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Hepatitis B virus (HBV) is considered a “metabolic virus” and affects many hepatic
metabolic pathways. However, how HBV affects lipid metabolism in hepatocytes
remains uncertain yet. Accumulating clinical studies suggested that compared to non-
HBV-infected controls, chronic HBV infection was associated with lower levels of
serum total cholesterol and triglycerides and a lower prevalence of hepatic steatosis.
In patients with chronic HBV infection, high ALT level, high body mass index, male
gender, or old age was found to be positively correlated with hepatic steatosis.
Furthermore, mechanisms of how HBV infection affected hepatic lipid metabolism had
also been explored in a number of studies based on cell lines and mouse models.
These results demonstrated that HBV replication or expression induced extensive
and diverse changes in hepatic lipid metabolism, by not only activating expression of
some critical lipogenesis and cholesterolgenesis-related proteins but also upregulating
fatty acid oxidation and bile acid synthesis. Moreover, increasing studies found some
potential targets to inhibit HBV replication or expression by decreasing or enhancing
certain lipid metabolism-related proteins or metabolites. Therefore, in this article, we
comprehensively reviewed these publications and revealed the connections between
clinical observations and experimental findings to better understand the interaction
between hepatic lipid metabolism and HBV infection. However, the available data are
far from conclusive, and there is still a long way to go before clarifying the complex
interaction between HBV infection and hepatic lipid metabolism.

Keywords: hepatitis B virus, chronic hepatitis B, lipid metabolism, apolipoprotein, hepatic steatosis, metabolic
signaling pathway, nuclear factors

INTRODUCTION

Hepatitis B virus (HBV), a member of the Hepadnaviridae family, is one of the smallest enveloped
animal DNA viruses and the pathogen to cause Hepatitis B. Although HBV vaccines and effective
antiviral drugs have been available for more than 20 years, chronic HBV infection (CHB)
remains a global public health problem, especially in Asia (Megahed et al., 2020). Increasing
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attention has been paid to the relationship between HBV
infection and hepatic lipid metabolism recently. Several
large-scale clinical studies have been conducted to explore
the correlation of hepatic steatosis with CHB. Meanwhile,
accumulated data have shown that HBV replication and
expression could interact with some lipid metabolism-related
transcription factors (TFs) and nuclear receptors (NRs) (Bar-
Yishay et al.,, 2011; Wagner et al., 2011), including retinoid X
receptor o (RXRa) (Reese et al.,, 2011), farnesoid X Receptor
(FXR) (Mouzannar et al, 2019), estrogen-related receptors
(ERs) (Wang et al., 2012), or peroxisome proliferator-activated
receptors (PPARs) (Jiang et al., 2019). Simultaneously, cellular
or animal studies have unveiled some mechanisms of how
HBV affected the activity or expression of multiple factors
involved in hepatic lipid metabolism, or vice versa (Lin
et al., 2015; Wang C.C. et al,, 2015; Shi et al., 2016; Suliman
et al, 2019). Therefore, based on these recent clinical and
basic studies, this article comprehensively reviewed the latest
progress and opinions regarding HBV infection and hepatic
lipid metabolism, and provided new insight into approaches
for treating CHB.

