
fmicb-12-637656 March 10, 2021 Time: 14:7 # 1

MINI REVIEW
published: 16 March 2021

doi: 10.3389/fmicb.2021.637656

Edited by:
Guido Werner,

Robert Koch Institute (RKI), Germany

Reviewed by:
Ana P. Tedim,

Institute of Health Sciences Studies
of Castilla y León (IECSCYL), Spain

Ana R. Freitas,
University of Porto, Portugal

*Correspondence:
Glen P. Carter

glen.carter@unimelb.edu.au

Specialty section:
This article was submitted to

Antimicrobials, Resistance,
and Chemotherapy,

a section of the journal
Frontiers in Microbiology

Received: 11 December 2020
Accepted: 25 February 2021

Published: 16 March 2021

Citation:
Turner AM, Lee JYH, Gorrie CL,

Howden BP and Carter GP (2021)
Genomic Insights Into Last-Line

Antimicrobial Resistance
in Multidrug-Resistant

Staphylococcus
and Vancomycin-Resistant

Enterococcus.
Front. Microbiol. 12:637656.

doi: 10.3389/fmicb.2021.637656

Genomic Insights Into Last-Line
Antimicrobial Resistance in
Multidrug-Resistant Staphylococcus
and Vancomycin-Resistant
Enterococcus
Adrianna M. Turner1, Jean Y. H. Lee1,2, Claire L. Gorrie1,3, Benjamin P. Howden1,3,4 and
Glen P. Carter1,3*

1 Department of Microbiology and Immunology, Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia,
2 Department of Infectious Diseases, Monash Health, Melbourne, VIC, Australia, 3 Antimicrobial Reference and Research
Unit, Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, Doherty
Institute, The University of Melbourne, Melbourne, VIC, Australia, 4 Department of Infectious Diseases, Austin Health,
Melbourne, VIC, Australia

Multidrug-resistant Staphylococcus and vancomycin-resistant Enterococcus (VRE) are
important human pathogens that are resistant to most clinical antibiotics. Treatment
options are limited and often require the use of ‘last-line’ antimicrobials such as linezolid,
daptomycin, and in the case of Staphylococcus, also vancomycin. The emergence of
resistance to these last-line antimicrobial agents is therefore of considerable clinical
concern. This mini-review provides an overview of resistance to last-line antimicrobial
agents in Staphylococcus and VRE, with a particular focus on how genomics
has provided critical insights into the emergence of resistant clones, the molecular
mechanisms of resistance, and the importance of mobile genetic elements in the global
spread of resistance to linezolid.
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INTRODUCTION

Staphylococcus and Enterococcus are Gram-positive cocci that are recognized as globally important
opportunistic pathogens that can cause serious infections in humans, especially in hospitalized
patients (Otto, 2009; Gilmore et al., 2013; Lee A.S. et al., 2018). Over recent decades, there has
been a significant increase in the rates of acquired antimicrobial resistance (AMR) in these species,
either through the acquisition of resistance determinants by horizontal gene transfer of mobile
genetic elements (MGEs), or through mutations that alter gene expression or binding sites in
native genes. This has resulted in the emergence of polyclonal lineages that are resistant to front-
line therapeutic agents. In staphylococci, this includes the development and global spread of
methicillin-resistant Staphylococcus aureus (MRSA) (Enright et al., 2002) and the recent emergence
of multidrug-resistant Staphylococcus epidermidis (MDRSE) (Lee J.Y.H. et al., 2018). In enterococci,
the emergence and dissemination of vancomycin-resistant enterococci (VRE) (Arias and Murray,
2012), particularly in two healthcare-associated species, vancomycin-resistant Enterococcus faecalis
(VREfs) and vancomycin-resistant Enterococcus faecium (VREfm), is of particular clinical concern.
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As resistance to different antimicrobials increases in MRSA,
MDRSE, and VRE, effective and appropriate treatment becomes
increasingly difficult. Limited “last-line” therapeutic options,
such as linezolid, daptomycin, and, in the case of staphylococci,
vancomycin, remain to treat these infections. However, the high
prevalence of these species in healthcare settings (Weiner et al.,
2016; Weiner-Lastinger et al., 2020), the increasing clinical use
of these last-resort antimicrobials, and the ability of these species
to readily develop resistance, provides strong selective pressure
for the emergence of clones that are resistant to these agents.
Accordingly, resistance to these last-line agents with resultant
treatment failure has been increasingly reported. Individual and
multiple resistance to linezolid, daptomycin, and vancomycin
have been reported in clinical MRSA and MDRSE. While
combined resistance to linezolid and daptomycin has recently
been reported in VREfm (Wardenburg et al., 2019).

