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Equivolumetric Protocol Generates
Library Sizes Proportional to Total
Microbial Load in 16S Amplicon
Sequencing

Giuliano Netto Flores Cruzt, Ana Paula Christofft and Luiz Felipe Valter de Oliveira*

BiomeHub, Florianopolis, Brazil

High-throughput sequencing of 16S rRNA amplicon has been extensively employed
to perform microbiome characterization worldwide. As a culture-independent
methodology, it has allowed high-level profiling of sample bacterial composition directly
from samples. However, most studies are limited to information regarding relative
bacterial abundances (sample proportions), ignoring scenarios in which sample microbe
biomass can vary widely. Here, we use an equivolumetric protocol for 16S rRNA
amplicon library preparation capable of generating lllumina sequencing data responsive
to input DNA, recovering proportionality between observed read counts and absolute
bacterial abundances within each sample. Under specified conditions, we show that the
estimation of colony-forming units (CFU), the most common unit of bacterial abundance
in classical microbiology, is challenged mostly by resolution and taxon-to-taxon variation.
We propose Bayesian cumulative probability models to address such issues. Our
results indicate that predictive errors vary consistently below one order of magnitude
for total microbial load and abundance of observed bacteria. We also demonstrate our
approach has the potential to generalize to previously unseen bacteria, but predictive
performance is hampered by specific taxa of uncommon profile. Finally, it remains
clear that high-throughput sequencing data are not inherently restricted to sample
proportions only, and such technologies bear the potential to meet the working scales
of traditional microbiology.

Keywords: bacteria, absolute abundances, microbiome, colony-forming units, 16S rRNA, amplicon
sequencing, lllumina

INTRODUCTION

The application of high-throughput sequencing (HTS) methodologies allows large-scale
identification of microorganisms, revealing colonization and dispersion patterns throughout
studied sites such as hospitals, indoor or outdoor natural environments (Lax et al., 2017; Lloyd-
Price et al., 2017; Thompson et al., 2017; Christoff et al., 2019; Gasparrini et al., 2019; Ribeiro et al.,
2019). Despite various detailed microbiome characterization studies, most efforts address solely
relative bacterial abundances within each sample, i.e., do not account for major variations of total
microbial load (Vandeputte et al., 2017; Morton et al., 2019; Zemb et al., 2020).
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Recent studies claim that the total number of reads in HTS-
derived samples (library size) is an arbitrary sum, without
biological relevance, yielding microbiome data as necessarily
compositional in nature (Gloor et al, 2017; Jiang et al,
2019; Morton et al., 2019). Nonetheless, a previous study has
demonstrated that library sizes need not be arbitrary, potentially
holding significant correlations with input bacterial cell counts
(Minich et al., 2018b).

The possibility of estimating absolute microbial abundance
from HTS data has major impacts for research, government
agencies, and industry, allowing researchers and policy makers
to address microbiological issues in common scales, such as
colony-forming units (CFU), without giving up the advantages of
high-throughput technology. Further, relative information alone
limits decision-making in scenarios in which sample microbe
biomass is known to vary widely (Kembel et al., 2012; Oberauner
et al, 2012; Mora et al., 2016). Bacterial percentages within a
sample are hardly informative in terms of surface contamination
levels or even risk of microbial environmental dispersion.

Notice that, here, we refer to “relative abundance” as
taxa (potentially scaled) proportions or percentages within
each sample, whereas the absolute abundance refers to the
corresponding total CFU—although that ultimately refers to
bacterial concentration, i.e., absolute abundance per sample.
For instance, a sample with 50% of S. aureus and 102
CFU is markedly different from another sample with the
same percentage of S. aureus but 10° CFU. We consider
that these two samples differ in absolute abundance of
S. aureus. We will keep this interpretation of the term “absolute
abundance” throughout this manuscript. We further address
potential terminology issues in the methods section “A Note
on Terminology.”

The aim of this study is to demonstrate a library preparation
strategy and statistical analysis approach that, together, are
capable of estimating sample CFU using Illumina short-read
sequencing data only—for both total microbial load and taxon-
specific sample abundances. The approach herein described was
primarily designed for the analysis of samples with varying total
biomass (throughout this manuscript we refer to “biomass” as
the sample bacterial biomass). Potentially, our method could
be applied to hospital microbiome surveillance as well as other
similar sampling sites with varying bacterial load and adapted
to broader applications such as clinical evaluations and food
safety management.

MATERIALS AND METHODS

Samples

A synthetic DNA fragment with a naturally non-occurring
sequence was designed with the 16S rRNA V3/V4 primers
sequences flanking their extremities. This fragment with 544 bp
was synthesized as gBlocks Gene Fragments from IDT (IA,
United States). This DNA was eluted to a final concentration of
10 ng/pL in TE buffer following the manufacturer instructions.
Then it was serially diluted from 0.56 to 0.00000056 ng/pL by a
10X factor dilution. This serial dilution is equivalent to a range

of 954,000,000-954 copies of the synthetic DNA. Samples were
processed in experimental triplicates.