THE RISK OF HEPATIC STEATOSIS IN
PATIENTS WITH CHRONIC HBV
INFECTION

Hepatic steatosis, also known as fatty liver disease, includes
alcohol-related fatty liver disease (AFLD) and non-alcoholic fatty
liver disease (NAFLD). So far, the prevalence of NAFLD in CHB
patients remains unconfirmed. A meta-analysis conducted in
Machado et al. (2011) showed that in CHB patients, the overall
hepatic steatosis prevalence was 29.6%, which was lower than that
in hepatitis C virus (HCV)-infected patients. Subsequently, one
large-scale cross-sectional retrospective study involving 33,439
subjects in health checkup (Cheng et al., 2013) showed that the
prevalence of fatty liver was lower in hepatitis B surface antigen
positive (HBsAg™) populations (38.9%) than in the HBsAg™
group (44.5%), and HBsAg positivity was inversely correlated
with fatty liver. These results were consistent with another large-
sample prospective cohort study (Joo et al., 2017), which showed
that HBsAg seropositivity was associated with a lower risk of
developing NAFLD during an approximately 10-year follow-
up of 83,339 non-NAFLD Korean adults with normal alanine
aminotransferase (ALT) levels at baseline. Besides, a hospital-
based case-control retrospective study showed that the negative
correlation between HBV infection and fatty liver appeared
only in patients with new-onset CHB (Zhong et al., 2018).
In addition, these clinical studies had found that serum level
of total cholesterol, triglycerides, HDL-C, or LDL-C in CHB
patients was lower than that of non-HBV-infected controls
(Wong et al, 2012; Cheng et al, 2013; Joo et al, 2017).
A study involving only female subjects in health checkup
reported that the prevalence of fatty liver exhibited no significant
difference between HBV-infected patients and HBV-free subjects
(Wang et al., 2019).

Apart from the comparison of the prevalence of hepatic
steatosis between CHB patients and non-CHB controls, factors
involved in NAFLD development among CHB populations were
thoroughly investigated in some studies. Factors that had positive
or negative influence on hepatic steatosis in CHB patients
were shown in Supplementary Table 1. Among these factors,
high BMI, male gender, old age, and high ALT levels were
commonly reported to be positively associated with NAFLD
in CHB patients (Peng et al., 2008; Shi et al., 2008; Zheng
et al., 2010; Machado et al., 2011; Wong et al., 2012; Cheng
et al., 2013; Wang et al, 2014, 2019; Enomoto et al., 2016;
Charatcharoenwitthaya et al., 2017; Joo et al., 2017; Chen et al,,
2018; Hui et al, 2018; Zhong et al, 2018; Zhu et al., 2019).
However, there was no evident correlation between hepatic
steatosis and HBeAg status or HBV DNA levels (Peng et al., 2008;
Charatcharoenwitthaya et al., 2017).

Nevertheless, these clinical studies suggested that HBsAg
positivity might be related to NAFLD’s low occurrence, while
the status of liver inflammation and clinical or metabolic
factors during disease progress would influence this relationship.
Furthermore, differences in clinical study design, sample size,
method for hepatic steatosis detection, or statistical method
would deduce different conclusions. Clarifying the relationship
between HBV infection and NAFLD development will require
additional multi-center, large-sample, case-controlled clinical
studies with hepatic steatosis assessment in liver biopsy samples.

HBV-INDUCED CHANGES IN FATTY
ACID METABOLISM

Fatty acid metabolism in the liver is controlled by a complex
network of TFs and proteins (Alves-Bezerra and Cohen, 2017).
In different cellular or mouse models, HBV replication or
expression increased lipid biosynthesis-related factor sterol
regulatory element-binding protein lc (SREBPIlc). SREBPlc
activation upregulates the expression of lipogenic enzymes,
such as fatty acid synthase (FAS), stearoyl-CoA desaturase
(SCD), and acetyl-CoA carboxylase (ACC), and thus fatty acid
synthesis (Wang Y. et al, 2015; Alves-Bezerra and Cohen,
2017). By the proteomic analysis of liver tissue from HBV
transgenic mice, Yang et al. (2008) found that the expression of
fatty acid-binding protein 5 (FABP5) and acetyl-CoA binding
protein (ACBP), which were involved in fatty acid metabolism
and synthesis, was significantly up-regulated compared to that
in wild-type mice.