Genomic data can be used to understand the evolution of
resistance and investigate the underlying resistance mechanisms.
Phylogenetic analyses based on whole-genome sequencing
(WGS) can also identify the presence of clones associated with
specific resistance determinants, and track their emergence and
global spread. The utilization of WGS in hospital infection
control to identify outbreaks and transmission events associated
with resistant strains is increasingly common. In this mini-
review we will provide an overview of the application of genomic
analyses to provide critical insights into last-line AMR in MRSA,
MDRSE, and VRE, with a particular focus on the emergence of
resistant clones, the molecular mechanisms of resistance, and the
importance of MGEs in the global spread of linezolid resistance.

LINEZOLID RESISTANCE

Linezolid was the first oxazolidinone approved for clinical use
due to its bacteriostatic activity against Gram-positive species.
Its mechanism of action inhibits protein synthesis by preventing
the formation of the ternary complex between tRNAfMet, mRNA,
and the ribosome (Hashemian et al., 2018). Although preliminary
research indicated that resistance to linezolid should be rare,
resistance in clinical enterococci and staphylococci have been
increasingly reported since 2001 (Zurenko et al., 1996; Xiong
et al., 2000; Gu et al., 2013; Bender et al., 2018a; Kosecka-Strojek
et al., 2020). Early studies using PCR amplicon sequencing in
clinical VRE and S. aureus isolates identified mutations in the
23S rRNA genes, that form the binding pocket of the ribosomal
peptidyl transferase centre (PTC) to which linezolid binds (Howe
et al., 2003; Meka et al., 2004; Livermore et al., 2007). A number of
resistance-associated mutations, some specific to staphylococci,
others conserved across staphylococci and enterococci, have been
identified within and outside the PTC; the G2576T (E. coli
nucleotide numbering) mutation is most common (Figure 1).
Conferring high-level resistance in MRSA, MDRSE, and VRE,
the G2576T 23S rRNA mutation is associated with linezolid
treatment failure. Additional single nucleotide polymorphisms
(SNPs) in the ribosomal proteins L3 and L4 have been identified
through WGS of linezolid-resistant clinical staphylococci (Locke
et al., 2009a,b, 2010; Endimiani et al., 2011). Mutations in the

L3 and L4 proteins appear to be less common in enterococci,
but several reports have identified SNPs in L3 (S133L) and L4
(T35A, N79D, I98V, and N130K) (Mendes et al., 2014; Hua
et al., 2019). Further, mutations (A138G, C141T, and G166A)
in ribosomal protein L22 have also been identified in linezolid-
resistant staphylococci (Bender et al., 2015), as well as a S77T
mutation identified in one linezolid-intermediate E. faecium
(Lee et al., 2017). The L3, L4, and L22 proteins are in close
proximity to the linezolid binding site in the ribosomal PTC,
with identified mutations typically adjacent to the PTC, which
may affect linezolid binding (Long and Vester, 2012). Using
WGS, several studies have documented the local emergence of
linezolid resistance in response to linezolid treatment during
individual infections (Seedat et al., 2006; Wong et al., 2010;
Chen et al., 2018). These studies identified common mutations
in 23S rRNA and/or L3, L4, or L22 proteins that independently
and repeatedly arise in different species of staphylococci and
enterococci from different patients, demonstrating the conserved
nature of mutational linezolid resistance and suggesting that
convergent evolution is occurring.