Reference bacterial isolates were acquired from ATCC
(American Type Culture Collection, VA, United States) ATCC
19111 Listeria monocytogenes, ATCC 14028 Salmonella enterica,
ATCC 10876 Bacillus cereus, ATCC 12228 Staphylococcus
epidermidis, ATCC 29212 Enterococcus faecalis, ATCC 8739
Escherichia coli, ATCC 25923 Staphylococcus aureus. These
bacterial isolates were individually grown overnight at 35°C in
Brain Heart Infusion media and then adjusted to an optical
density (ODggq) of 0.5, corresponding to 103 CFU, to be further
diluted with a 10X factor for more seven consecutive dilutions.
The two more diluted concentrations for each bacterium had
100 L plated in PCA (Plate Count Agar) and incubated
overnight at 35°C to check for the CFU (Colony Forming Units)
concentrations used in the assay described below. The dilutions
corresponding to 2, 20, 200, 2,000, 20,000, and 200,000 CFU for
each above bacterium were pipetted in a region of approximately
9 cm? of a sterile plastic petri dish (90 x 15 mm) (Kasvi, Brazil),
without media, and left to dry in a biological safety cabinet. Then
the pooled bacterial cells were collected from the dry plate surface
using a sterile hydraflock swab (Puritan, ME, United States)
moistened with sterile physiological solution, for at least 1 min of
swabbing. After sample collection the swab was broken down into
a microtube containing 800 L of stabilization solution-ZSample
(BiomeHub, SC, BR). Collected samples were stored in room
temperature for at least 24 h then after a vigorous vortexing, the
swab was removed from the collection tube and the stabilization
solution containing bacterial cellsyDNA was used. The DNA
from the above collected bacterial pools was extracted from the
stabilization solution using a thermal lysis protocol (95°C for
10 min) followed by 1:1 AMPure XP magnetic beads purification
(Beckman Coulter, CA, United States), two 200 L ethanol 80%
washes and ultrapure water elution in 40 pL. Samples were
processed with fifteen replicates for each bacterial CFU dilution.
Additionally, three alternative DNA extraction kits were used:
QIAamp DNA Mini and Blood Mini (QIAGEN, Germany), lot:
154018620, used with protocol: DNA Purification from Blood
or Body Fluids; DNAeasy Power Soil (QIAGEN, Germany), lot:
163024722 and DNAeasy Power Soil PRO (QIAGEN, Germany),
lot: 160048809, both using 500 WL of stabilization solution as
input and following the protocol as manufacturer instructions.

Library Preparation and Sequencing

The 16S rRNA amplicon sequencing libraries were prepared
using the V3/V4 primers (341F CCTACGGGRSGCAGCAG and
806R GGACTACHVGGGTWTCTAAT) (Wang and Qian, 2009;
Caporaso et al., 2012) in a two-step PCR protocol. The first PCR
was performed with V3/V4 universal primers containing a partial
[lumina adaptor, based on TruSeq structure adapter (Illumina,
United States) that allows a second PCR with the indexing
sequences similar to procedures described previously (Caporaso
et al,, 2011). Here, we add unique dual-indexes per sample in
the second PCR, also performing index switches between runs
to avoid cross contaminations. Two microliters of individual
sample DNA were used as input in the first PCR reaction. The
PCR reactions were carried out using Platinum Taq (Invitrogen,
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United States) with the conditions: 95°C for 5 min, 25 cycles
of 95°C for 45 s, 55°C for 30 s, and 72°C for 45 s and a final
extension of 72°C for 2 min for PCR 1. For PCR 2, two microliters
of the first PCR were used and the amplification conditions were
95°C for 5 min, 10 cycles of 95°C for 45.s, 66°C for 30.s, and
72°C for 45.s with a final extension of 72°C for 2 min. All
PCR reactions were performed in triplicates. The second PCR
reactions were cleaned up using AMPureXP beads (Beckman
Coulter, United States) and an equivalent volume of each sample
was added in the sequencing library pool. At each batch of PCR,
a negative reaction control was included (CNR). The final DNA
concentration of the library pool was estimated with Quant-iT
Picogreen dsDNA assays (Invitrogen, United States), and then
diluted for accurate qPCR quantification using KAPA Library
Quantification Kit for Ilumina platforms (KAPA Biosystems,
MA). The sequencing pool was adjusted to a final concentration
of 11.5 pM (for V2 kits) or 18 pM (for V3 kits) and sequenced
in a MiSeq system (Illumina, United States), using the standard
Mumina primers provided by the manufacturer kit. Single-end
300 cycle runs were performed using V2x300, V2x300 Micro,
V2x500 or V3x600 sequencing kits (Illumina, United States)
with sample coverages specified in Supplementary Table 1.

Bioinformatics Analysis and Taxonomic

Assignment

The sequenced reads obtained were processed using a
bioinformatics pipeline described below. First, Illumina reads
have the amplicon forward primer checked, it should be present
at the beginning of the read, and only one mismatch is allowed in
the primer sequence. The whole read sequence is discarded if this
criterion is not met. The primers are then trimmed, and the reads
accumulated error evaluated. Read quality filter (E) is performed
converting each nucleotide Q score in error probability (e;), that
is summed and divided by read length (L). The read is discarded
if its accumulated error is above 0.35%.

E:iiei (3)

e = 107Q/10 (4)

Reads are then analyzed with the Deblur package v.1.1.0 (Amir
et al., 2017) to remove possible erroneous reads and identical
sequences are grouped into oligotypes (clusters with 100%
identity). The sequence clustering with 100% identity provides a
higher resolution for the amplicon sequencing variants (ASVs),
also called sub-OTUs (sOTUs) (Knight et al., 2018)-herein
denoted as oligotypes. Next, VSEARCH 2.13.6 (Rognes et al.,
2016) are used to remove chimeric amplicons. We implemented
an additional filter to remove oligotypes below the frequency
cutoff of 0.2% in the final sample counts.

We also implemented a negative control filter for low biomass
samples. If any oligotypes are recovered in the negative control
results, they are checked against the samples and automatically
removed from the results only if their abundance (in number of
reads) are no greater than two times their respective counts in
the sample. The remaining oligotypes in the samples are used for

taxonomic assignment with the BLAST tool (Altschul et al., 1990)
against a reference genome database (encoderefl6s_rev6_190325,
BiomeHub, SC, Brazil). This database is constructed with
complete and draft bacterial genomes, focused on clinically
relevant bacteria, obtained from NCBI. It is composed of 11,750
sequences including 1,843 different bacterial taxonomies.

Taxonomies are assigned to each oligotype using a lowest
common ancestor (LCA) algorithm. If more than one reference
can be assigned to the same oligotype with equivalent similarity
and coverage metrics (e.g., two distinct reference species mapped
to oligotype “A” with 100% identity and 100% coverage), the
taxonomic assignment algorithm leads the taxonomy to the
lowest level of possible unambiguous resolution (genus, family,
order, class, phylum, or kingdom), according to similarity
thresholds previously established (Yarza et al., 2014).