Levels of various types of lipids were also examined by mass
spectrometry in different stages of chronic HBV infection. Arain
etal. (2018) found that HBV patients showed significantly higher
levels of serum saturated fatty acids (SFAs) or monounsaturated
fatty acids (MUFAs) (myristic acid or palmitic acid), and lower
levels of polyunsaturated fatty acids (PUFAs) (linoleic acid,
eicosatrienoic acid, etc.). Moreover, a higher level of urine
palmitic acid, stearic acid, oleic acid, or cholesterol was shown
in CHB patients than in the control group (Dittharot et al,
2018), and a large difference between urine and serum metabolite
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profiles was found in the same CHB subject (Yang et al., 2016). In
an AdHBV-infected primary rat hepatocyte model, metabolomic
and transcriptomic datasets synergistically showed a noticeable
increase in the long-chain FFA pool (Lamontagne et al., 2018).
Furthermore, in a stable HBV-producing cell line HepG2.2.15,
Li et al. (2015) found that the total fatty acid content was
increased, but the essential fatty acids a-linolenic acid and linoleic
acid were decreased.

Apart from reports that HBV increased lipogenesis, several
other studies showed that HBV infection also increased fatty acid
oxidation and reduced lipid droplets (LD) formation. Yasumoto
et al. (2017) showed that the content of intracellular TGs and
the average size of a single LD were significantly reduced in
HBV-infected or transfected cells compared to control cells, and
that was because of decreased levels of proteins involved in LD
expansionary and lipid storage. Studies also showed that HBV
replication increased adiponectin expression (a downstream
gene of PPARy) (Yoon et al, 2011). Adiponectin alleviated
lipid accumulation by increasing carnitine palmitoyltransferase
1 (CPT1) activity, enhancing hepatic fatty acid oxidation, and
reducing ACC and FAS activity (Wang M.D. et al, 2016;
Fang and Judd, 2018).

Overall, these results from experimental studies indicated
that HBV infection not only enhanced fatty acid synthesis and
lipogenesis, but also increased fatty acid oxidation and lipolysis.

CHANGES IN PHOSPHOLIPIDS
METABOLISM DURING HBV INFECTION

In addition, significant changes in phospholipids and
sphingolipids were found in HBV expressed primary
hepatocytes or cell lines and CHB patients. Li et al. (2015)
found that HBV infection activated the expression of choline
kinase alpha to upregulate phosphatidylcholine biosynthesis.
Huang et al. (2019) found that serum phosphatidylcholine,
phosphatidylethanolamine, and lysophosphatidic acid were
increased in HBsAg™ patients compared to HBsAg™ individuals.
This study also found that phosphatidylcholine synthesis-related
enzymes, phosphoethanolamine transferase A and phospholipid
phosphatase 1 (LPP1), were upregulated after HBV infection.
Different pattern of phospholipid changes was displayed in
different stages of chronic HBV infection. Schoeman et al. (2016)
found that decreased phospholipids, lysophospholipids, and
sphingomyelin in the immune tolerance phase of HBV infection
compared to healthy controls. Also, Qu et al. (2014) found
that serum sphingolipids in CHB patients were significantly
higher than those in healthy controls, especially in patients with
HBV-associated acute-on-chronic liver failure (HBV-ACLF),
suggesting that serum sphingolipid levels might be associated
with HBV infection and disease progression.

HBV-INDUCED CHANGES IN
CHOLESTEROL METABOLISM

Changes in cholesterol metabolism were evidenced during
HBV infection. Li et al. (2013) found in HepG2 cells

that HBV replication increased the expression of LDLR
and hydroxymethylglutaryl coenzyme A reductase (HMGCR),
leading to an increase in cholesterol intake and synthesis. Wang
et al. (2018) showed that in a mouse model with alcoholic fatty
liver, HBV replication increased hepatic cholesterol deposition
by enhancing the expression of the cholesterol synthesis-related
genes SREBP2 and HMGCR. Rodgers et al. (2009) found a
high level of 7-dehydrocholesterol (7-DHC) in hepatocytes
with HBV replication. 7-DHC is the direct precursor of free
cholesterol and the substrate of 7-dehydrocholesterol reductase
(DHCR?7). Xiao et al. (2020) found significantly increased
DHCR7 expression in livers of hepatocellular carcinoma
(HCC) patients with HBV infection. 7-DHC was also a
biosynthesis precursor to vitamin D, thus increased DHCR7
promoted cholesterol synthesis while inhibited Vitamin D
production (Prabhu et al, 2016). Therefore, vitamin D was
frequently found to be insufficient in CHB patients, and
effective antiviral therapy increased the vitamin D level
(Hoan et al., 2018).