Identification of Transferable Linezolid
Resistance
Transferable or acquired resistance to linezolid has been
identified in both staphylococcal and enterococcal clinical
isolates. The first transferable resistance gene identified was the
multi-resistance gene cfr, that encodes a rRNA methyltransferase
(Arias et al., 2008). Cfr catalyzes the post-transcriptional
methylation of nucleotide A2503 in the 23S rRNA, which confers
combined resistance to five different classes of antimicrobials:
phenicols, lincosamides, oxazolidinones, pleuromutilins, and
Streptogramin A; that bind at overlapping non-identical sites
at the PTC, known as the PhLOPSA phenotype (Long et al.,
2006). The first linezolid-resistant clinical isolate bearing cfr was
reported in 2005, in which cfr had chromosomally integrated into
a MRSA strain, within an IS21-558 MGE together with ermB,
resulting in resistance to all clinically relevant antibiotics that
inhibit protein synthesis (Toh et al., 2007). The presence of a cfr
gene has subsequently been identified in staphylococci, including
MRSA (Locke et al., 2010; Morales et al., 2010; Antonelli et al.,
2016) and MDRSE (Bonilla et al., 2010; Lazaris et al., 2017),
and in Enterococcus (Liu et al., 2014; Bender et al., 2016; Fioriti
et al., 2020; Ruiz-Ripa et al., 2020) isolates worldwide, although
the overall prevalence and distribution in different sequence
types (STs) is poorly characterized. In MDRSE, phylogenetic
analysis suggests that cfr carriage is most commonly associated
with healthcare-associated, clonal complex 2 strains (ST22, ST2,
ST5, and ST168), where carriage is associated with a multidrug-
resistant phenotype (Mendes et al., 2012).

Several recent studies have identified novel variants of the
cfr gene [cfr(B) (Bender et al., 2016), cfr(C) (Candela et al.,
2017), and cfr(D) (Guerin et al., 2020)], which are present
within a variety of MGEs including multiple plasmids, insertion
sequences, and transposons (summarized in Sadowy, 2018
for enterococci). Furthermore, a diverse range of resistance
determinants have been co-located with cfr, suggesting that
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FIGURE 1 | Secondary structure of the peptidyl transferase loop of domain V of 23S rRNA (E. coli numbering). The nucleotides that form the linezolid binding pocket
are marked with circles. Nucleotide positions where mutations confer linezolid resistance are colored according to the species identified, blue for Enterococcus,
green for Staphylococcus, and red for both. Only mutations with a published relationship in clinical isolates have been included (Wong et al., 2010; Long and Vester,
2012; Mendes et al., 2012; Chen et al., 2018; Wardenburg et al., 2019).

broader antimicrobial use may co-select for the spread of
these MGEs. Variation in the genes surrounding cfr in clinical
strains suggests that cfr-mediated linezolid resistance has
been independently acquired on multiple occasions in clinical
staphylococci and enterococci isolates worldwide. Although the
reservoir for cfr remains unknown, one study using WGS data
from cfr-positive E. faecium suggests that E. faecium may be an
important reservoir of cfr(D), which has clear implications for
infection control (Guerin et al., 2020). Alternatively, cfr variants
may originate from Bacillales, since three cfr-like genes have been
identified (Hansen et al., 2012).

Resistance to linezolid also arises through the acquisition
of the transferable ribosomal protection genes, optrA, and
poxtA. OptrA and PoxtA are part of the F-lineage in the
ATP-binding cassette (ABC) superfamily of proteins that are
associated with AMR (Jones et al., 2009). These ABC-F
proteins mediate resistance to several different classes of anti-
ribosomal antimicrobials. For instance, optrA confers resistance
to oxazolidinones and phenicols. While, poxtA confers resistance
to phenicols, oxazolidinones, and tetracyclines. The family of
ABC-F proteins have been shown to mediate resistance by
displacing the antibiotic from the ribosome to provide ribosomal
protection within the Staphylococcus genus (Sharkey et al.,
2016). OptrA was first detected in 2009, on pE349 conjugative
plasmids found within three linezolid-resistant E. faecalis clinical
isolates (Wang et al., 2015). A phylogenetic analysis of 43
optrA-carrying enterococci revealed nine different variants of the
optrA gene (optrAWT, optrA1-5, optrA6, optrA7, and optrA8).

