
fmicb-12-640787 April 8, 2021 Time: 20:3 # 1

REVIEW
published: 13 April 2021

doi: 10.3389/fmicb.2021.640787

Edited by:
Mariano Martinez-Vazquez,

National Autonomous University
of Mexico, Mexico

Reviewed by:
Chris Waters,

Michigan State University,
United States

Cesar de la Fuente-Nunez,
University of Pennsylvania,

United States

*Correspondence:
Robert E. W. Hancock
bob@hancocklab.com

Specialty section:
This article was submitted to

Antimicrobials, Resistance
and Chemotherapy,

a section of the journal
Frontiers in Microbiology

Received: 12 December 2020
Accepted: 23 March 2021

Published: 13 April 2021

Citation:
An AY, Choi K-YG, Baghela AS

and Hancock REW (2021) An
Overview of Biological

and Computational Methods
for Designing Mechanism-Informed

Anti-biofilm Agents.
Front. Microbiol. 12:640787.

doi: 10.3389/fmicb.2021.640787

An Overview of Biological and
Computational Methods for
Designing Mechanism-Informed
Anti-biofilm Agents
Andy Y. An, Ka-Yee Grace Choi, Arjun S. Baghela and Robert E. W. Hancock*

Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada

Bacterial biofilms are complex and highly antibiotic-resistant aggregates of microbes that
form on surfaces in the environment and body including medical devices. They are key
contributors to the growing antibiotic resistance crisis and account for two-thirds of all
infections. Thus, there is a critical need to develop anti-biofilm specific therapeutics. Here
we discuss mechanisms of biofilm formation, current anti-biofilm agents, and strategies
for developing, discovering, and testing new anti-biofilm agents. Biofilm formation
involves many factors and is broadly regulated by the stringent response, quorum
sensing, and c-di-GMP signaling, processes that have been targeted by anti-biofilm
agents. Developing new anti-biofilm agents requires a comprehensive systems-level
understanding of these mechanisms, as well as the discovery of new mechanisms.
This can be accomplished through omics approaches such as transcriptomics,
metabolomics, and proteomics, which can also be integrated to better understand
biofilm biology. Guided by mechanistic understanding, in silico techniques such as virtual
screening and machine learning can discover small molecules that can inhibit key biofilm
regulators. To increase the likelihood that these candidate agents selected from in silico
approaches are efficacious in humans, they must be tested in biologically relevant biofilm
models. We discuss the benefits and drawbacks of in vitro and in vivo biofilm models and
highlight organoids as a new biofilm model. This review offers a comprehensive guide of
current and future biological and computational approaches of anti-biofilm therapeutic
discovery for investigators to utilize to combat the antibiotic resistance crisis.

Keywords: biofilms, antibiotic resistance, anti-biofilm agents, systems biology, virtual screening, machine
learning, biofilm models, organoids

INTRODUCTION

Bacterial biofilms are complex three-dimensional (3D) aggregates of microbes on surfaces
including body surfaces, medical devices, and wounds. The National Institutes of Health estimate
that biofilms are involved in 65-80% of all microbial infections and 80-90% of all chronic infections,
making biofilms a significant healthcare issue (Attinger and Wolcott, 2012; Römling and Balsalobre,
2012; Jamal et al., 2018). Biofilm growth is an adaptive growth state and critically, biofilm
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aggregates are highly (adaptively) antibiotic resistant when
compared to the same bacteria in their free-floating planktonic
form (Verderosa et al., 2019). With the growing antibiotic
crisis fueled by antibiotic overuse and potentially accelerated
by recent events such as COVID-19 (Strathdee et al., 2020),
understanding biofilm formation, combatting antibiotic
resistance, and developing new anti-biofilm agents are key
priorities in health care.

Despite this necessity and priority, there are currently no
approved anti-biofilm agents. Of the 82 registered clinical trials
with known status (recruiting, active, completed, or terminated)
on clinicaltrials.gov involving biofilm treatment or measurement,
25 involve testing a drug for anti-biofilm effects, mainly against
oral biofilms. Most of these studies apply general antiseptics
(e.g., chlorhexidine) or antibiotics (e.g., cefazolin), which are
not biofilm-specific. However, there are currently two ongoing
trials that are assessing anti-biofilm specific agents. The first is
using nitric oxide, a known regulator for biofilms (Barraud et al.,
2006), against chronic rhinosinusitis (Phase 2, NCT04163978).
The other is using TRL1068, a human monoclonal antibody
against the bacterial protein DNABII (which stabilizes DNA in
the extracellular matrix of biofilms) (Xiong et al., 2017), against
prosthetic joint infections (Phase 1, NCT04763759). Despite
years of research, the fact that there are only two anti-biofilm
candidates in the pipeline, and none approved, attests to the
difficulty of creating anti-biofilm agents. This is likely due to a
combination of a lack of priority given to this class of drugs,
inaccurate biofilm models (that show efficacy in vitro and/or
in vivo but not in humans) and an inadequate understanding of
biofilm formation.

To accelerate discovery of novel anti-biofilm agents, we
must leverage newer and more biologically relevant models,
as well as new sequencing and computational technologies to
better understand biofilm formation. Thus, in this review, we
begin by describing current literature on biofilm formation
and resistance, as well as the mechanisms of some existing
anti-biofilm agents. We then describe how to employ a set of
biological and computational methods to develop novel anti-
biofilm agents to be used as a guide for investigators interested
in anti-biofilm agent discovery. Most studies exploring biofilm
mechanisms rely on omics studies, such as transcriptomics
and proteomics, to uncover new genetic and protein targets
for novel anti-biofilm agents to modulate. In silico screening
can be used to screen for molecules from large databases
that bind to and modulate these targets. Another approach is
machine learning, in which algorithms are repetitively employed
to predict the anti-biofilm activity of a molecule. Candidate
molecules identified using machine learning or in silico
screening can then be synthesized and validated in a variety of
biological models, including biofilms grown in microtiter plates,
flow cells, animal models, and human organoids. Successful
candidates can then strengthen knowledge of biofilm formation
mechanisms, further train machine learning algorithms, and
ideally transition to clinical trials for human usage. Integrating
multiple modalities of both lab and computational science can
give investigators a better chance at developing a successful
anti-biofilm agent (Figure 1).

THE CLINICAL RELEVANCE OF
BIOFILMS

Biofilms can colonize biological or nonbiological surfaces,
putting all patients, but especially the immunocompromised,
surgical patients, individuals with major injuries or burns, and
patients with implanted devices, at a high risk of developing
biofilm infections. Critically, biofilms are associated with
many or most chronic infections and are often associated
with chronic inflammation, pain, and tissue damage. Biofilm-
associated disease can affect virtually any organ system, most
notably the cardiovascular (e.g., endocarditis), respiratory (e.g.,
cystic fibrosis), urinary (e.g., urinary tract infections), and oral
(e.g., periodontitis) systems (Vestby et al., 2020). Implanted
medical devices, such as catheters, stents, prosthetic heart
valves, pacemakers, and artificial joints or limbs, are also
common sites of biofilm formation (Bryers, 2008). Furthermore,
planktonic bacteria can detach from the biofilm to spread
throughout the body, causing bacteremia, colonizing other
organ systems, forming thromboemboli, or triggering a septic
episode (Fleming and Rumbaugh, 2018). Bacteria in biofilms
are notoriously difficult to remove from abiotic surfaces such
as door handles, beds, taps, showers, and other high-touch
surfaces in the hospital setting, with such biofilms frequently
containing multiple species of drug-resistant bacteria (Vickery
et al., 2012). Persistence also occurs on biotic surfaces with
chronic wounds. Biofilms colonize 60% of ulcers in diabetic
patients, which can lead to limb amputation (James et al.,
2008), and cause major problems in chronic rhinosinusitis
(Karunasagar et al., 2018). The prevalence and persistence of
biofilms can be attributed to a biofilm’s ability to resist agents that
would normally act against bacteria, including the host immune
response and antibiotic treatment. Generally speaking, antibiotics
have dramatically decreased mortality from infectious diseases.
However, antibiotics have been almost exclusively developed
and evaluated for efficacy against planktonic bacteria and are
relatively ineffective against biofilms. Decades of research have
sought an understanding of the biofilm processes that cause this
resistance, with only moderate insights. Importantly, we need to
understand unique biofilm biology in order to develop new anti-
biofilm agents to specifically target biofilm processes and treat
chronic infections.

