 2010), Anvi’o (Eren et al.,
2015), and Biobakery (McIver et al., 2018) have incorporated
ML methods into their applications in a readily usable
format. Hence, the role of open source software ecosystems
is critical for the overall development of the whole field.
This can support and advance open collaboration networks
and co-creation models that have been further complemented
with open benchmark data sets (Olson et al., 2017) and
reproducible notebooks (Rule et al., 2019). None of the above,
however, can be achieved without multidisciplinary training of
“next-generation” experts that could be integrated in clinical
environments, ultimately facilitating clinical decision-making
based on microbiome data as part of personalized medicine
strategies (Gómez-López et al., 2019).

In order to accelerate this transition, the COST
(European Cooperation in Science and Technology) Action
“ML4Microbiome” (Machine Learning for Microbiome) started
in 2019 with the aim to coordinate a synergistic network
of the use of ML in Microbiome research at the European
level. This COST Action CA18131 on Statistical and Machine
Learning Techniques in Human Microbiome Studies is a step
toward tackling the challenges by strengthening the network of
European researchers in this emerging research area (Figure 1).
A space of discussion to break down barriers of communication
between fields, as well as their engagement, is being constructed
through its four working groups (WG) and several networking
and training events http://www.ml4microbiome.eu. It is also
planned to launch a DREAM challenge2. DREAM challenges
are crowdsourced benchmark efforts. By decoupling the method
development (open to any scientist) to their evalution (by the
organizers based on hold-back data, these challenges provide
an unbiased and transparent assessment of methods (Saez-
Rodriguez et al., 2016). Furthermore, the action ML4Microbiome
identified multiple shortcomings in the current research that
need to be taken into consideration. The field will benefit
from increasing sample sizes, and the availability of spatial
and longitudinal profiling that can be used to train more
detailed and accurate models of microbiome variation. The
development of interpretable and transparent ML methods will
help to bridge the gap between methodological and applied
fields. ML4Microbiome is open for new multi-disciplinary
collaborations and collaborative ML methods development,
and is welcoming researchers to participate in workshops,
courses, source code/tool development aiming to promote the
use of appropriate statistical and machine learning methods
in metagenomics.
2 www.dreamchallenges.org
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