These variants were distributed throughout diverse genetic
backgrounds of E. faecium and E. faecalis, indicating that
multiple independent acquisitions of optrA have occurred in
these species (Bender et al., 2018b). The presence of optrA
has been subsequently observed in both vancomycin-resistant
and vancomycin-susceptible E. faecium and E. faecalis from
clinical and food-producing animal isolates globally; but only
reported in food-producing animal isolates of S. aureus (Zhu
et al., 2020). This suggests that food-producing animals may
serve as a reservoir for optrA transfer. Phylogenetic analysis
of optrA-carrying enterococci, including some strains from a
hospital outbreak, in Europe and South America led to the
frequent identification of ST480 E. faecalis, suggesting a potential
association between ST480 E. faecalis strains and optrA carriage
(Sassi et al., 2019; Egan et al., 2020b; Freitas et al., 2020a; Moure
et al., 2020). OptrA has also been reported in several different
clonal backgrounds of E. faecalis (Bender et al., 2019) and has
been identified in pets carrying E. faecalis (Wu et al., 2019). In
E. faecium, optrA has been identified in several different lineages,
including ST17, ST80, ST117, ST412, and ST650, indicating that
optrA carriage is present in phylogenetically diverse strains in
E. faecium (Morroni et al., 2018; Sassi et al., 2019).

The poxtA linezolid resistance gene was first detected in a
MRSA clinical strain in 2016 (Antonelli et al., 2018). The poxtA
gene exhibits genetic similarity (32% identity and 95% coverage)
to optrA and possesses conserved features with other members
of the ABC-F family (Antonelli et al., 2018). Carriage of the
poxtA gene appears to occur sporadically in MRSA and VREfm
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clinical isolates (Papagiannitsis et al., 2019), with the gene most
commonly identified in food-producing animals (Huang et al.,
2017; Elghaieb et al., 2019; Hao et al., 2019; Lei et al., 2019; Fioriti
et al., 2020; Freitas et al., 2020b; Na et al., 2020).

Phylogenetics of Transferable Linezolid
Resistance
Since their initial discovery, the prevalence of cfr, optrA, and
poxtA genes in clinical multidrug-resistant enterococcal and
staphylococcal isolates has increased (Figure 2; Bi et al., 2018).
To date, the highest prevalence of optrA and/or poxtA (35/154;
23%) were reported in E. faecium and E. faecalis in a retrospective
Irish study from 2016 to 2019, suggesting significant selection
pressure for gene maintenance (Egan et al., 2020b). Genomics
has provided critical insights into the genetic relatedness of
resistant strains, the structure of MGEs and their role in
the mobilization of linezolid resistance determinants. Examples
include: an analysis of optrA-carrying plasmids from E. faecalis,
which found optrA flanked by two active copies of IS1216 that
can facilitate its spread (Shang et al., 2019); the widespread
identification of optrA located in a Tn6674-like element in
E. faecalis isolated from different countries and sources (Freitas
et al., 2020b); IS1216E elements that have been shown to
mediate the insertion of poxtA into a pT-E1077-31 plasmid
in E. faecium (Shan et al., 2020); while in MRSA, a Tn6349
composite transposon carrying both poxtA and cfr was found
to possess a modular structure consisting of fragments from

other previously described MGEs (D’Andrea et al., 2019). The
presence of these MGEs in cfr, poxtA, and optrA carrying
multi-resistance plasmids likely aids in the persistence and
dissemination of linezolid resistance genes among these Gram-
positive pathogens.

Recent studies have also used genomics to identify linezolid-
resistant strains for surveillance and infection control purposes.
These studies utilized different bioinformatic tools, including
LRE-finder (Hasman et al., 2019) and the Resistance Gene
Identifier using the Comprehensive Antibiotic Resistance
Database (Alcock et al., 2020), to detect cfr, optrA, and poxtA
resistance genes in WGS data, enabling rapid genotypic
surveillance (Wardenburg et al., 2019; Eisenberger et al., 2020;
Moure et al., 2020) and phylogenetic inference (Kerschner
et al., 2019). For instance, WGS of E. faecium during an Irish
hospital outbreak identified 19 nearly identical ST80 clinical
isolates (allelic difference range < 10 SNPs) all carrying optrA-
encoded within conjugative plasmid pEfmO_03. Subsequent
implementation of enhanced infection control interventions
successfully eliminated the outbreak (Egan et al., 2020a).