Resistance describes a bacterium’s ability to grow despite
antibiotic treatment and is usually measured by the minimum
inhibitory concentration (MIC, the lowest concentration of an
antibiotic that inhibits bacterial growth). Biofilm resistance to
antibiotics reflects the unique growth state of biofilms. First and
foremost, biofilms undergo transcriptional reprogramming to the
state that is intended to resist stress (de la Fuente-Núñez et al.,
2013; Taylor et al., 2014). Since antibiotics are one type of stressor,
it can be anticipated that alterations in the expression of genes in
the resistome (encompassing all potential resistance mechanisms
in any given bacterium) lead to decreased susceptibility, and that
this likely involves multiple genes, as shown for other complex
adaptive growth states such as swarming and surfing motility in
Pseudomonas aeruginosa (Sun et al., 2018; Coleman et al., 2020).
Our own current research is leading us to believe that this is also
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FIGURE 1 | Schematic view of approach for discovering new anti-biofilm agents. Prior knowledge leads to hypothesis generation and exploration of biofilm
formation mechanisms. This can be probed using omics analyses, which can lead to the discovery of new anti-biofilm targets (genes, proteins, metabolites).
Modulators of these targets (e.g., inhibitors of quorum sensing receptors) are screened directly using in vitro or in vivo models. Alternatively, in silico screening can be
performed first on databases of compounds to identify those that bind to and modulate biofilm regulating proteins, which can then be validated with in vitro or in vivo
models. Conversely, databases of known anti-biofilm agents can be used to train a machine learning model. The algorithm can then screen for putative anti-biofilm
agents that are validated with in vitro and in vivo models. Finally, new agents that are discovered to be effective can undergo preclinical studies and then be entered
into clinical trials and ultimately be used for human disease. In addition, these new agents can lead to further understanding of biofilm mechanisms, as well as
providing additional data for optimization of machine learning models. Created with BioRender.com. PK, pharmacokinetics; PD, pharmacodynamics.

true for biofilms and there is considerable evidence supporting
this perspective (Liao et al., 2013). This type of resistance is
termed adaptive resistance or tolerance since it reverts as soon as
the organisms are no longer growing as biofilms. It seems likely
that at least some of the mechanisms involved are similar to those
involved in resistance in planktonic cells (Hall and Mah, 2017)
but exacerbated by the biofilm growth state, although unique
regulatory genes and effectors might be involved. Evaluation of
the resistome in planktonic cells has shown that mutations in
numerous genes can lead to resistance to any given antibiotic
(Breidenstein et al., 2008; Schurek et al., 2008; Gallagher et al.,
2011; Coleman et al., 2020).

Other aspects of the biofilm growth state include increased
cellular proximity, which has been shown to enhance horizontal
gene transfer in biofilms compared to planktonic populations,
resulting in faster acquisition of genetically resistant mutants
in a biofilm (Molin and Tolker-Nielsen, 2003). In addition,
the frequency of mutations appears to be enhanced in
biofilms, perhaps due to increased oxidative stress (Driffield
et al., 2008). Additional resistance of biofilms is conferred
by the extracellular matrix, consisting of species-specific
polysaccharides and proteins as well as extracellular DNA (Ciofu

and Tolker-Nielsen, 2019). As a gel that loosely encapsulates
and holds together the biofilm, the matrix may decrease the
penetrance of certain but not all antibiotics (Singh et al., 2016).
For example, the positively charged antibiotic tobramycin was
sequestered by the matrix in P. aeruginosa biofilms, while the
neutral antibiotic ciprofloxacin was able to penetrate (Tseng et al.,
2013). Finally, nutrient gradients in a biofilm result in hypoxic
regions within the biofilm, leading to less metabolically active
bacteria (Stewart et al., 2016). These dormant bacteria can survive
but not necessarily grow in the presence of antibiotics, a form
of tolerance (Lebeaux et al., 2014). Antibiotics generally target
active cells by inhibiting biosynthetic pathways; therefore, they
are largely ineffective against dormant cells (Ciofu and Tolker-
Nielsen, 2019). Thus, while active bacteria on the surface of
biofilms may be eradicated by antibiotics, dormant persister
cells are able to survive and become active once the antibiotic
regimen is concluded, resulting in chronic infections (Høiby
et al., 2010; Lebeaux et al., 2014). With all these mechanisms
involved, biofilms are up to 1000-fold more resistant to multiple
antibiotics than planktonic bacteria (Ceri et al., 1999).

Since resistance relies on the biofilm growth state, targeting
biofilms, either by inhibiting formation or stimulating the
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dispersal of mature biofilms, is an obvious path to overcoming
resistance of biofilms to antibiotic therapies. Intriguingly, there
are demonstrations that biofilm inhibitors can act synergistically
with conventional antibiotics (de la Fuente-Núñez et al., 2015).
Unfortunately, there is not a single approved treatment for
biofilms presently, so this is an area that deserves attention.
Critically, the first step to developing these therapies is
understanding the mechanisms of biofilm formation.

BIOFILM FORMATION MECHANISMS
AND EXISTING THERAPIES THAT
TARGET THEM

Biofilms start as individual planktonic bacteria that can reversibly
attach to surfaces. This can then lead to changes in gene
expression that trigger irreversible binding, in part driven by
the expression of particular adhesins. Concurrently, bacteria
begin to secrete matrix components and the biofilm matures
into a multilayer structure (Armbruster and Parsek, 2018). This
complex process is regulated by multiple processes that have
been extensively reviewed previously (Rabin et al., 2015; Tolker-
Nielsen, 2015; Roy et al., 2018). Here we will highlight three
major regulatory networks that appear to be somewhat conserved
and are attractive targets for novel anti-biofilm agents, namely
the stringent response, quorum sensing, and cyclic di-guanosine
monophosphate (c-di-GMP) signaling.

The Stringent Response
All bacteria produce the nucleotide second-
messengers/alarmones guanosine tetraphosphate and
pentaphosphate [collectively (p)ppGpp] as part of the stringent
stress response. Synthesis of these molecules is induced when a
bacterial population is undergoing diverse nutritional stresses
including limitations of carbon sources, amino acids, fatty acids,
iron, and phosphate, but it is also clear that these molecules
have important functions under normal growth conditions
(Pletzer et al., 2020). Diverse enzymes mediate (p)ppGpp
metabolism including ribosome-associated RelA synthase and
SpoT in Gram negative bacteria and the bi-functional enzyme
Rsh in Gram positives. The accumulation of (p)ppGpp results
in a reprogramming of bacterial cells to adapt to nutrient
deprivation, including decreasing macromolecular synthesis
while upregulating stress accommodating pathways (Ross et al.,
2016; Pletzer et al., 2020). The stringent response regulates
biofilm formation in multiple Gram positive and Gram negative
species (Balzer and McLean, 2002; He et al., 2012; de la Fuente-
Núñez et al., 2014; Azriel et al., 2016; Liu et al., 2017). Mutants
with deletions in (p)ppGpp synthases in P. aeruginosa, S. aureus,
E. coli, Salmonella, Listeria monocytogenes, and Enterococcus
faecalis, were either unable to form biofilms or formed poorly
structured biofilms (Taylor et al., 2002; Chávez de Paz et al., 2012;
de la Fuente-Núñez et al., 2014).

Due to its ubiquity in bacterial species and necessity
for successful biofilm formation, (p)ppGpp is an excellent
target for anti-biofilm therapies. Specific cationic amphipathic
peptides, related to antimicrobial and host defense peptides,

have preferential broad spectrum anti-biofilm activity which
is mediated by binding directly to (p)ppGpp, marking it for
degradation (de la Fuente-Núñez et al., 2014, 2015). While this
class of peptides can have a variety of functions, including
host immune system modulation, anti-inflammatory activity,
wound healing, and direct antibacterial activity vs. planktonic
bacteria (Haney et al., 2015), specific anti-biofilm activity was first
observed with sub-inhibitory concentrations of LL-37 (Overhage
et al., 2008) and subsequently with synthetic peptides such
as IDR-1018 and the D-enantiomeric peptide DJK-5 (de la
Fuente-Núñez et al., 2014, 2015). Excitingly, these peptides
exhibit very broad spectrum activity against biofilms formed
from all of the major antibiotic resistant pathogens in our
society (collectively called the ESKAPE pathogens) (de la Fuente-
Núñez et al., 2014, 2015; Pletzer et al., 2018), work against
preformed biofilms and multispecies biofilms such as oral
biofilms (Zhang et al., 2016; Wang et al., 2017), demonstrate
synergy with conventional antibiotics in vitro (de la Fuente-
Núñez et al., 2015) and in vivo (Pletzer et al., 2018), and work
in several animal models. These peptides act in part against
the stringent stress response and, in a murine abscess model,
they also inhibit the transcription of (p)ppGpp-metabolizing
enzyme SpoT, while it was proposed that there might be
other or additional mechanisms explaining their action against
biofilms (Pletzer et al., 2017; Salzer et al., 2020). Design features
that discriminate such anti-biofilm peptides are different from
those mediating activity against planktonic cells (de la Fuente-
Núñez et al., 2014; Haney et al., 2018a). Thus, antibiofilm
peptides are an attractive class of molecules that can be further
optimized through rational design (see below) or synthesis of
peptidomimetics (Gomes Von Borowski et al., 2018).