Bile acid synthesis from cholesterol in hepatocytes is essential
for the digestion and absorption of lipids. Na™/taurocholate
cotransporter ~ (NTCP/SLC10A1), a  sodium-dependent
transporter responsible for the basolateral uptake of taurocholate,
was found as an entry receptor for HBV (Yan et al., 2012). HBV
entry would interfere with the normal function of NTCP
for bile acid uptake from portal blood into hepatocytes
(Eller et al.,, 2018). In HBV-infected human liver chimeric
mice and liver biopsies of CHB patients, multiple changes
in bile acid metabolism-related genes have been found,
especially significantly upregulated expression of hCYP7A1l
(Oehler et al., 2014).

THE CONTRIBUTION OF HBx PROTEIN
TO CHANGES IN HEPATIC LIPID
METABOLISM

Among the seven HBV proteins, HBx is an essential viral
regulatory protein and has been demonstrated to interact
with various proteins located in the cytoplasm, nucleus,
and mitochondria (Ma et al, 2011; Xie et al., 2014; Slagle
and Bouchard, 2018). Therefore, the molecular mechanisms
underlying lipid metabolism changes resulting from HBV
infection have been mainly focused on the HBx protein. Several
studies revealed that HBx protein overexpression upregulated
gene expression and transcriptional activation of LXRoa/p,
SREBP1, C/EBPa, and PPARy, which contributed to hepatic
lipid synthesis (Na et al, 2009; Shieh et al, 2010; Yoon
et al., 2011; You et al, 2013; Cui et al., 2014a,b; Wu et al.,
2016; Xu et al., 2016; Bai et al, 2017; Wang et al, 2018).
In addition to the direct regulation of metabolism-related
proteins, HBx was reported to regulate the miRNAs expression,
such as miR-384 or miR-205, which subsequently regulated
downstream proteins and lipid metabolism (Cui et al., 2014a;
Bai et al., 2017). Besides, Wu et al. (2016) showed that
HBx also increased intracellular trafficking of fatty acid by
inducing the expression of fatty acid-binding protein 1 (FABP1).
Furthermore, some evidence suggested that HBx overexpression
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increased cholesterol level in hepatocytes (Cui et al,, 2014b;
Wang et al., 2018).

THE EFFECT OF HBV ON
APOLIPOPROTEIN METABOLISM IN
HEPATOCYTES

assembly, secretion, uptake, and catabolism. Some clinical
studies in HBV-infected population have found significantly
decreased levels of plasma ApoAl (Jiang et al, 2014; Wang
Y. et al, 2016; Cui et al,, 2019), ApoA5 (Zhu et al, 2016;
Cui et al, 2019), ApoB (Wang et al, 2011; Cui et al,
2019), and ApoC3 (Zhu et al, 2017; Cui et al, 2019),
whereas dramatically increased level of serum ApoM or

ApoE (Gu et al, 2011; Shen et al, 2016). These results
from clinical studies were consistent with observations from
several experimental studies. ApoAl promoted cholesterol
transfer from peripheral tissues to the liver and increased