GENOMIC INSIGHTS INTO
DAPTOMYCIN RESISTANCE

Shortly after FDA approval of daptomycin for use in MRSA
and in the context of off-label use in VRE, resistance, and

FIGURE 2 | Snapshot of reported cfr, optrA, and poxtA genes in human, clinical, linezolid-resistant E. faecium. Each country is colored based on which gene(s) have
been identified. The number of reported strains for each country is shown. It should be noted that the identification of each gene within regions may not accurately
represent the genomic epidemiology in E. faecium, due to both collection and availability biases. Only published reports have been included (Bender et al., 2016,
2018b; Lazaris et al., 2017; Wardenburg et al., 2019; Egan et al., 2020a,b; Moure et al., 2020). Map was generated in R (v. 4.0.3) using the ggplot2 package (v.
1.3.0).
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corresponding clinical treatment failures were reported in both
species (Skiest, 2006; Arias et al., 2007; Boyle-Vavra et al., 2011).
The development of daptomycin resistance commonly coincides
with prior patient exposure, indicating that therapeutic use of
daptomycin is likely the main driver of resistance. In S. aureus,
the emergence of daptomycin resistance has also been associated
with the use of un-related antimicrobials, including vancomycin
(Tran et al., 2015) and rifampicin (Guérillot et al., 2018b).
Importantly, horizontally acquired and transferable resistance
to daptomycin has not been reported to date. The worldwide
prevalence of daptomycin resistance is poorly defined since
few large-scale surveillance studies exist. A recent meta-analysis
in S. aureus, suggested that only 0.1% of S. aureus and 0.1%
of MRSA were daptomycin-resistant (Shariati et al., 2020).
In enterococci, the prevalence of daptomycin resistance was
estimated to be 2.6% in VREfm and 0.1% in VREfs, based on a
systemic review of previous studies (Kelesidis et al., 2011). Little
is known about which lineages of staphylococci and enterococci
are associated with the development daptomycin resistance.
In S. aureus, genomic analyses indicate that daptomycin
resistance has arisen in ST5, ST398, and ST22 isolates, based
on data from the United States and South America (Dabul
and Camargo, 2014; Damasco et al., 2019). In S. epidermidis,
no comprehensive phylogenetic analyses of daptomycin-resistant
strains have been completed, but resistance has been reported
in ST2, internationally (Lee J.Y.H. et al., 2018). Similarly, no
phylogenetic studies have been completed for E. faecalis, but a
novel ST736 clone associated with daptomycin resistance has
been identified for E. faecium (Wang et al., 2014) in some
United States hospitals (Wang et al., 2018), as has daptomycin-
resistant ST80 E. faecium (Udaondo et al., 2020).

Daptomycin’s mode of action involves binding to the anionic
phosphoglycerol and various undecaprenyl-coupled cell envelope
precursors within the bacterial cell membrane in the presence of
Ca2+, blocking cell wall synthesis and triggering delocalization
of biosynthetic proteins from the membrane, resulting in
bacterial cell death (Grein et al., 2020). Although the specific
mechanisms leading to resistance are not fully understood,
comparative genomic studies have been pivotal in identifying
genetic determinants of daptomycin resistance. Genetically, a
critical step toward developing a resistant phenotype appears to
involve mutations in two groups of genes: (1) bacterial regulatory
systems that function in cell wall homeostasis and (2) enzymes
involved in membrane phospholipid metabolism.

In S. aureus and S. epidermidis, mutations in mprF
(S295L, S337L, T345L, I420N, and L826F) and walKR (yycFG)
(WalKV500F and WalRR216S) are associated with the development
of daptomycin resistance in clinical isolates and laboratory-
derived strains (Howden et al., 2011; Yang et al., 2009, 2013; Jiang
et al., 2019). The MprF enzyme produces cationic phospholipid
lysylphophatidyl-glyercol (LysPG) and flips it from the inner
to outer leaflet of the cytoplasmic membrane, which decreases
the negative cell surface charge (Oku et al., 2004). Although
not characterized in S. epidermidis, the mutations in S. aureus
likely increase the enzymatic activity of MprF since daptomycin-
resistant isolates display increased levels of LysPG in their
membrane, which variably leads to a more cationic cell surface