Instead of directly targeting (p)ppGpp, another method of
stringent response modulation is through inhibition of (p)ppGpp
synthetases, which is still a relatively unexplored field. The
majority of known inhibitors are (p)ppGpp analogs such as
Relacin (Wexselblatt et al., 2012) although these analogs have
multiple off-target effects and low binding affinities (Wexselblatt
et al., 2013). Given the recent characterization of synthetase
structures, such as from E. coli (RelA) and S. aureus (RelP, RelQ),
it will now be possible to use in silico screening methods to
identify new inhibitors (Hall et al., 2020).

Quorum Sensing
Quorum sensing (QS) refers to the ability of bacteria within a
population, such as a biofilm, to regulate gene expression based
on cell density. QS is facilitated through small signaling molecules
generated by bacteria that self-regulate their own expression
through a positive feedback loop and are thus termed auto-
inducers (Fetzner, 2015). Gram positive bacteria most commonly
use auto-inducing cyclic peptides as auto-inducers, while Gram
negative bacteria primarily use N-acyl homo-serine lactones
(AHLs), quinolones, and fatty acids (Heeb et al., 2011; Schuster
et al., 2013; Monnet et al., 2016; Zhou et al., 2017). Both Gram
positive and negative bacteria can also use a furanosyl borate
diester called autoinducer-2, suggesting the possibility of cross-
talk between different species of bacteria in a community (De
Keersmaecker et al., 2006). Auto-inducers are produced and at
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a sufficient extracellular concentration are taken up and bind
to their cognate receptors/transcription factors to exert their
functions, including upregulating genes for virulence factors,
antibiotic resistance, and biofilm formation (Liang et al., 2014).

Interfering with QS does not prevent biofilm formation but
can have strong effects. For example, a P. aeruginosa mutant
with a lasI deletion (which cannot produce the AHL 3-oxo-C12-
HSL) has slower biofilm formation and flatter biofilms (Shih
and Huang, 2002), while addition of 3-oxo-C12-HSL to this
mutant allowed formation of biofilms structurally similar to wild
type (Davies et al., 1998). Similarly, mutations in QS genes in
Burkholderia cepacia and Aeromonas hydrophila also resulted in
impaired biofilm formation (Huber et al., 2001; Lynch et al.,
2002). QS interference can also result in biofilms that are more
susceptible to antibiotic treatment and host immune responses.
P. aeruginosa biofilms that were treated with QS inhibitors C-
30 and C-56 furanones had increased sensitivity to tobramycin,
while lasI mutants were more susceptible to kanamycin (Hentzer
et al., 2002; Shih and Huang, 2002). P. aeruginosa with deletions
in the Las and Rhl QS systems (lasR, rhlA, and rhlR) formed
biofilms that were cleared more efficiently by polymorphonuclear
cells compared to wild-type (Bjarnsholt et al., 2005; Gennip
et al., 2009). Thus, therapies that inhibit QS (termed “quorum
quenchers”) represent a potential therapy targeting biofilms.

Quorum quenching can be divided into four mechanisms:
(i) inhibiting auto-inducers from binding to their receptors,
such as using halogenated furanones (Hentzer et al., 2002;
Hentzer, 2003); (ii) decreasing production of auto-inducers by
targeting their synthases, such as MvfR in P. aeruginosa (Starkey
et al., 2014; Maura and Rahme, 2017); (iii) sequestering auto-
inducers using cyclodextrans or antibodies (Park et al., 2007;
Morohoshi et al., 2013); and (iv) degradation of auto-inducers
using enzymes such as lactonases (Rémy et al., 2018). Most
quorum quenchers that inhibit auto-inducer binding are derived
from natural products (Rémy et al., 2018). However, QS systems
are different across species, and generating broad-spectrum
quorum quenchers might not be possible, and even different
species sharing the same QS system may behave differently to a
particular quorum quencher (Galloway et al., 2011). In the future,
quorum quenchers might be used with conventional antibiotics
since some quorum quenchers make biofilms more sensitive to
conventional antibiotic use. However, while promising in vitro
data is widely available, no quorum quenchers have been
successfully tested in clinical trials for biofilm treatment (Hansen
et al., 2005). It is also important to realize that quorum quenchers
should be used only for specific species, since in some bacteria,
such as Vibrio cholerae, QS actually represses biofilm formation to
promote dispersal under high-density conditions. Thus, using a
quorum quencher in this case could result in further aggregation
of biofilms (Waters et al., 2014).

c-di-GMP Signaling
Signaling through c-di-GMP, a second-messenger molecule,
is a significant player in controlling the transition from a
motile to sessile (biofilm) lifestyle (Jenal et al., 2017). In most
cases, high levels of c-di-GMP bind to downstream effectors
such as transcriptional regulators, mRNA riboswitches, and

protein adaptors to, among others, reduce the expression of
motility (e.g., flagellar) genes and increase the expression of
genes required for biofilm formation (Jenal et al., 2017). For
example, in P. aeruginosa, higher c-di-GMP results in the
increased expression of matrix components including adhesins
(CdrA) and polysaccharides (Pel, Psl) (Borlee et al., 2010; Ha
and O’Toole, 2015). The levels of c-di-GMP are controlled
by multiple synthetic diguanylate cyclases and degradative
phosphodiesterases, and both enzymes are heavily regulated
by environmental cues, such as pathways regulated through
QS (Srivastava and Waters, 2012). Thus, inhibiting diguanylate
cyclases or activating phosphodiesterases to reduce the level of
c-di-GMP may be another method of countering biofilms.

The fact that bacteria often have more than a dozen
diguanylate cyclases and phosphodiesterases, which vary
substantially between organisms, makes the possibility of drug
development somewhat intimidating. However, various classes
of diguanylate cyclases inhibitors have been developed. These
include GTP or c-di-GMP analogs, which inhibit diguanylate
cyclases in the active site and an allosteric site, respectively (Cho
et al., 2020). Small molecule inhibitors of diguanylate cyclases
have also been discovered using high-throughput in vitro and
in silico screening (Cho et al., 2020), although activities tend
to be modest. Stimulating activity of phosphodiesterases has
been accomplished using nitric oxide donors such as sodium
nitroprusside, leading to dispersal of P. aeruginosa biofilms
(Barraud et al., 2006). Much like QS and the stringent response,
the availability of structures of the specific proteins involved in
regulating c-di-GMP pathways provides the necessary data to
perform virtual screening for new inhibitors, as discussed below.
A new avenue that works on a common property of bacteria is
c-di-GMP sequestration using rationally designed peptides that
mimic the structure of an effector protein to which c-di-GMP
binds; such peptides have been shown to inhibit P. aeruginosa
biofilm formation (Hee et al., 2020).

BIOINFORMATIC APPROACHES TO
UNDERSTAND MECHANISM FOR NOVEL
ANTI-BIOFILM AGENTS

A large proportion of current anti-biofilm agents have been
developed by specifically targeting a process understood to
regulate biofilm formation. Therefore, to develop new anti-
biofilm agents, better understanding of biofilm formation
is required to find new targets. Conversely, there are also
existing anti-biofilm agents for which the precise mechanism
of action is still unclear, and therefore understanding how
these agents act on biofilms can provide new avenues and/or
targets for modulation by new agents. Omics approaches such
as transcriptomics, genomics, proteomics, and metabolomics
are key to uncovering target genes, pathways, and processes
required for biofilm formation. In general, each approach
looks for differential abundance of biological molecules (nucleic
acid, proteins, metabolites) between conditions. By comparing
molecular changes between different conditions (e.g., bacteria
in biofilms vs. planktonic growth, mutant vs. wild-type strains,
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FIGURE 2 | Variety of omics approaches for elucidating biofilm mechanisms. Two or more conditions (e.g., planktonic vs. biofilm growth, presence or absence of an
anti-biofilm agent, different biofilm substrates) are compared in terms of abundance of most biological molecules in the cell; with different methods being used to
assess RNAs, transposon-insertions, proteins, and metabolites. Using systems or network biology, data from different modalities can be integrated to perform
functional enrichment of genes and pathways required for biofilm formation to generate a holistic mechanistic view of biofilm formation. Tn-Seq, transposon insertion
sequencing; Spec, spectroscopy; NMR, nuclear magnetic resonance.