Multiple Sequencing Correction

(Normalization)

The correction procedure is fully described in Supplementary
Material 1. Briefly, let K]”",’E”é denote the normalized counts for
the taxonomy j sample i € Q, where Q is the set of samples
from the g ** sequencing run. Then the normalization is a simply

rescaling of the raw counts.

norm  _ Kja ieQ (5)
RIS e

The size factor is sequencing-specific and is calculated as
follows:

Ap.q
maxy —1,2,m (Ap*,q/)

where Ay« o is the average number of reads per sample made
available a priori in the sequencing pool of interest p* within
sequencing ¢’ (expected sample coverage). The lower the relative
availability, the smaller the resulting factor and thus greater the
normalized values relative to the raw counts. Once normalized,
divergences across samples from different sequencing runs,
but of similar bacterial abundances, are assumed to rise
mostly from sequencing efficiency differences—yet of negligible
order of magnitude.

This procedure is markedly different from procedures from
software packages such as DESeq2 or transformations from
compositional data analysis, mostly proposed within the context
of differential abundance analysis (Love et al., 2014; Quinn et al,,
2019). Here, we only shift up read counts when the corresponding
expected sample coverage is not equal to the maximum parameter
within a given data set. While variation in relative availability
does impact raw counts, it is likely innocuous with respect to
the observed and herein addressed proportionality between read
counts and sample absolute abundances.

Sj,icq = Sq = (6)

Statistical Analysis

All statistical analyses were performed using R software
environment version 3.6.2 (Team, 2019). We used the brms R
package and Stan (v. 2.11.1 and v. 2.19.1, respectively) to perform
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all Bayesian analyses and the tidyverse package suite (v. 1.3.0) for
data wrangling and visualization (Biirkner, 2017; Carpenter et al.,
2017; Wickham et al., 2019). We also used the phyloseq R package
(v. 1.30.0) to handle microbiome data (McMurdie and Holmes,
2013). Supplementary Table 2 lists all R packages used along
with corresponding versions and references. The entire modeling
strategy is further detailed in Supplementary Material 2 (total
microbial load) and 3 (bacterial abundances). All models were fit
within the Bayesian framework.

CPM for Total Microbial Load Estimation
We used a cumulative probability model (CPM) with a
logit link, also known as Proportional Odds (PO) model,
to predict total microbial load based on HTS reads. Let Y;
denote the total microbial load (in CFU scale) from the i
sample. Given our serially diluted samples, we only observe
K = 5 abundance values such that Y; takes values ¢ €
{c1,¢2,...,cx} = {0.84 x 10%,0.84 x 103, ...,0.84 x 10°}.
We then define the model:

Yi ~ Categorical (p;) p; = (pir, pias pis pia pis) (7

Each parameter is calculated as:

pik = Pr(Yi = )

= Pr(Y; < ¢)—Pr (Yi < ck,l) forl < k < K (8)
pin = Pr(Yi < a) ©))
pk = 1-Pr(Yi < cx-1) (10)

Finally, we compute the cumulative probabilities using ordinal
logistic regression:

logit [Pr (Yi < ¢)] =
Y =

fork = 1,2,...,K—=1 (11)

(12)

Pik,
ap—P - x;

where x; denotes the library size (total number of reads) for the
observation i.

This generative model for the observed abundances Y; is a
case of ordinal logistic regression (McCullagh, 1985; Harrell,
2015). We use a logit link over the linear predictor ¢ to estimate
cumulative  probabilities, ie., logit [Pr(Q; < ¢x|X = x;)] =
Vi = Pr(V; < qlX=x) = ﬁ The estimated cumulative
probabilities originate the categorical parameters, and the
resulting distribution then generates the observed data.

The linear predictor yj; has two unknown parameters, the
intercepts o and the slope B. We have placed weakly informative
priors on both, with no prior preference for any class cx:

ar~N(0,5) and B~N(0,5) (13)
The intercepts are often called cutpoints as they represent the
intersections between observable categories on the cumulative
logit scale (Agresti, 2010b). Notice we set the same prior for
all K — 1 cutpoints. The negative-valued slope parameter seen
in Eq. 12 arises naturally from the PO model derivation with
latent continuous variable motivation. It also guarantees intuitive

interpretations: positive values indicate a positive effect toward
higher categories (McElreath, 2018a).

The ordinal model also allows going beyond conditional
(cumulative) class probabilities to estimate conditional
expectations, quantiles, and tail probabilities (Harrell, 2015).
This is a major advantage of CPMs over other more commonly
used methods such as linear and quantile regression®.
We fitted the model using brms and Stan (Biirkner, 2017;

Carpenter et al., 2017).

Hierarchical CPM for Absolute Bacterial
Abundances

We develop a cumulative logit random effects model to
predict bacteria-specific abundances based on observed HTS
reads, which is basically a multilevel version of the previous
model (7) (Agresti, 2010a). Let Yj; denote the absolute
abundance (in Colony-forming units) for the observation i,
taxon j. Given our serially diluted samples, we only observe
K = 4 abundance values such that Y takes values ¢ €
{cr,ca 03,00} = {2 x 10%,2 x 10%,2 x 10%,2 x 10°}. We
then define the model:
Y;; ~ Categorical (pij) Py = (pijl, Pij2s - -+ pin)T (14)
Except for the taxon subscript j, the parameters are computed
according to Eqs (8) through (10), and the ordinal regression
becomes:

logit [Pr (Yij < ck)] = fork =1,2,3 (15)

llftjk =

where x;; is the number of reads in observation i from bacteria
j. Differently from the previous model, here we have only four
classes (K = 4) and hence K — 1 = 3 cutpoints. We allow both
intercepts and slopes to vary across bacteria, such that:

Ol a

Bj B
Notice the mean of this two-dimensional Gaussian
distribution is the vector of population-level parameters

ijk

ki —j Xij (16)

(17)

T . . .
(o B) . Thus, the variance-covariance matrix governs
how the group-level parameters vary around the
population-level counterparts:

0 0 o’ o
|:ng }R[%‘k } = |: k kis:| (18)
op 0 op Owp O
|:1 p]
pl

We set the prior distributions for each unknown parameter:

p3

(19)

ar ~N(0,2.5) and ~ N (0,2.5) (20)
ag ~Exp(l) and ~ Exp (1) (21)
R ~ LK]Jcorr (2) (22)

Frontiers in Microbiology | www.frontiersin.org

February 2021 | Volume 12 | Article 638231


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Cruz et al.