that electrostatically repels the daptomycin-Ca2+ complex
(Mishra et al., 2011). For mutations in walKR, the mechanism
leading to resistance is distinct in S. aureus and S. epidermidis,
since S. aureus strains carrying mutations in walKR display
increased surface charge while S. epidermidis strains display
decreased biofilm formation, compared to the wild-type strains
(Jiang et al., 2019). Comparative genomic studies in S. aureus
have also identified mutations in the cardiolipin synthase gene
cls2 and RNA polymerase β and β’ subunits (rpoB and rpoC)
that are associated with resistance to daptomycin, although these
are less frequently observed than mutations in mprF and walKR
(Miller et al., 2016). Transposon-sequencing in S. aureus has
also identified multi-component sensing genes, specifically graRS
and vraFG (which regulate cell envelope processes), as being
associated with daptomycin resistance, with these genes being
important for survival following daptomycin stress (Rajagopal
et al., 2016; Coe et al., 2019). However, graRS and vraFG
mutations have so far not been described in clinical daptomycin-
resistant S. aureus isolates.

In enterococci, comparative genomic studies have shown that
mutations in the three-component regulatory system liaFSR and
cardiolipin synthase cls are associated with the development
of clinical daptomycin resistance. Mutations within the LiaFSR
three-component system, which regulates the cell envelope
response to cationic host defense peptides and antimicrobial
stress, have been frequently identified in daptomycin-resistant
clinical isolates, with the LiaST120A and LiaRW73C mutations
being of particular importance (Arias et al., 2011). A genomic
analysis of E. faecium clinical isolates found that isolates
with higher daptomycin MICs (≥ 4 mg/L) usually contained
mutations in the liaFSR system (Diaz et al., 2014). Mutations
in Cls (H215R and R218Q), encoding a transmembrane protein
that catalyzes the synthesis of cardiolipin from phosphoglycerol,
are also frequently associated with daptomycin resistance (Arias
et al., 2011; Palmer et al., 2011). However, molecular studies
have thus far not demonstrated a causal relationship between
cls and daptomycin resistance in E. faecium (Tran et al.,
2013). Since cls mutations are often found in conjunction
with substitutions in the liaFSR regulon, they likely contribute
to the progression of an isolate developing a daptomycin-
resistant phenotype rather than independently causing resistance
(Davlieva et al., 2013). Recent genomic studies in enterococci
have also identified daptomycin-resistant isolates that contain
wild-type liaFSR and cls alleles, indicating that other unknown
genetic determinants of daptomycin resistance exist that require
further investigation (Wang et al., 2018; Prater et al., 2019).
Indeed, putative associations with daptomycin resistance and
mutations within mprF, cfa, pgsA, and dlt have been suggested,
but have not yet been verified.

GENOMIC INSIGHTS INTO
VANCOMYCIN RESISTANCE IN
STAPHYLOCOCCUS

Vancomycin is a critical last-line antibiotic for treating infections
caused by multidrug-resistant Staphylococcus. Thirty-nine years
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after FDA approval of vancomycin, the first instances of
S. aureus with intermediate vancomycin resistance (MICs 4 to
8 mg/L) were reported (Sieradzki et al., 1999; Smith et al.,
1999). Soon after, the first clinical case of a vancomycin-
resistant S. aureus isolate (MIC 1024 mg/L), carrying the vanA
vancomycin resistance operon, was reported (Chang et al.,
2003). Subsequent molecular studies demonstrated that the
vanA operon originated from a co-infecting VREfs strain,
raising significant concerns about the potential dissemination
of vancomycin resistance in S. aureus from VRE reservoirs
(de Niederhäusern et al., 2011). Fortunately, this has not
eventuated. Detailed genomic studies have demonstrated that
the transfer of the van operon to S. aureus rarely occurs, with
very few reports worldwide (McGuinness et al., 2017). The rare
occurrence of VRSA may be due to the fitness cost associated
with carriage of the van genes, as a longer lag phase was
observed during in vitro growth with vancomycin, and the
plasmid carrying the van genes was found to be genetically
unstable. Further, a MRSA PBP2a strain was unable to utilize
lipid II with the D-Alanyl-D-lactate alteration conferred by the
van operon (Foster, 2017). A single study identified S. aureus
clonal complex 5 (CC5) as the genetic background in which
the van operon is most commonly acquired. This study found
that CC5 vancomycin-resistant S. aureus (VRSA) strains were
genetically distinct, indicating independent acquisition of the
vanA operon had occurred (Kos et al., 2012). This suggests that
the spread of van operons within S. aureus may occur should
appropriate selective conditions develop. Continued vigilance is
therefore paramount.