± an anti-biofilm agent), one can hypothesize that the observed
changes reflect the condition or treatment (Figure 2) and
potentially reveal details about mechanisms and potential causes
of resistance. These omics approaches yield a vast amount
of data and thus a systems biology approach is needed for
analysis. A common technique to group genes together is
through pathway enrichment, using databases such as Kyoto
Encyclopedia of Genes and Genomes (KEGG) or MetaCyc, and
functional enrichment using gene ontology (GO) terms, in order
to determine which pathways and functions are dysregulated and
therefore potential targets for modulation (Kanehisa and Goto,
2000; Karp et al., 2002; Gene Ontology and Consortium, 2015).

Transcriptomics
RNA-Seq is a high-throughput technology employed to measure
gene regulation and expression. Numerous studies have appeared
in the literature using RNA-Seq (or its precursor microarray
technology) to identify differentially expressed genes between
planktonic and biofilm lifestyles for a variety of bacterial
species including P. aeruginosa (Dötsch et al., 2012), Klebsiella
pneumoniae (Guilhen et al., 2016), Campylobacter jejuni (Tram
et al., 2020), Bacillus licheniformis (Sadiq et al., 2019), revealing
that biofilm formation leads to hundreds of dysregulated genes
(Amador et al., 2018). For example, RNA-Seq allowed for the
identification of transcriptomic signatures specific to planktonic,
biofilm, and biofilm-dispersed K. pneumoniae cells, highlighting
underlying mechanisms involved in each bacterial lifestyle
(Guilhen et al., 2016). RNA-Seq can also be used to study the
effect of antibiotics and potential anti-biofilm agents on biofilm

formation (Tan et al., 2015; Liu et al., 2018). Recently, Wu
et al. (2020) probed the anti-biofilm effects of exopolysaccharide
EPS273 on P. aeruginosa using RNA-Seq and found that
EPS273 might mediate its effects by downregulating expression
of genes in the PhoP-PhoQ two-component system and QS
systems LasI/LasR and RhII/RhIR, which are involved in biofilm
formation. These studies elucidated new pathways that can be
targeted by novel therapies. As RNA-Seq costs decrease, technical
methods improve, and better in vitro and in vivo models are
developed for biofilm analysis, it is also now possible to perform
dual RNA-Seq of both the host and pathogen to interrogate host-
pathogen interactions (Westermann et al., 2017). To illustrate
the potential applications of RNA-Seq for biofilm studies, we
highlight two recent studies on complex adaptive lifestyles from
our lab that employed RNA-Seq technologies.

Coleman et al. (2020) aimed to identify dysregulated genes
that allowed P. aeruginosa to resist tobramycin while in the
swarming state. Swarming motility is a coordinated surface-
associated movement that occurs under conditions that mimic
the surface of the human lung and has been proposed to
allow for rapid colonization leading to biofilm formation in
the cystic fibrosis lung. This adaptive growth state, like biofilm
formation, leads to resistance to multiple antibiotics. RNA-Seq
identified 29% (1581) of genes that were differentially expressed
(DE) in swarming compared to swimming motility (behavior of
bacteria in aqueous environments). From these, 26 DE genes
were identified that were proven to be involved in swarming
mediated resistance to tobramycin, demonstrating that adaptive
resistance was multigenic. For example, genes in the wbp operon
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involved in lipopolysaccharide synthesis were downregulated,
indicating a new role in lipopolysaccharide alteration for
adaptive tobramycin resistance. Thus, this approach highlights
the mechanistic changes that occur to promote tobramycin
resistance in swarming P. aeruginosa. A further 224 genes
were DE between tobramycin-treated and untreated swarming
P. aeruginosa and many downregulated genes were identified
using GO as virulence factors and QS regulators, indicating
while tobramycin might not kill swarming P. aeruginosa, it may
still have clinical benefits in dampening virulence. A notable
upregulated gene in swarming cells treated with tobramycin was
mexXY, an efflux pump for aminoglycoside resistance indicating
that tobramycin treatment further exacerbated resistance.
A similar study evaluated the influence of ampicillin on
S. aureus biofilms (Liu et al., 2018), revealing 530 DE genes
including upregulation of several resistance pathways and
genes encoding adhesion-promoting surface proteins in biofilms
formed with vs. without sub-inhibitory ampicillin. The results
collectively clarified important mechanisms by which biofilms
resist ampicillin and how sub-inhibitory ampicillin enhances
biofilm viability and biomass.

Alford et al. (2020) investigated the role of the nitrogen
regulator NtrBC in biofilm formation and chronic infections.
NtrBC was found to be not only required for swarming
and biofilm formation, but also for dissemination to distal
organs from a localized subcutaneous abscess in mice. RNA-Seq
performed on ntrB and ntrC deletion mutants showed 790 and
1184 dysregulated genes, respectively, compared to wild-type in
swarming conditions, with many involved in nitrogen and carbon
metabolism as annotated by the KEGG database. In addition,
there was downregulation of genes required for virulence in
rat models of Pseudomonas lung infection, which matched the
in vivo data of decreased dissemination. Thus, these results were
consistent with the suggestion that NtrBC may be a new target for
anti-biofilm therapies.

Transposon Insertion Sequencing
While most studies rely on mutants with deletions in specific
genes to probe their functions in biofilm formation, transposon
insertion sequencing (Tn-Seq) offers a high-throughput
approach to identify multiple genes required to survive in
a specific condition such as in a biofilm (Cain et al., 2020).
Tn-Seq begins by creating a library of mutants with each cell
carrying a promiscuous transposon inserted randomly into the
genome, and in a library of such mutants, the function of each
gene is disrupted in multiple mutants. These mutants can be
grown and analyzed individually to elucidate the effect of the
mutation on biofilm formation (Ueda and Wood, 2009) but
a more efficient approach is to pool these mutants together
and grow them collectively to determine which survive in
different environments. Direct sequencing is performed on
transposon-flanking regions to detect all genes with transposon
insertions that exist in the population growing in a specific
condition compared to a standard growth control. Mutants with
a transposon disrupting a gene that is required for fitness in
this condition will not grow well and therefore have decreased
representation in the sequencing results. For example, if the

mutant pool is sequenced from cells grown under planktonic
and biofilm conditions, and a transposon-inserted gene is only
detected in the planktonic condition, then that gene is required
for biofilm formation (Cain et al., 2020). Genes identified to be
required for biofilm formation can then be validated by growing
the individual mutants. However, one limitation to pooling
mutants for Tn-Seq is that genes encoding extracellular enzymes,
proteins, matrix components, or autoinducers that are essential
for biofilm formation may not be detected, since mutants of
those genes can be cross-complemented by the extracellular
components synthesized by non-mutants in the population. This
method has incorporated new technologies in the last few years,
such as sorting individual mutant cells using microfluidics and
using inducible promoters to probe the function of essential
genes (which cannot be analyzed using traditional Tn-Seq
methods as disruption of essential genes results in non-viable
mutants) as outlined in a recent review (Cain et al., 2020).

Poulsen et al. (2019) used Tn-Seq to identify 321 core
essential genes shared across nine strains of P. aeruginosa isolated
from human infections and the environment, as well as five
different media replicating human sputum, serum, and urine, and
conventional LB and M9 media. Considering that regulators of
biofilm formation depend on both the stage of biofilm growth and
the experimental setting, a similar approach could be performed
on different biofilm stages ranging from initial adherence to
dispersal, or different in vitro and in vivo biofilm models to
identify “core essential genes” for biofilm formation shared across
all settings. The pathways and proteins identified would be
attractive targets for novel anti-biofilm agents. In another study,
Morgan et al. (2019) found that interfering with biofilm genes in
P. aeruginosa by deleting lasR (QS) or increasing c-di-GMP levels
through deletion of the negative regulator wspF led, respectively,
to decreased and increased biofilm formation, but surprisingly
did not affect fitness in a murine chronic wound high-density
infection model. Using Tn-Seq, they found 28 mutants that were
absent in the chronic wound, with transposons in genes involved
in anaerobic growth and metabolic functions, indicating their
possible role in wound fitness. Fitness defects were later validated
by growing transposon mutants individually. Thus, the ability
to combat stressors in high-density populations is critical for
maintaining a chronic infection, and forming biofilms does not
appear to be the only way that bacteria can survive in chronic
wounds, which has implications on how to approach developing
therapies for chronic wounds.