Sequenced Reads Reflect Microbial Load

The LK] prior on the correlation matrix R (which describes
the correlation between oy and
upbeta) drives skepticism regarding extreme values near —1
and 1 (McElreath, 2018b). Jointly, the behavior of the prior
distributions slightly favors outer categories (k € {1, K}) in order
to improve distinguishability for cases in which there were
overlapping average number of reads. The prior choice was
driven by model comparison using approximate leave-one-out
cross-validation as well as prior and posterior predictive checks
(Vehtari et al., 2017; Gabry et al., 2019).

A Note on Terminology

Throughout this manuscript, we have termed as “absolute”
the bacterial abundances in each sample as measured by their
corresponding CFU. As previous works often refer to observed
counts and observed proportions as proxies to relative bacterial
abundances, we aim to avoid future confusion by clearly
specifying the definitions herein employed.

Despite heterogeneity in the microbiome literature (Love
et al., 2014; Morton et al., 2019; Calgaro et al., 2020), we call
relative abundances any measure that is proportional to bacterial
percentages within a sample. Recent reports have argued that
HTS datasets are limited to this type of information because
library sizes are arbitrary (Gloor et al., 2017; Quinn et al.,, 2018)
at least under traditional (equimolar) protocols. To explicitly
diverge from this scenario, we refer to the total CFU of a
given taxon within a given sample as the taxon’s corresponding
absolute abundance in that sample-a sample-wise notion of
absolute abundance that has appeared previously in the literature
(Williamson et al., 2019).

However, it is important to note that the sample absolute
abundances are still relative to the sampled units, representing
a measurement of concentration (e.g., CFU/uL). In the case
of a well-defined system (e.g., a cell suspension of defined
volume), in principle only by knowing both the sample and the
system sizes (e.g., sample and suspension volumes, respectively)
that we could recover the absolute abundances in the system
as a whole (e.g., total CFU of S. aureus in the entire cell
suspension), a potentially pernicious extrapolation we did not
attempt. This makes knowing the system absolute abundances
largely prohibitive in practice as it is often not clear how to
perform such size measurements in a high-throughput fashion.

As an alternative, compositional data analysis techniques
have been applied to uncover characteristics of a community
that are mathematically equivalent whether we consider the
sample proportions or the system absolute abundances, showing
promising results (Morton et al., 2019; Quinn et al, 2019).
During sample collection, however, it is frequently challenging
to even define what a system is. For instance, when sampling
a patient bed within a hospital, such entire system is hardly
definable. The whole bed? The specific parts touched by
patients or staff? Anything but the mattress? Noteworthy, the
sample absolute abundance still yields insights limited to the
sampling sites and immediately surrounding environment, which
is easily interpretable.

Although we acknowledge there is room for terminology
improvement and standardization, here we merely aim to stress

the difference between learning that a sample shows 50% of a
given taxon (sample relative abundance) and learning that the
same sample has 10* CFU of that same taxon (sample absolute
abundance). While the chosen terminology attempts to state
the difference between taxa percentages and taxa CFU within a
sample, it is clear that the terms “relative” and “absolute,” when it
comes to taxa abundances in general-whether in the sample or in
a system as a whole -, require careful interpretation.

RESULTS

Equivolumetric Protocol for Amplicon
Library Preparation

In this study, we developed a customized laboratory protocol
for 16S rRNA amplicon library preparation to recover absolute
microbial abundances in each sample after Illumina short
read sequencing (Figure 1). Briefly, we adapt traditional
methods to handle unnormalized inputs of DNA and amplicon.
While equimolar protocols standardize samples and PCR
to fixed concentrations, we sample equal volumes of DNA
or amplicon into each library preparation to keep major
concentration differences intact. The PCR steps are also
optimized for the same purpose, minimizing amplification cycles
and stopping before most reactions plateau phase. Amplicon
checking in agarose gel, capillary electrophoresis or other
quantification method is not performed. In our protocol, final
PCR pooling is also performed in an equivolumetric way,
and DNA sequencing follows as in traditional methods using
Mumina platforms.

Input DNA and Absolute Bacterial
Abundances

To investigate whether our approach is capable of recovering
absolute abundance information, we first assessed the
relationship between generated reads and corresponding
input DNA. We used a synthetic DNA molecule with known
concentrations (Figure 2A) and sequenced replicated serial
dilutions. A polynomial fit demonstrates the sigmoid trend,
which indicates HTS-based quantification in absolute terms may
still be bounded above by methodological constraints under
our protocol (e.g., amplification plateau for highly concentrated
samples). We also estimated the corresponding copy numbers
and observed similar behavior (Figure 2B). Nonetheless, it is
clear from this result that the total number of reads per sample
(library size) increases with input DNA.

To further confirm the association between read counts and
sample bacterial load, the sum of all bacteria CFU within a
sample (also referred to as total microbial load), we sequenced
serially diluted samples of known bacterial concentrations (in
terms of CFU), mimicking a surface sample collection. Our
results indicate that the equivolumetric protocol does recover
proportionality between sequencing data and microbial load in
terms of both library sizes (Figure 2C) and bacteria-specific
counts (Figure 2D). We also demonstrate that this approach
does not depend on DNA extraction method by testing four
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Traditional protocol

1. Equimolar DNA Input

DNA samples standardized to 5 ng/ul for PCR amplification

\1/ 12 /

V ¥ ¥ A/
5ng/ul 5ng/l Sng/l Sng/ul 5ng/ul 5ng/ul  5nglul 5 nglpl

2. PCR amplification

- Single PCR ~ 35 cycles
- Two-step PCR - varying cycles for specific and indexing amplifications