Lipids, including TG, PLs, and cholesterol, are combined with
apolipoprotein for their transport and metabolism. Hepatocytes
are the major sites of apolipoprotein synthesis and lipoprotein
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FIGURE 1 | HBV-induced lipid metabolism changes in hepatocytes. HBV infection, replication, and expression in hepatocytes can change hepatic lipid metabolic
pathways in many aspects. In HBV-transfected cell lines, HBV-transgenic mice or liver specimens from CHB patients, transcriptional factors (TF), and genes related
to hepatic lipogenesis have changed much. Enhanced activation of LXR and SREBP1c¢ increased downstream lipogenesis genes, including FAS, ACC, SCD, et al.,
and promoted free fatty acid (FFA) biosynthesis and lipogenesis (Kim et al., 2007; Yang et al., 2008; Zhang et al., 2013b; Wu et al., 2016; Xu et al., 2016; Bai et al.,
2017; Wang et al., 2017). On the other hand, activation of LXR, C/EBP, PPARa and PPARY can also increase FFA oxidation through adinonectin, or other ways (Yoon
etal., 2011; Wang M.D. et al., 2016). Simultaneously, phosphatidylcholine synthesis was enhanced too (Huang et al., 2019). The key TF SREBP2 and enzyme
HMGCR in the cholesterol synthesis pathway were stimulated by HBV replication or HBx protein, inducing increased cholesterol uptake and synthesis in hepatocytes
(Lietal, 2018; Wang et al., 2018). The interaction between HBV and NTCP facilitated CYP7A1 expression and bile acid biosynthesis (Yan et al., 2012; Oehler et al.,
2014; Eller et al., 2018). Moreover, HBV replication decreased the expression of several types of apolipoprotein (Apo), including ApoA1 (Zhang et al., 2013a; Jiang
etal., 2014; Wang Y. et al., 2016), ApoA5 (Zhu et al., 2016), ApoB100 (Morita, 2016), or ApoC3 (Zhu et al., 2017), and repressed synthesis of HDL, LDL, VLDL in
hepatocytes (Kang et al., 2004). While expression of ApoE (Shen et al., 2015) or ApoM (Gu et al., 2011) increased after HBV infection. Changes in hepatic lipid
metabolism induced changed lipid levels in peripheral blood, including increased SFA and MUFA (Arain et al., 2018), decreased ApoA1, ApoA5, ApoB100, or ApoC3
(Wang et al., 2011; Jiang et al., 2014; Wang Y. et al., 2016; Zhu et al., 2016, 2017; Cui et al., 2019), or increased ApoE or ApoM (Gu et al., 2011; Shen et al., 2016).
However, the level of TG and TC showed a decrease in CHB patients compared to normal controls (WWong et al., 2012; Cheng et al., 2013; Joo et al., 2017). The
expression of genes in the red circle was increased, while that in the green circle was decreased. (ACBP, acetyl-CoA binding protein; ACC, acetyl-CoA carboxylase;
ACSL, long-chain fatty acyl-CoA synthetase; Apo, apolipoprotein; C/EBPa, CCAAT/enhancer-binding protein; CYP7A1, cholesterol 7a-hydroxylase; FA, fatty acid;
FABP, Fatty acid-binding protein; FAS, Fatty acid synthetase; HBV, hepatitis B virus; FAO, fatty acid oxidation; FXR, farnesoid X receptor; HBx, hepatitis B virus X
protein; HBc, hepatitis B virus core protein; HDL, high density lipoprotein; HMGCR, hydroxymethylglutaryl coenzyme A reductase; LDL, low density lipoprotein;
LDLR, low density lipoprotein receptor; LXR, liver X receptor; MUFA, monounsaturated fatty acid; NTCP, Na/taurocholate cotransporter; PL, phospholipid; PPAR,
peroxisome proliferators-activated receptor; RXR, retinoid X receptor; SCD, stearoyl-CoA desaturase; SFA, saturated fatty acid; SM, Sphngomyelin; SREBP1c,
sterol-regulatory element-binding proteinic; SREBP2, sterol regulatory element-binding protein 2; TC, total cholesterol; TG, triglyceride; VLDL, very low density
lipoprotein).
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cholesterol metabolism (Chistiakov et al, 2016). In the
HepG2.2.15 cell line, HBV upregulated DNA methyltransferase
activity to hypermethylate the ApoAl promoter, thereby
inhibited ApoAl mRNA and protein expression (Jiang et al,
2014; Wang Y. et al, 2016). Besides, the lipid-binding
ability of ApoAl was impaired by its interaction with HBx
(Zhang et al., 2013a), and HBc protein inhibited the activity
of the ApoAS5 gene promoter and reduced its expression
(Zhu et al, 2016). ApoB100 participated in the transfer
of cholesterol to peripheral tissues, which was opposite
to the function of ApoAl (Morita, 2016). Kang et al
(2004) showed that HBx protein overexpression in hepatocytes
decreased ApoB secretion, increased the intracellular levels of
ApoB, TG, and cholesterol, and interfered with VLDL/LDL
assembly or secretion. ApoC3 acted as an inhibitor of
lipoprotein lipase (LPL), which was a crucial enzyme in
TG lipoprotein catabolism (Larsson et al, 2017). A study
(Zhu et al,, 2017) showed that HBV inhibited the synthesis
and secretion of ApoC3. Therefore, during chronic HBV
infection, a decrease in ApoC3 expression would increase LPL