Tn-Seq was also used to investigate the formation of persister
cells that make biofilms difficult to eradicate. Cameron et al.
(2018) generated 4,411 transposon mutants of P. aeruginosa and
found 137 genes were needed for survival after fluoroquinolone
treatment using Tn-Seq. They focused on carB, a subunit of
the carbamoyl phosphate synthetase for pyrimidine and arginine
synthesis, which was found to have the lowest survival rate
when disrupted. The carB transposon mutant had increased
intracellular ATP accumulation, and treatment with arsenate to
reduce ATP levels restored antibiotic resistance in this strain.
Thus, an agent that inhibits this synthetase, interferes with
pyrimidine synthesis, or increases ATP levels would represent a
novel method to prevent the formation of persister cells.
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Proteomics
Proteomics can provide additional information on actual
protein expression (which is not always coordinated with
transcription due to post-transcriptional regulatory/modification
mechanisms). While traditionally identified by gel
electrophoresis, limitations in detection and quantification have
led to the increasing popularity of liquid chromatography/mass
spectrometry (LC-MS) methods that can analyze >80% of
the proteome (Khemiri et al., 2016). Proteomics can also be
done on “sub-proteomes” through specific extraction protocols
that analyze proteins in the extracellular matrix (Gallaher
et al., 2006), cell wall (Calvo et al., 2005), and bacterial surface
(Solis et al., 2014), providing a level of functional detail that
is not captured through genetic analyses. For example, to
characterize the surface proteins expressed by S. aureus, cell
shaving proteomics was performed by using proteases to
selectively cleave surface exposed peptide epitopes, which were
separated using LC-MS and matched to the original protein
for identification (Solis et al., 2014). Characterizing matrix
proteins can be accomplished by centrifugation and filtration of
biofilms to eliminate cells from the biofilm matrix, followed by
proteomic analysis (Couto et al., 2015). Furthermore, identifying
temporal production of proteins can be accomplished through
bio-orthogonal non-canonical amino acid tagging (BONCAT),
in which azidohomoalanine (a methionine analog) is added to
cultures and incorporated into newly formed proteins. Proteins
containing azidohomoalanine can then be enriched for and
characterized by LC-MS (Rothenberg et al., 2018). BONCAT
has also recently been performed to identify metabolically active
bacteria in cystic fibrosis microbiota (Valentini et al., 2020).

A recent study by Suryaletha et al. (2019) leveraged
proteomics to identify proteins only expressed in biofilms when
compared to planktonic growth of Enterococcus faecalis. GO
and KEGG functional enrichment found enhanced production
of proteins involved in glycolysis, the LuxS QS system,
rhamnopolysaccharide synthesis, and arginine metabolism in
biofilm growth, all of which would represent biofilm-selective
targets for Enterococcus (Suryaletha et al., 2019). Similar
studies were done comparing Haemophilus influenzae and
Mycobacterium tuberculosis biofilm and planktonic forms to
identify anti-biofilm protein targets (Gallaher et al., 2006; Wang
et al., 2019). Erdmann et al. (2019) also aimed to uncover a “core
proteome,” much like a core essential genome discussed in the
above section, through proteomics analyses of 27 clinical isolates
of P. aeruginosa grown as biofilms or planktonic suspensions.
Interestingly, proteomes from these clinical isolates were similar
to each other during planktonic growth, but much more
divergent in biofilms despite being grown under the same biofilm
conditions. While no protein was selectively dysregulated in the
biofilms of all isolates, 141 proteins were differentially expressed
in at least 50% of the isolates. Functional enrichment showed
increased expression of proteins involved in iron metabolism,
fatty acid biosynthesis, and outer membrane protein synthesis,
and decreased expression of proteins involved in translation,
consistent with in vivo proteomic data of P. aeruginosa in
cystic fibrosis patients (Wu et al., 2019). The proteome diversity
across these isolates does not favor a “universal” P. aeruginosa

biofilm-specific protein, although this might have reflected
limited resolution, and argues that an anti-biofilm agent would
likely need to target multiple effector proteins in order to have an
effect on multiple P. aeruginosa isolates.

Finally, meta-proteomics provides a fascinating new area
of proteomic research to uncover proteins required for
multi-species populations. Most recently, this has been done
on a community of four soil bacteria (Stenotrophomonas
rhizophila, Xanthomonas retroflexus, Microbacterium oxydans,
and Paenibacillus amylolyticus) that exhibited enhanced biofilm
formation when co-cultivated compared to single species. Meta-
proteomics identified the abundance of proteins for each species
in key metabolic and energy pathways, such as amino acid
metabolism and fermentation, that did not occur in single species
communities, implicating both competitive and cooperative
mechanisms of survival (Herschend et al., 2017). This technology
may soon be applied to other multispecies biofilms, such as those
found in healthcare or dental settings.

Metabolomics
Metabolomics analyzes differential production of small molecule
metabolites and metabolism intermediates (e.g., carbohydrates,
nucleotides, and amino acids). Bacterial populations are
lysed, and the contents undergo either liquid, gas, or ion
chromatography to separate the various metabolites by size or
charge. This is followed by mass or nuclear magnetic resonance
spectrometry of each of the separated fraction to identify
metabolites. Metabolomics offers a snapshot of the functional
changes that result from the transcriptomic and proteomic
changes measured by the above methods. Furthermore, the
analysis of metabolites that are consumed and secreted can
be used to predict biofilm activity (Beale et al., 2013). Several
metabolomic studies comparing planktonic and biofilm-
associated bacteria have been undertaken (Yeom et al., 2013;
Hasan et al., 2015; Wong et al., 2015; Harrison et al., 2019).
For example, in S. aureus, arginine metabolites were found to
be downregulated in biofilms when compared to planktonic
samples, suggesting their consumption in the urea pathway
(which uses arginine and arginine metabolites) to maintain pH
balance in the biofilm environment (Stipetic et al., 2016). This
is consistent with transcriptomic data showing upregulation
of urea cycle proteins in biofilms (Resch et al., 2005). Thus,
targeting the urea cycle might be a novel way of interfering with
S. aureus biofilm formation.

Omics Integration
Each of these omics analyses on their own can analyze complex
systems as a whole and provide a more comprehensive profile
of the complex adaptive biofilm growth state when compared
to a single-target reductionist approach. However, integration
of these omics data can uncover new connections that might
otherwise remain undetected through individual omics. In
addition, the detection of dysregulation of a molecule, protein,
or pathway by more than one omics method reinforces the
observation that it is a key regulator or target for modulation.
A variety of different integration methods are currently available,
primarily for human studies (Lee et al., 2019; Misra et al., 2019),
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although similar approaches have been recently considered for
lactic acid bacteria (O’Donnell et al., 2020).

One approach is simply to create a protein-protein interaction
network by inputting lists of DE genes and proteins, such as
through the web-based platform NetworkAnalyst, which can
annotate data from bacterial species such as P. aeruginosa and
E. coli (Xia et al., 2015). Metabolomic data can be linked to
this network through protein-metabolite interactors identified
by MetaBridge (Hinshaw et al., 2018). Functional enrichment
of these combined networks can highlight biologically relevant
pathways derived from the combination of these omics analyses.

More complex integrative approaches are available such as
through the R package mixOmic (Rohart et al., 2017). One
of the issues with multi-omics data is the high dimensionality
of each data source, since there can be thousands of genes
and proteins in each omics data set. mixOmics can perform
dimensional reduction by combining related factors in each
dataset and highlighting the factors that provide the largest
source of variation, creating a single factor matrix from multiple
data matrices that can then be used for functional enrichment
(Rohart et al., 2017).