3. Agarose gel check

Pool A

7 8 9 10 W T

20ng

Sequencing Pools:
Equal mass from
each sample PCR PodB

>
sessesss —
CO0CCCC0,

5. DNA Sequencing

FIGURE 1 | Amplicon library preparation methods for HTS sequencing. Traditional protocol is represented as the most common equimolar process. (1) Equimolar
DNA inputs are prepared based on fluorimetric or spectrophotometric measures, all DNA samples are normalized to equivalent amounts (e.g., 5 ng/uL); (2) PCR
amplifications are performed with single or two-step protocols with varying amplification cycles (most commonly 35 cycles); (3) Usually, PCR amplifications are then
checked on agarose gel to confirm positive samples and discard negative ones; (4) PCR pooling for HTS sequencing is also performed in an equimolar manner
through fluorometric quantification (e.g., pooling 20 ng from each sample). Equivolumetric protocol stands for equal volumes processed for each sample instead
of equal concentration. In this protocol, samples retain their original differences in terms of concentrations of input DNA. (1) Equal volumes of each sample is used
for PCR steps, regardless of its concentration (e.g., 2 uL); (2) Amplicon library preparation is carried out in a standardized, two-step PCR for 25 cycles using specific
marker genes, then additional 10 cycles to add the sequencing adapter and indexes; (3) No agarose gel check is performed for these samples since we assume a
wide variation in amplicon yield, related to the sample original DNA input; (4) PCR pooling for HTS sequencing is performed without specific sample normalizations.
Equal volumes are used for each amplicon sample to assemble the HTS sequencing pool (e.g., pooling 20 pL from each sample).

Equivolumetric protocol

1. Equivolumetric DNA Input

2ul from each DNA sample used for PCR amplification

¢ v/ U \ 4 U ©
2l 2l 2p 2pl 2pl 2l 2pl 2pl
2. PCR amplification

- Two-step PCR ~ 25 cycles (specific) + 10 cycles (indexing)

3. Agarose gel check

4. Equivolumetric PCR pooling PoolA

20 pl

Sequencing Pools: U

Equal volume from

each sample PCR el

20 pl

5. DNA Sequencing

different extraction protocols and recovering sample abundances
(Supplementary Figure 1).

Using Data From Multiple Sequencing

Runs

The replicates in Figures 2C,D come from four different
sequencing runs, demonstrating the reproducibility of the
method. As we keep total biomass differences, during data
analysis we only correct for variations in the number of reads
made available a priori for sequencing in each run (expected
sample coverage, see section “Materials and Methods”). Yet,
such variations hardly impact observed values across orders of
magnitude on the logo scale and are likely to have limited (if

any) impact on the association between observed counts and
corresponding bacterial abundance. Supplementary Material 1
describes such a correction in detail as well as an application
using real hospital microbiome samples replicated through 14
sequencing runs.

Proportionality Constraints and Limits of

Quantification

From Figures 2A,B it can be noticed that the observed
proportionality is limited within a specific range of DNA
concentration or DNA copies-and, similarly, of bacterial
abundance in CFU (Figures 2C,D). While lower values
start failing to be detected by the sequencing-hampering
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while taxon abundances ranged from 2*1 02 to 2*10° CFU. A pseudocount of 1 was added to the read counts to avoid log1o (0).

quantification -, there are signs of saturation when DNA
approaches 10~2ng/pL or 10° copies as well as when bacterial
abundance varies around 10° and 10° CFU.

Even though we do optimize the amplification steps for
quantification, there is a threshold above which the amplification
reaches a plateau phase—Supplementary Figure 2. This is the
main reason behind the assumption that our protocol quantifies
sample absolute abundances only within a limited range. By
limiting the PCR cycles, we can detect major differences in input
DNA during the exponential phase of the reactions, but not
once the plateau is reached. Our PCR optimization, therefore,
settles the upper bound of bacterial abundances that we are

able to quantify. Above such point, all information generated is
limited to the notion that the abundance of a given taxon (or the
total microbial load) is greater than or equal to that upper limit
of quantification.

Modeling Absolute Abundance Using
HTS Data

In the previous section, we presented data showing that HTS
reads can respond monotonically to the increase of microbial
load. By turning the axes around, we describe the present
estimation task: given an observed library size (total sample
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reads), can total microbial load be predicted reliably? Figure 2E
illustrates the problem.

Notice each value of microbial load varies only in orders
of magnitude but corresponds to a relatively wide range of
observed library sizes. Again, a polynomial trend is fitted,
demonstrating the inadequacy of standard linear regression in
this case. A similar behavior is observed if we analyze the read
counts for each bacterium individually, despite significant taxon-
to-taxon variation (Figure 2F). Such naive linear models ignore
the monotonic, stepwise fashion in which total microbial load
and absolute bacterial abundances vary conditionally on observed
reads. Also, there are no prediction bounds: extrapolation
toward higher library sizes yields continuously higher predicted
values. This is likely unrealistic, given the plateaus observed in
Figures 2A,B—and the inevitable PCR saturation as total sample
biomass increases.

These characteristics led us to consider a cumulative
probability model to robustly estimate total microbial load and
absolute bacterial abundances using HTS data. In the next
subsection, we briefly describe the fitted model for total microbial
load-see section “Materials and Methods” for formal model
specification. We then extend it onto a hierarchical structure
that allows variation across bacteria in order to predict taxon-
specific absolute abundances in each sample. Supplementary
Materials 2, 3 describe both modeling strategies in further detail,
including extensive prior and posterior predictive checks as well
as assessment of modeling assumptions.

Cumulative Probability Model Predicts
Total Microbial Load

To predict the total microbial load in a sample, in terms
of colony-forming units, we propose a Bayesian cumulative
probability model (CPM) with logit link, also known as
Proportional Odds (PO) model—a case of ordinal logistic
regression. See section “Materials and Methods” for the entire
model specification and Supplementary Material 2 for the
detailed workflow. Figures 3A-D show the results.