activity, decrease VLDL synthesis and secretion, and increase
TG decomposition.

ApoE acted as a ligand of LDLR or heparan sulfate
proteoglycan (HSPG) and played a central role in the
transport, metabolism, and homeostasis of cholesterol and
other lipids (Getz and Reardon, 2018). HBV infection led
to an increase in ApoE expression (Shen et al, 2015), and
ApoE promoted HBV infection and production (Qiao and Luo,
2019). ApoM was expressed only in hepatocytes and renal
tubular cells, and it promoted HDL (B-HDL) formation and
increased cholesterol efflux from foam cells (Ren et al., 2015).
Overexpression of ApoM showed to inhibit HBV replication
in HepG2 cells (Gu et al, 2011). Also, the myristoylated
pre-Sl-domain of the HBV L-protein strongly interacted
with apolipoprotein H, which was involved in activation of
lipoprotein lipase, and inhibition of platelet prothrombinase
activity (Stefas et al., 2001).

These results indicated that HBV replication had complex
effects on lipid metabolic pathways (Figure 1). However, most
results were obtained from HBV-expressing mice or cell lines.
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coenzyme A reductase; LXR, liver X receptor; PC, phosphatidylcholine; RXR, retinoid X receptor; SQLE, Squalene monooxygenase).

HBV
replicationand
expression

Decreased expression

1

Fatty acid
synthesis

1

HBV
productionand
secretion

T —r ApoE

LXR Cholesterol
1 T

SQLE

acid

—

Oxysterols
HMGCR

T Promotion

| Repression

Frontiers in Microbiology | www.frontiersin.org

March 2021 | Volume 12 | Article 636897


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Zhang et al.

HBV and Hepatic Lipid Metabolism

Therefore, to reveal the exact mechanisms of effects of HBV on
hepatic lipid metabolism, more data from liver samples of CHB
patients are needed.

HEPATIC LIPID METABOLISM
AFFECTING THE LIFE CYCLE OF HBV:
POTENTIAL TARGETS FOR HBV
SUPPRESSION

As reviewed above, HBV infection induced a series of changes
in the hepatic lipid metabolic pathways. On the other hand,
changes in the levels of metabolic products or expression of
metabolism-related proteins conversely affected the life cycle of
HBV (Figure 2).