Vancomycin-intermediate S. aureus (VISA) resulting
from the progressive accumulation of mutations in key
essential and regulatory genes are clinically more common
than true vancomycin-resistant S. aureus. VISA isolates are
commonly characterized by a thickened cell wall, slower
growth, and increased autolysis (reviewed in Howden et al.,
2010). Genetically, VISA strains typically contain mutations
in two-component regulators vraRS (Cui et al., 2009), graRS
(Cui et al., 2009), and walKR (Howden et al., 2011), which
function in cell-wall synthesis, but also may contain mutations
in the rifampicin resistance determining region of rpoB (Cui
et al., 2010). A convergent evolution analysis of 7,099 S. aureus
genomes suggested that clinical rifampicin use may promote
the emergence of multidrug-resistant lineages of S. aureus
that contain rifampicin resistance mutations in rpoB that
also confer intermediate resistance to vancomycin (Guérillot
et al., 2018a). Although VISA can be found in any genetic
background, ST5 is most commonly associated with VISA
(Howden et al., 2014), although ST239 isolates tend to
display the highest vancomycin MICs (Holmes et al., 2014).
Genome-wide association studies (GWAS) performed in ST239
S. aureus have identified mutations in rpoB (H481Y/L/N)
(Alam et al., 2014) and the walKR genes (Baines et al., 2015)
as being most strongly associated with the development of
the VISA phenotype.

In S. epidermidis, the global dissemination of three nearly
pan-drug-resistant lineages (two ST2 and one ST23) with
heteroresistance to vancomycin was recently demonstrated

(Lee J.Y.H. et al., 2018). Analyses of WGS data from 419
clinical isolates from 96 institutions in 24 countries, sampling
at least 77 ST types, identified dual D471E and I527M RpoB
mutations to be the most common cause of rifampicin resistance
in S. epidermidis, accounting for 86.6% of mutations. Of
note, the D471E and I527M combination occurred almost
exclusively in isolates from the ST2 and ST23 lineages.
Through site-specific mutagenesis, the dual RpoB mutation
was shown to confer high-level rifampicin resistance as well
as reduced susceptibility to vancomycin and teicoplanin. The
presence of these same mutations in multiple genetically
diverse backgrounds was consistent with their independent
emergence with subsequent fixation, presumably due to their
advantageous antimicrobial resistant phenotype. Furthermore,
acquisition of additional resistance to linezolid (mediated by
cfr carrying plasmids and/or mutations in 23S rRNA, L3
and L4) and daptomycin (substitutions in mprF) rendered
some European S. epidermidis essentially untreatable. Further
examples of convergent evolution include the presence of
H481Y/L/N substitutions in RpoB that confer vancomycin
resistance in both S. aureus (Guérillot et al., 2018a) and
S. epidermidis (Gao et al., 2013; Lee J.Y.H. et al., 2018;
Dao et al., 2020).

CONCLUSION

Collectively, MRSA, MDRSE, and VRE pose a significant
clinical and economic healthcare burden. This has been
compounded by increasing resistance to the key last-
line agents daptomycin, linezolid and in the case of
Staphylococcus, vancomycin. Genomic analyses have been
pivotal in providing evolutionary insights into the underlying
genetic mechanisms of resistance that have arisen in all
three species. In particular, the identification of transferable
and acquired linezolid resistance determinants through
genomic studies, has been critical for understanding the global
dissemination and genetic mobility of these genes. Genomic
analyses using WGS data is therefore a powerful method for
understanding last-line AMR in these and other clinically
relevant multidrug-resistant species.
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