Figure 3A shows the estimated class probabilities as a
function of library size, and Figure 3B shows the implied
expectations (black solid line, 95% credible intervals in blue)
as well as the class of highest probability (CHP, red solid
line). Predictive intervals for the CHP are also shown in
light gray. Notice how the red line in Figure 3B follows
closely the behavior of the class probabilities in Figure 3A.
The predictions generated by the ordinal model are by
construction monotonic. Also note that both expectation
and CHP are bounded within the observed outcome range,
overcoming extrapolation issues related to the previous naive
model. In Figure 3C, posterior-predictive check indicates
the overall structure of the observed data is well captured
by the posterior draws of the model. Finally, Figure 3D
shows model-implied tail probabilities, herein defined as the
(conditional) probability of observing at least abundance ¢,
ie, Pr(Y; > c¢|X = x;) rather than Pr(Y; > c|X = x)).
In the next subsection, we extend the previous model to
handle taxonomic information in a hierarchical fashion so that

one can make predictions of absolute abundance for each
bacterium individually. We then validate both models using
cross-validation and prediction on held-out samples (test sets) in
the following subsection.

Hierarchical CPM Predicts Absolute

Bacterial Abundances

In order to handle taxonomic information, we formulate a similar
model which incorporates taxon-specific effects in a hierarchical
structure. The major difference is that the linear predictor term is
parametrized with population-level parameters and group-level
counterparts (for both intercept and slope), allowing predictions
of many bacteria with a single model and taking advantage of
partial pooling (Agresti, 2010a).

While we use seemingly weakly informative priors (see section
“Materials and Methods” for full model specification), their joint
behavior favors outer classes to improve distinguishability when
dealing with classes of overlapping average number of reads.
This is illustrated with prior-predictive check and assessment
of CPM assumptions in Supplementary Material 3, which also
shows detailed workflow and visualizations for each observed
bacterium. Our prior choice resulted from model comparison
with approximate leave-one-out cross-validation (Vehtari et al.,
2017; Gabry et al., 2019). Figure 3E shows the corresponding
posterior predictive check, suggesting the data is well captured
by the model-implied data generation process for all bacteria.
B. cereus, S. aureus, and S. epidermidis may represent challenging
cases, although this can be an artifact from estimating varying
effects with only six bacteria (stronger priors led to worse fit
during model comparison).

Model Validation

We validated both cumulative probability models for total
microbial load and taxon-specific abundances using 10-fold
cross-validation (CV) and prediction on held-out test sets
comprising of 10% of the total number of observations. We assess
performance both as classification and regression tasks—using
CHP- and expectation-based predictions, respectively.

Figure 4A shows the 10-fold CV results for the total
microbial load model. For visualization, we have split the
assessed metrics into bounded between 0 and 1 and unbounded
metrics. Bounded metrics based on CHP included the observed
coverage of 95% predictive interval, Somers’ Delta (measure
of ordinal association), classification accuracy, and Spearman’s
rank correlation. The latter was also assessed for expectation-
based predictions. In general, these metrics varied well above 0.9.
Notably, the predictive intervals showed 100% coverage, which
is likely overconfident. Nonetheless, most intervals spanned two
abundance classes as in Figure 3B (see also Supplementary
Materials 2, 3), suggesting errors occur mainly within one
order of magnitude from the true values. Ordinal association, as
measured by Somers’ Delta, was consistently greater than 0.95 for
both CV and test set.

Unbounded metrics relied on modified versions of absolute
errors, for both CHP- and expectation-based predictions. MALR
and MAEr denote Mean Absolute Log-Ratio and Mean Absolute
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MALR represents deviance in orders of magnitude, which
varied during CV below 0.2 for both CHP and expectation,
a result reproduced in the test set evaluation (Figure 4B).
Perhaps more intuitive, MAEr represents absolute errors as
proportions of true values and tended to be smaller for CHP-
based predictions compared to expectations. During 10-fold
CV or test-set validation, we did not observe MAEr values
greater than 0.7.
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Although not as common as mean absolute errors or mean
squared errors, the metrics herein assessed do not penalize
estimation in varying orders of magnitude, offering advantages in
interpretation. A MALR value of 1 corresponds to a ratio between
predicted and observed values of one order of magnitude in the
logio scale. A MAEr of 1 indicates prediction absolute error as
large as the true value, which would still be largely insignificant

given the logarithmic scale. Using both CHP- and expectation-
based predictions, our results indicate that predictions for the
total microbial load model were mostly kept within the observed
orders of magnitude.

Figure 4C (10-fold CV) and Figure 4D (test-set) show the
analogous measures for the hierarchical model with taxon-
specific predictions. Median MAEr varied below 1 for both CHP
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and expectations during CV for most bacteria. In the test set,
the highest value observed was close to 1.5 (L. monocytogenes).
We observed most median accuracy values as high as 0.85
during CV and 0.8 for the test set, while ordinal association
seems slightly higher in general. The model was least performant
for predicting S. aureus abundance, as indicated by almost all
metrics computed. Still, observed MALR varied consistently
below 0.5 for all bacteria both in CV and test-set validation.
Again, the results indicate our predictions are contained within
respective orders of magnitude, suggesting that HTS reads can
indeed be a valuable source of information regarding absolute
bacterial abundances.

Predicting Abundance of Previously

Unseen Bacteria

As the hierarchical CPM enables prediction of previously unseen
bacteria, we also performed leave-one-group-out CV to assess
how our model could generalize in high-throughput settings,
in which one may have dozens of taxa of interest. For each
bacterium, we hold out its corresponding data points and train
a separate model with the remaining data. We then perform
predictions for the held-out taxon, treating it as “previously
unseen”-not used during model fitting.