With single-cell omics employed more frequently in other
fields, single-cell technologies may be a potential future direction
to analyze the heterogeneity of biofilms (Ma et al., 2019). For
example, bulk RNA-Seq employed in most studies measures
only the average gene expression; single-cell RNA-Seq for
biofilms would measure gene expression of each cell, capturing
the heterogeneity and pseudo-differentiation of biofilm cells.
Regardless of the analysis method, whether it is single-omics
or multi-omics, the data generated by these approaches have
deepened understanding of biofilm formation and identified
novel targets for modulating biofilm growth. The next logical
step is to identify novel therapeutics that can act on these targets,
which can be accomplished using in silico screens and models.

IN SILICO SCREENS AND MODELS FOR
IDENTIFYING NOVEL ANTI-BIOFILM
AGENTS

The above omics experiments indicate that several hundred
proteins are apparently required for biofilm formation, each
representing attractive candidates to modulate or inhibit using
small molecules. While screening these compounds has been
traditionally performed experimentally, computational (in silico)
approaches represent an intriguing and potentially time-saving
tool for designing and screening anti-biofilm agents. The appeal
of deriving and screening agents computationally is multifold,
including the ability to learn specific molecular properties
associated with biofilm eradication and improved decision
making in selecting candidate agents for validation (Vamathevan
et al., 2019). Furthermore, in silico approaches are facilitated
by increasing processing speeds and most importantly, large
databases of putative molecules and their specific properties.
In silico approaches that have been proposed include molecular
docking screens, quantitative structure-activity relationship
(QSAR) based modeling, and machine learning.

Virtual molecular docking screens rely on estimating the
interaction between the 3D structures of targetable bacterial
receptors and known ligands or small molecules. This approach
was recently given a huge boost with major enhancements in
the ability to computationally predict protein structures based
on the primary sequence with amazing accuracy (Service, 2020).
Interactions between specific receptor-target pairs are empirically
scored by estimated hydrogen bonding, and electrostatic
and hydrophobic interactions, with high scoring candidates
representing novel targets (Schneider and Fechner, 2005; Dos
Santos et al., 2018; Guedes et al., 2018). Of more recent interest
are machine learning and QSAR methods, a suite of techniques
enabling efficient screening and selection of agents in specific
contexts, such as peptides targeting E. coli biofilms. These
modeling frameworks have been reviewed previously (Tamay-
Cach et al., 2016; Cardoso et al., 2019), largely by describing their
general use in discovering antimicrobials. Furthermore, these
two methods may be complementary, since virtual screens may
generate compounds that can then be used to train machine
learning models. In this section, we discuss virtual screening
methods and machine learning methods for deriving candidate
anti-biofilm agents and provide several examples of how they
have been implemented.

Virtual Screening
Virtual molecular docking screens permit thousands of
compounds in databases to be screened for binding against
(and potentially modulating) protein targets identified by
omics studies. The starting point is knowledge of the actual
(crystallization or NMR derived) or predicted structure, and
especially the active sites of the protein in question. Docking
algorithms employ algorithms to iterate through possible
binding conformations, which are typically optimized to
maximize molecular interactions and minimize binding energy
to a target protein. Several molecular docking tools have been
published and also exist on web applications allowing easier
accessibility for researchers, including HADDOCK, UCSF
DOCK, and MTiOpenScreen (Allen et al., 2015; Labbé et al.,
2015; van Zundert et al., 2016).

In the context of anti-biofilm agents, there are several
recent studies that have described the use of molecular
docking to screen molecules targeting QS proteins, diguanylate
cyclases, (p)ppGpp synthetases, and other regulatory proteins
(Fernicola et al., 2016; Kalia et al., 2017; Tiwari et al., 2018;
Alves-Barroco et al., 2019; Ding et al., 2019; Mellini et al.,
2019; Hall et al., 2020). More recently, Mellini et al. (2019)
screened >1000 FDA-approved drugs for binding to PqsR, a
previously crystallized protein involved in QS in P. aeruginosa.
Exclusively screening FDA-approved drugs, an approach known
as “drug repurposing,” expedites clinical translation since the
drugs’ attributes in humans including toxicities are known.
The authors identified five drugs that bind to PqsR with high
affinity, and then validated these using in vitro biofilm and
swarming motility assays. Similarly, Alves-Barroco et al. (2019)
used the ZINC database to screen molecules against biofilm-
regulatory protein BrpA from the bovine mastitis pathogen
Streptococcus dysgalactiae subsp. dysgalactiae, employing the
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Auto Dock Vina docking tool (Trott and Olson, 2010; Alves-
Barroco et al., 2019). Because the crystallized structure of
BrpA was unavailable, a BrpA homolog was submitted to
Protein BLAST to identify structural templates. Nevertheless,
the resultant molecules included ones with effective, albeit
somewhat weak, anti-biofilm activity, providing a template for
optimization. As more bacterial proteins are crystallized and
solved, protein structural prediction algorithms become more
accurate, databases of active anti-biofilm agents grow, and
accessibility of docking software improves, the potential of virtual
screening can increase dramatically and may soon become a
standard technique employed after discovering a new protein
target to uncover novel modulators of specific targets.

Machine Learning
While virtual docking screens rely on accurate 3D structures to
predict activity, machine learning is a more flexible approach
that focuses on the properties of the molecule itself rather
than the target to infer anti-biofilm activity. Machine learning
is a set of efficient and powerful statistical methods used to
make predictions in various contexts, including the prediction
of novel antimicrobial agents specifically targeted to biofilm
infections. Generally, an algorithm is trained using large relevant
datasets (training sets) in order to learn a relationship between
the features describing the data and the prediction task at
hand. In the context of small molecule anti-biofilm agents,
these features (also termed molecular descriptors) include steric
size, lipophilicity, and 3D structure, but there are hundreds of
physical-chemical parameters that can be utilized (Figure 3).
The goal of a good machine learning model is generalizability
to unseen examples; thus, the accuracy of predictions is typically
assessed on examples not used for training (a validation set).
Several algorithms have been developed to extract complex linear
and non-linear relationships and formulate them into predictive
models, including Logistic Regression, Random Forest, Support
Vector Machines (SVMs), and Neural Networks (Noble, 2006;
LeCun et al., 2015).

In order to implement any machine learning technique to
identify novel anti-biofilm agents, the prediction task must be
established. The prediction task is often as simple as classifying
an agent as “anti-biofilm” and “non-anti-biofilm,” representing
positive and negative training examples, respectively. Therefore,
a set of agents, including small molecules, peptides, or existing
antibiotic backbone structures, must be gathered and associated
with a particular activity. Several databases comprising small
molecules and peptides exist for these purposes, including
SwissProt, PubChem, the Antimicrobial Peptide Database
(APD), the Biofilm-active AMPs database (BaAMPS), aBiofilm,
and the Data Repository of Antimicrobial Peptides (DRAMP)
(Di Luca et al., 2015; Wang et al., 2016; Rajput et al., 2018;
Kang et al., 2019; Kim S. et al., 2019; UniProt Consortium,
2019). BaAMPS was created to provide researchers a source
of peptides to train machine learning models with antibiofilm
activity (Di Luca et al., 2015). Gupta et al. (2016) used the
BaAMPS database to select 178 anti-biofilm peptides for training
an SVM model, whereas the non-anti-biofilm set was composed
of randomly generated peptides from all SwissProt database

sequences. Similarly, Sharma et al. (2016) used the BaAMPS
database to select 80 anti-biofilm peptides to train an SVM
model, while their non-anti-biofilm set included only QS peptides
with no anti-biofilm/antimicrobial effects. However, while the
model accurately predicted known anti-biofilm peptides, its
ability to predict unknowns was not verified. Moreover, it is
important to note that such validations assume a reproducible
standardized assay for evaluation, with in vitro MIC compared to
biofilm inhibitory concentration (BIC), and/or minimal biofilm
inhibitory concentrations (MBIC) (Haney et al., 2018b). This
has implications when implementing and comparing various
machine learning models across studies, since the exact definition
of anti-biofilm may differ.

Beyond the specific assays or mechanisms used to define
anti-biofilm activity, an agent’s molecular type (peptide, small
molecule, lipid, etc.) and the specific bacterial species are also
components of the prediction task. Whereas most machine
learning pipelines used to predict anti-biofilm activity have
been peptide based, smaller natural and synthetically derived
molecules can also be modeled using machine learning. For
example, machine learning models that predicted the anti-biofilm
activity of naturally occurring essential oils were successfully
implemented (Artini et al., 2018; Patsilinakos et al., 2019).
Interestingly, Patsilinakos et al. (2019) assayed essential oils for
two strains of S. aureus and two strains of S. epidermidis and
used the results to train separate models for each strain. The anti-
biofilm activity of each essential oil varied greatly for each strain,
highlighting the value in training strain-specific machine learning
models (Patsilinakos et al., 2019). Accordingly, the context
in which machine learning models are trained can become
quite specific, which must be considered when establishing the
predictive scope and applicability of a machine learning model,
and the need for drugs with broader spectra of activity.