Zhang H. et al. (2013) showed that FAS, a key enzyme of
fatty acid synthesis, was highly expressed in HBV transgenic
mice, and silencing of FAS expression reduced HBV expression.
Okamura et al. (2016) further found that FAS inhibitor decreased
HBV particles’ production but not genomic replication. Cho
et al. (2014) also uncovered that fatty acids (including
palmitate, stearate, and oleate) increased HBx protein’s stability
by preventing proteasome-dependent degradation. In addition
to fatty acids, PC biosynthesis inhibition suppressed HBV
replication and expression (Tatematsu et al., 2011; Li et al., 2015).
Yoon et al. (2011) reported that adiponectin, although as a
negative regulator of lipogenic genes (Combs and Marliss, 2014;
Gamberi et al., 2018), acted directly on core particles to enhance
HBYV polymerase activity and HBV DNA replication. Moreover,
Song et al. (2018) revealed that arachidonic acid (AA), a kind
of PUFA, inhibited HBV infection. It might be because FFAs
were potential ligands for toll-like receptor 4 (TLR4) and could
activate the innate immune response (Mamedova et al., 2013;
Han et al., 2018).

Cholesterol was necessary for the HBV envelope and
played a critical role in HBV infectivity or viral particle
secretion (Lin et al., 2003). Cholesterol depletion and cholesterol
synthesis inhibitors, such as inhibitor of HMGCR or squalene
cyclooxygenase, impaired secretion of either HBV viral or
subviral particles in HBV-producing cell lines (Bremer et al,
2009). Moreover, a study found that oxygenated cholesterol
derivatives (also named oxysterols, the endogenous agonists
of LXR) increased the transcription and replication of HBV
and reduced the anti-HBV effect of IFN (Kim et al., 2011).
Interestingly, a recent study showed synthetic LXR agonists
inhibited HBV replication and gene expression through CYP7A1
reduction in HBV-infected primary human hepatocytes, but this
observation was not found in hepatocellular carcinoma cell line
(Zeng et al, 2020). 25-hydroxycholesterol (25-HC) has been
identified to block replication and entry of a broad range of
viruses, such as VSV, HIV, EBOV, or ZIKA (Liu et al., 2013;
Xiao et al.,, 2020; Zhao et al., 2020). However, there were few
reports about the effect of 25-HC on HBV replication by now.
Moreover, the combination use of VitD3 and IFN« enhanced the
anti-HBV efficacy of IFNa (Farnik et al., 2013; He et al., 2016;
Ko et al., 2020).

The effect of bile acid on HBV infection has received
increasing attention. Studies showed that high expression of
NTCP induced an increase in bile acid transport to hepatocytes,
which promoted HCV and HBV infection by bile-acid-mediated
repression of some interferon-stimulated genes (Verrier et al.,
2016; Eller et al., 2018). Also, elevated intracellular bile acids
activated FXRa, which activated HBV enhancer 2/core promoter
and consequently enhanced HBV replication (Ramiere et al,
2008; Zhao et al., 2018). In addition, FXRa silencing in HBV-
infected HepaRG cells decreased the pool size and transcriptional
activity of viral covalently closed circular (ccc)DNA (Mouzannar
et al., 2019). Other TFs or NRs, such as activator protein-
1 (AP-1), activating transcription factor 2 (ATF2), or cAMP-
response element-binding protein (CREB), were also reported to
be involved in the mechanisms underlying the upregulation of
HBYV replication by bile acids.

CONCLUSION

Hepatitis B virus infection induces multiple changes in hepatic
lipid metabolism, by increasing both lipid synthesis and lipolysis.
These intracellular changes might be helpful to HBV replication
through providing both material and energy. These observations
also elucidate why HBV infection facilitates lipid synthesis while
the risk of hepatic steatosis in CHB patients does not noticeably
increase, and levels of serum TG and TC decrease. Moreover,
targeting a certain lipid metabolism pathway would be a potential
therapeutic way to chronic hepatitis B. Given that many studies
are limited to cells and animal models and evidence is far from
conclusive, more well-designed clinical studies are needed to
elucidate the mechanism of this interaction and to discover
metabolic targets that could suppress HBV replication or improve
the anti-HBV effect of IFN or nucleot(s)ide analogs.
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