Figure 5 shows the results. Classification accuracy drops
substantially, and the model completely fails to classify
abundance values for B. cereus. Yet, for other bacteria, ordinal
association and classification accuracy varied between 0.9 and 0.6.
Treated as a classification task, the poor predictive performance
is likely influenced by high uncertainty associated with the
estimation of varying intercepts and slopes using data from only
five bacteria at each iteration. This can also explain the high
coverage values: predictive intervals were so wide that potentially
spanned nearly all outcome space. On the other hand, the taxon
associated with the worst out-of-sample performance (B. cereus)
was also the one with the highest random effects in the original
model, i.e., the greatest deviance from the overall, population-
level effects (see Supplementary Material 3). While most bacteria
showed MAEr between 0.5 and 3, B. cereus exceeded the value
of 50 (absolute error as large as 50 times the true value).
Nonetheless, MALR still varied below the threshold of 1 for all
but Bacillus cereus, which almost reached a MALR of 2 (two
orders of magnitude).

DISCUSSION

Equivolumetric Protocol for 16S rRNA
Sequencing

Here we have shown that assessment of absolute bacterial
abundance using 16S amplicon short-read sequencing becomes
possible upon protocol alteration within specified conditions,
and the remaining challenges lie within the realm of resolution
and taxon-to-taxon variation. While library sizes do depend
on sequencing effort-a partially arbitrary sequencing setup -,
equivolumetric protocols assure the maintenance of major input
DNA variations, at least for certain ranges of absolute abundance.

The major difference in our equivolumetric protocol relies in
the absence of DNA/amplicon normalizations, while equimolar
protocols standardize samples and PCR to fixed concentrations
(Caporaso et al., 2011; Gohl et al., 2016; Minich et al., 2018a;
Chen et al,, 2019; Ribeiro et al., 2019; Sielaff et al., 2019). Also,
we use fewer PCR steps, potentially decreasing error rates and
chimera formation, as previously reported (Gohl et al., 2016; Sze
and Schloss, 2019). After library amplification, the agarose gel
check or capillary electrophoresis can be useful for samples with
sufficient biomass, though it is often the case that low biomass
samples will show no results, hampering any useful interpretation
(Minich et al., 2018b). For this reason, we do not check for
amplicons presence or concentration after library preparation.

The main goal of our method is to quantitatively assess the
microbiome of indoor environments, such as hospital surfaces,
that are generally characterized by low biomass samples, despite
wide variation (Kembel et al., 2012; Oberauner et al., 2012;
Mora et al.,, 2016; Minich et al., 2018b). Still, this is only one
scenario in which quantitative information regarding absolute
abundance can be especially useful. Other studies have performed
shotgun metagenomic sequencing, which could also be an
informative way to characterize bacterial abundances. However,
metagenomic sequencing of low-biomass samples is particularly
challenging due to insufficient microbial DNA (Minich et al.,
2018b). Importantly, metagenomics is very costly compared to
amplicon sequencing, thus rendering implementation in large
experimental settings even more difficult.

A key assumption for sequencing normalization across runs
is that the expected sample coverages are not underestimated
for the current quantification range so that the read counts
are not censored due to low availability of reads or library
saturation. While more sophisticated data transformations may
be needed for other situations, when varying biomass by orders
of magnitude such a step is largely simplified under our protocol.
Even though we can still refer to the proposed procedure as
normalization, it is markedly different from methods employed
by software packages such as DESeq2 and EdgeR in the context
of differential expression/abundance analysis (Robinson et al.,
2010; Love et al., 2014). While we do log-transform the output
reads, our normalization merely scales up the read counts from
pools of samples with lower expected sample coverages, thereby
allowing the use of data from different sequencing runs to
make predictions. Importantly, we can annulate the effect of
normalization by using data from a single run, given that all
samples were sequenced with the same expected coverage, or
similarly, by keeping the expected sample coverage constant
across all sequencing runs. We do not assume, therefore,
any dependency between such a procedure and the observed
proportionality between reads and absolute abundances.

Proportionality Between HTS Reads and
Absolute Abundance

PCR amplification steps are well-known methodological
constraints in 16S rRNA sequencing (Kebschull and Zador,
2015). However, a previous study already showed closed
relationship between high-throughput sequenced reads and total
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bacterial cells (Minich et al., 2018b). Here we showed that while reads was consistently reproduced with respect to known DNA
PCR saturation and sample sequencing coverage can still impose  concentrations, DNA copies, and CFU among the samples.
upper quantification limits, the proportionality of sequenced Lower limits of quantification can also be optimized further
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by testing a finer grid of concentrations in the lowest range,
experimentation that goes beyond the scope of this study.

Quantification of absolute abundances using 16S rRNA gene
amplicon sequence data has been object of study in the recent
microbiome literature (Vandeputte et al., 2017; Morton et al.,
2019; Zemb et al., 2020). One way to recover absolute bacterial
abundance for each sample is through association of relative
information from HTS technology with absolute information
from other methods. This has been previously done using gPCR
or flow cytometry as absolute abundance methodologies and
HTS as provider of bacterial proportions (Vandeputte et al.,
2017; Williamson et al., 2019; Zemb et al., 2020). Here, however,
by fixing volumes rather than concentrations during library
preparation, our strategy allows the detection of major variations
in input DNA within a specified quantification range. Still,
estimation of sample absolute abundances remains challenged
by resolution and taxon-to-taxon variation: a smooth continuum
of sample CFU values is hardly observable in practice, and the
expected value of read counts given a value of CFU is notably
variable across bacteria.

In the equivolumetric protocol, as we still keep the ability
to detect bacterial proportions—despite known biases (McLaren
et al, 2019)-, we maintain the information retrieved under
equimolar protocols, even if a sample is outside the absolute
quantification range. Additionally, if a sample shows too high
biomass, the CPM will predict a high probability of having
at least the upper limit of quantification in terms of total
microbial load. Similarly, samples with very low biomass will
yield a high probability of having at most the lower limit of
detection. This flexibility to work with tail probabilities and to
constrain estimation within the range of previously observed
abundances is a key advantage of employing a CPM. Using
our proposed approach, hence, total microbial load potentially
gains importance to be applied for surveillance of indoor
environments and similar sampling sites as a measure of total
contamination. The main justification for our proposal is the
fact that samples from indoor environments vary widely in terms
of total biomass, generally characterizing low biomass samples
(Kembel et al., 2012; Oberauner et al., 2012; Mora et al., 2016;
Minich et al, 2018b), and thus render relative information
alone less useful.