To train a machine learning model, anti-biofilm agents
of interest must have accurate numerical representations
of physicochemical and 3D properties in the form of
features/descriptors. The obvious assumption is that molecules
with similar activities have similar physicochemical properties,
whereby the approximate relationship between properties and
activity are learned during the training of a machine learning
model. Extracting features from molecules is an established
discipline in itself, referred to as chemoinformatics. QSAR
was an early chemoinformatics framework for extracting
numerical descriptors from molecules, followed by training
a simple machine learning algorithm (Cherkasov et al., 2014;
Mitchell, 2014). There are a variety of diverse QSAR categories
composed of hundreds of different descriptors extensively
curated since inception, including topological, functional groups,
and geometric (Danishuddin and Khan, 2016). Many examples of
commercial and freely available software exist to extract feature
descriptors for a variety of molecules (Sawada et al., 2014).

In this context, Haney et al. (2018a) trained a logistic
regression model using seven QSAR descriptors to identify
anti-biofilm peptides against methicillin resistant S. aureus
(MRSA), derived from the widely studied 1018 peptide. The
model was validated against a set of 100,000 semi-random
peptides and predicted anti-biofilm potential of a previously
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FIGURE 3 | A schematic of how machine learning can be used to discover new anti-biofilm agents. A training set comprising peptides or small molecules with
known anti-biofilm activity (validated experimentally) are used to train a machine learning algorithm. Chemical features of these molecules (such as size or lipophilicity)
can be generated using chemoinformatics methods such as QSAR. The algorithm then creates a mathematical relationship between a variety of features of each
molecule and the anti-biofilm activity of the molecule. A second group of molecules (a validation set) with known anti-biofilm activity is then analyzed using the
derived algorithm to ensure that it can accurately classify these molecules as having anti-biofilm activity or not. Finally, molecules for which anti-biofilm activity is not
known, are then classified by the algorithm, with the output being potentially novel anti-biofilm agents that must then be validated with in vitro or in vivo models.

undescribed peptide 3002. In vitro validation showed that peptide
3002 had 8-fold enhanced anti-biofilm potency against MRSA
biofilms when compared to 1018, and equivalent activity in a
mouse abscess model. Thousands of descriptors were extracted
from each peptide in the training set; however, computational
prediction reduced this to a set of seven core descriptors
that were ultimately used to train machine learning models.
This strategy was employed to increase a machine learning
model’s generalizability by removing redundant descriptors and
preventing overfitting.

Chemical graphs and fingerprints, which capture the atomic
structure and connectivity of the molecule, are other approaches
for representing molecules numerically for application in
machine learning (Lo et al., 2018). These representations are
typically appropriate for small molecules rather than peptides
with complex and/or flexible secondary structures. Srivastava
et al. (2020) trained a hybrid random forest model based on
QSAR type descriptors and chemical fingerprints to identify
potential anti-biofilm molecules. The authors extracted a 10,208-
unit chemical fingerprint, which they combined with the QSAR
descriptors to generate a hybrid classifier. Neural networks are
a class of machine learning models that mimic the operations
of neurons in the brain. Specifically, they allow the models
to both learn features through hidden layers and then use
them to perform the prediction task. Stokes et al. (2020)
used a directed message passing deep neural network (Yang
et al., 2019) to learn a type of chemical fingerprint based

on the graph structure. Although the authors did not aim to
discover an anti-biofilm agent, they predicted and validated
the potential use of the antibiotic halicin for use against
E. coli infections. Furthermore, this study represents a use of
neural networks and feature learning which can be applied to
identify novel anti-biofilm agents. In this regard, similar neural
network approaches have been used to derive enhanced 9-
amino-acid, broad-spectrum antimicrobial peptides, by relating
descriptors to activity (Cherkasov et al., 2009). It is often stated
in machine learning “garbage in, garbage out,” meaning poor
quality input data results in poor predictions. Accordingly, a large
training set such as the one used by Cherkasov et al. (2009),
a diverse set of accurately estimated features and descriptors,
and robust modeling techniques are essential to predict novel
anti-biofilm agents.

To assess the predictive ability of a trained machine
learning model, a test or validation set is employed. This
set includes agents where the anti-biofilm activity is known,
thus the model’s predictions can be compared for accuracy.
Practically speaking, cross validation is often employed in
which a subset of, for example, 80-90% of molecules with
known activity is used for testing and the remainder for
validation, and this is repeated iteratively using a different
subset of molecules for validation. Finally, novel agents
predicted as having anti-biofilm activity must be confirmed
with in vitro or in vivo experiments as described in the
next section. The application of machine learning to predict

Frontiers in Microbiology | www.frontiersin.org 11 April 2021 | Volume 12 | Article 640787

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-640787 April 8, 2021 Time: 20:3 # 12

An et al. Designing Mechanism-Informed Antibiofilm Agents

anti-biofilm activity has often proven successful, as shown
in the presented studies and broader studies identifying
antimicrobial agents. Future directions in this field will
include expanding databases of anti-biofilm agents and their
respective potencies, as well as determining drug parameters
such as pharmacokinetics/pharmacodynamics, bioavailability,
and toxicity, to advance commercialization and provide an
extensive repository of training and validation molecules for
various prediction tasks. Whereas most studies have predicted
anti-biofilm activity in a binary fashion, directly predicting
potency may also generate better candidates. Expanding these
resources will immensely benefit the community in building
robust and generalizable machine learning models for novel
anti-biofilm agents.

MODELS FOR ASSESSING NOVEL
ANTI-BIOFILM AGENTS

The in silico methods described above can generate potential
candidates. However, validation is required in accurate biofilm
models to assess their anti-biofilm activity and clinical potential.
An ideal biofilm model should provide high-throughput
testing of multiple compounds against multiple species, be
easily manipulatable, and to some extent resemble biofilms
found in human infections and on abiotic surfaces such
as medical devices. However, while no biofilm model exists
that satisfies all three conditions, this section provides an
overview and discussion of the advantages and limitations
of current in vitro and in vivo based biofilm models to
facilitate a decision on which biofilm model to use in
different situations (Figure 4). These biofilm models can
also be used for experiments to generate omics data as
discussed earlier.

In vitro Biofilm Models
The purpose of an in vitro biofilm model is two-fold: (i) to
provide a method of assessing the relative activities of a group
of compounds and relating these to other compounds in the
literature, and (ii) assessing the probability that compounds
will work against biofilms in a relevant circumstance (e.g.,
a biofilm infection in a patient). Such in vitro models can
be generally classified into closed, open, and tissue culture-
based model systems. Closed or static models have no influx
or efflux of nutrients, while dead cells, waste, and signaling
byproducts will build up (Lebeaux et al., 2013). In addition,
closed systems do not always reflect conditions found under
some circumstances in vivo, such as shear stress from constant
movement of liquids in the bloodstream or in medical devices
such as catheters (Lebeaux et al., 2013). This issue might
be somewhat overstated however, since biofilms in the body
often occur on tissues (e.g., wounds, burns, skin, tissues,
prosthetic joints, sinuses, bones, etc.), where it can be argued
that there is minimal flow of liquids. Microtiter plate-based
biofilm systems are classic examples of the closed model.
Following on from the popular methods for determining
minimal inhibitory concentration (MIC) for antimicrobials

against planktonic bacteria (Wiegand et al., 2008), we have
recently proposed a standardized method for assessing anti-
biofilm activity (Haney et al., in press).