In practice, microbiome samples are often highly variable
in terms of total microbial load. Fecal samples are generally
characterized by high biomass, while hospital and indoor samples
usually present low biomass (Kembel et al., 2012; Mora et al,,
2016; McDonald et al., 2018). Low biomass samples impose
more challenges to their processing because of contamination
and process inefficiencies (Minich et al., 2018b). In fact, in this
study we removed E. coli sequences from our results since these
were frequently detected in our negative controls. We were able
to track the corresponding sequences to the DNA polymerase
reagent. E. coli has been reported as a common molecular biology
contaminant from recombinant enzymes such as polymerases
(Spangler et al., 2009). We stress that low biomass samples should
always be processed with special care, accompanied by negative
controls to assess possible contaminations (Salter et al., 2014;
Eisenhofer et al., 2018; Goffau et al., 2018).

Predictive Modeling of Absolute

Abundances

Bayesian cumulative probability models (CPM) address the
challenges related to absolute abundance estimation naturally
by modeling the cumulative probability function of the sample
CFU conditional on the observed read counts (Liu et al., 2017).
This strategy allows estimation of total microbial load as well
as sample absolute abundances of observed bacteria, as it can
deal with ordinal outcomes of varying cardinality and even with
continuous outcomes. Further, a wealth of outputs information
is automatically available upon CPM fitting, e.g., conditional
means, quantiles, class and tail probabilities. These quantities can
be readily explored to inform decision making with more than
simply point estimates, e.g., estimate the probability that a certain
critical sample presents with more than a given threshold of CFU
for a given taxonomy of interest.

By construction, the model can also generate continuous
and (ordinal) categorical predictions (Harrell, 2015). Although
the most likely outcome tends to agree with the estimated
conditional mean, the former varies as a step function while
the latter varies smoothly. The use of Bayesian framework also
enables full probabilistic quantification of uncertainty, making
interpretation of estimation intervals straightforward. Lastly,
by taking advantage of a hierarchical CPM, we show that the
method potentially generalizes to previously unseen bacteria,
i.e., predicts the sample CFU for taxa that were not primarily
included in the modeling step. This is a crucial feature in
high-throughput settings as potentially detected taxa are not
known a priori. Also, modeling many taxa directly may be
financially prohibitive.

Overall, our results indicate that the predictive errors for
CFU do not exceed one order of magnitude (on the logo
scale) for observed bacteria. While total microbial load seems
more reliably estimated, for both models the absolute errors
tend to be no greater than two times the true values-in a
reality of logarithmic differences. Whereas one might doubt the
importance of estimating 4*10° CFU compared to a true value
of 2*10° CFU, our models can still be improved by adding more
data points, by considering other predictors related to 16S rRNA
amplification, and by including a more diverse set of taxonomies
in model fitting.

Limitations

This work has several limitations toward immediate real-
world application. A key modeling limitation is that, even
though the hierarchical model has shown relative success at
predicting previously unseen bacteria, it has also shown relatively
poor performance at predicting sample CFU of Bacillus cereus
when this taxon was held out during model fitting. This
suggests that extrapolation in high-throughput settings may
still require modeling more than simply a few taxonomies.
Currently, the main laboratorial limitation is the upper limit
of quantification caused by the PCR amplification step and its
plateau phase. Our method carries the potential to be adapted to
address both modeling and laboratorial challenges, which is left
for future work.
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Another limitation, seemingly inherent to the sample
processing method, is the fact that detected sequences might
not represent viable bacteria. Still, one can always quantify
absolute sample abundance as DNA copies instead of CFU, an
alternative to which our method adapts naturally. Additionally, it
can be the case that the sampling method (e.g., swab collection)
varies widely in area for each sample. In practice, it may be
helpful to standardize sample collection according to the target
object to be analyzed. Although this should be kept in mind
during results interpretation, the impact of such variation is
worthy of further investigation. Potentially, the method could
be extended to any other organism with any primers other than
16S rRNA V3/V4 region, given that the main achievement of
our proposal relies on the equivolumetric library preparation and
the employment of samples with varying amounts of DNA that
do not saturate the PCR. However, specific primers may vary in
terms of amplification efficacy and, hence, in propensity to PCR
saturation. This may alter the range of sample CFU or input DNA
within which the proportionality between reads and absolute
abundance is observed.

Finally, there are practical limitations due to study design,
especially related to taxon-specific abundance estimation. First,
the employed mock community consists of even proportions
of only a few taxa. It is not clear how community complexity
may impact the proportionality between observed reads and
taxa abundance in general. For instance, taxa that dominate a
given sample may disproportionately generate more amplicons,
possibly reaching PCR saturation and even affecting less
abundant taxonomies. Second, sample collection and surface type
may vary according to the application at hand, which cannot be
tested using mock communities alone. Whereas it is possible to
assess the correlation between estimated total microbial load and
the actual microbial load observed in real settings, this is much
more difficult to evaluate when it comes to specific taxa.

Future work may involve paired assessment of total microbial
load using classical microbiology and HTS techniques in
real-world samples, which may render possible to externally
validate total microbial load predictions from previously
developed models.

CONCLUSION

This study has presented an equivolumetric protocol for library
preparation prior to 16S rRNA gene amplicon sequencing as
well as a modeling strategy to predict sample CFU given HTS
observed reads counts. Assuming the same protocol for a set
of samples of similar nature, the proposed procedures were
shown to recover the proportionality between library sizes
and total microbial load-and, more generally, between HTS
reads and absolute bacterial abundances within each sample.
Still, further research is needed to understand whether such
models can generalize to high-throughput settings, in which
data from a small subset of taxa are used to make predictions
on previously unseen bacteria. Future challenges also involve
extending the range of bacterial abundances properly captured by
the method and understanding the impact of sample complexity

on estimation of taxon-specific abundances. It remains clear,
though, that the claims that library size is always an arbitrary
sum, often taken for granted by several previous works, and that
high-throughput sequencing reads can carry only proportion-
based information, are readily overcome by the methods
herein proposed.
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