Microtiter plate biofilm assays are one of the most widely
used in vitro model systems, where biofilms are grown on the
bottom or the walls of a microtiter plate or on materials (e.g.,
microscope slides, silicone, titanium, and hydroxyapatite disks)
placed within a microtiter plate (Vandecandelaere et al., 2016).
They represent a relatively cheap and user-friendly system, with
parallels to MIC assays, that can be easily used as a high-
throughput screen, require only a small volume of reagents,
provide researchers easy control over growing conditions (media
type, temperature, humidity, and presence/absence of stress
signals), and enable examination of various stages of biofilm
development (Coenye and Nelis, 2010; Vandecandelaere et al.,
2016). Numerous studies have used the microtiter biofilm system
to understand biofilm formation on various biomedical materials
and surfaces (Chin et al., 2006; Imamura et al., 2008; Silva
et al., 2010; El-Ganiny et al., 2017; Wang et al., 2018), elucidate
biofilm adaptation under different growth conditions (Strempel
et al., 2017), screen for biofilm-deficient mutants (Tu Quoc et al.,
2007; Okshevsky et al., 2018; Willett et al., 2019), and determine
the efficacy of antimicrobial and antibiofilm therapies (Torres
et al., 2018; Wang et al., 2018; Zhong et al., 2019). There are
a wide range of relatively simple techniques to quantify the
amount of biofilm in microtiter systems, including assessing
colony forming unit (CFU) counts and staining of adhered
bacteria. Staining methods such as crystal violet staining can
be used to evaluate the total biomass, while tetrazolium-based
dyes, resazurin, the BacTiter-Glo assay (which quantifies ATP
production), or propidium iodide can be used to determine
the residual number of metabolically active cells (Peeters
et al., 2008; Vandecandelaere et al., 2016; Maiden et al., 2018;
Wang et al., 2018).

There are several limitations to the aforementioned microtiter
methods since they are closed models. The most profound
of these is that many microtiter protocols involve adding
the anti-biofilm agents along with planktonic bacteria during
inoculation; therefore, it is difficult to differentiate between
inhibition of planktonic growth, inhibition of the initial
stages of biofilm development, killing of organisms in the
biofilm growth state, or eradication/dispersal of mature
biofilms (Haney et al., 2018b). Second, some staining
methods make it difficult to discriminate between dead
and live cells, since the most popular staining procedure,
using crystal violet, stains the total biomass including matrix
and dead cells (Peeters et al., 2008). To overcome these
limitations, Haney et al. (2018b) described a simple, cost-
effective, and reproducible procedure to assess the biofilm
inhibition (addition at the time of bacterial addition)
and eradication (delayed addition) abilities of antibiotics
and anti-biofilm peptides, using common and relatively
inexpensive materials. This high-throughput workflow
combines a 96-well microtiter plate with crystal violet or
tetrazolium chloride dye staining (Haney et al., 2018b). It
should be mentioned that the medium leading to optimal
biofilms growth varies substantially between species, so
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FIGURE 4 | In vitro and in vivo models for testing anti-biofilm agents. Simplistic models are easier to maintain and cost-effective; however, they fail to replicate in vivo
infections as accurately as more expensive models such as in vivo animal models and human organoids. In addition, the use of human cells and mammalian models
(indicated by asterisks) may require additional ethics approval. ALI, air-liquid interface. Created with BioRender.com.

this is one parameter that needs to be optimized in such
microtiter systems.

Ceri et al. (1999) developed a rapid system to evaluate the
biofilm eradication ability of certain compounds, called the
Calgary Biofilm Device. This system involves a specialized top lid
with pegs that fits over a conventional 96 well microtiter plate.
Biofilm is first grown on the pegs, then the top lid is transferred
into a second plate containing the compound of interest. Upon
incubation, the amount of residual biofilm can be determined
either through CFU count, optical density measurement, or
microscopic techniques (Moskowitz et al., 2004). This method
allows for the differentiation of biofilm from sedimented dead
cells, thus also ascertaining biofilm eradication versus inhibition
activity of compounds.

As mentioned above, biofilms in closed systems do not reflect
situations where biofilms are exposed to the complex flow
network of the circulatory, urinary, digestive, and respiratory
systems, nor do they reflect biofilms in medical devices exposed
to flowing liquid, such as catheters and intravenous lines
(Waters et al., 2014). To understand the biofilm mechanisms
and susceptibilities under conditions with constant flow, an open
system should be used. However, such systems are considerably
more technically complex.

Open systems have a constant flow of fresh medium, while
wastes, signaling byproducts, and planktonic cells are constantly
washed away, mimicking certain environments in human hosts
and medical devices (Lebeaux et al., 2013; Azeredo et al., 2017).
The environment of an open system can be controlled and

adjusted by the researcher at any time during the experiment.
For example, the flow and type of medium can be adjusted to
create shear forces and nutrient composition that more closely
reflect in vivo conditions (although shear forces vary depending
on the clinical situation and are not always precisely known). This
allows the study of physical and chemical resistance of biofilms.
Flow cells are the most widely used open system, consisting of
a series of growth chambers that are separately connected to a
multichannel peristaltic pump, allowing the influx of fresh media
and efflux of waste (Crusz et al., 2012). This system can be
coupled with fluorescence or confocal laser scanning microscopy,
enabling one to non-invasively visualize the development of a
biofilm in real time and reconstruct 3D images of the biofilm
structure, which cannot be done with microtiter assay methods
(Heydorn et al., 2000; Millar et al., 2001; Mueller et al., 2006;
Pamp et al., 2009). For example, Pihl et al. (2013) used flow
cells and confocal laser scanning microscopy to model biofilm
growth in catheters to show that rhamnolipids in the supernatant
of P. aeruginosa play a role in reducing adherence and inducing
dispersal of S. epidermidis to serum coated catheter surfaces.
However, the construction and operation of a flow cell can be
challenging and requires some expertise (Crusz et al., 2012) and it
is less amenable to high-throughput analyses when compared to
microtiter assays. Newer microfluidic models, also a type of open
model, may alleviate this problem and are discussed below.

Although bacterial in vitro models are valuable tools for
studying biofilms and screening for potential anti-biofilm agents
under controlled conditions, there are some limitations. It
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is essential to understand the impact of the host-microbe
interaction (e.g., nutrient composition, host immunity, and stress
factors) and recapitulate the timescale and complex physical and
chemical environments bacteria may experience in vivo; all of
these are absent in these in vitro models. These factors can
greatly impact bacterial virulence and biofilm formation, which
can hinder interpretations of antimicrobial efficacy (Palmer et al.,
2007; Kolpen et al., 2010; Pearce et al., 2018; Pulkkinen et al.,
2018). In addition, some bacteria found in in vivo biofilms are
simply not culturable in vitro (Li et al., 2014). At least 92 species
of bacteria were found in human dental plaque samples, of which
eight were uncultivable but were associated with early stages of
biofilm formation (Heller et al., 2016). Thus, it is important to
also consider in vivo models, not only to validate in vitro results,
but also to factor in the dynamic host-microbe relationships
to form more biologically accurate biofilms for testing novel
anti-biofilm agents.

In vivo Biofilm Models
In vivo biofilm models involve the use of living organisms,
including both mammals and non-mammals (Lebeaux et al.,
2013). While conventional mammalian models (e.g., mice,
rats, and rabbits) are widely used to study in vivo biofilms
and anti-biofilm agents, screening large numbers of potential
antimicrobial candidates is costly, laborious, and ethically
prohibited. To overcome these limitations, non-mammalian
models, such as the nematode Caenorhabditis elegans (Millet and
Ewbank, 2004) and fruit fly Drosophila melanogaster (Ferrandon
et al., 2007), can be used to conduct initial candidate screening
before moving to mammalian models.

Non-mammalian models have several advantages over
mammalian models. First, such organisms have unique anatomy,
but possess some similar immune responses when compared
to mammals, and generally allow for easier monitoring of
disease progression and the effects of antimicrobial agents
(Antoshechkin and Sternberg, 2007; Lemaitre and Hoffmann,
2007; Ryu et al., 2010). Both C. elegans and D. melanogaster larvae
are transparent, which allows for non-invasive monitoring of
fluorescently tagged bacteria, host genes, or proteins in real-time
(Bell et al., 2009; Kong et al., 2016). C. elegans also possess at least
three of the innate immunity signaling pathways (p38 mitogen-
activated protein kinase pathway, insulin/growth factor-1
pathway, and the transforming growth factor-β pathway) found
in mammals (Mallo et al., 2002; Garsin et al., 2003; Troemel
et al., 2006). D. melanogaster possess host defenses mechanisms
such as Toll-like receptor pathways, host defense peptides,
and reactive oxygen species (Dimarcq et al., 1994; Agaisse and
Perrimon, 2004; Lemaitre and Hoffmann, 2007; Bell et al.,
2009). Second, when compared to mammalian models, these
non-mammalian models are more easily genetically manipulated
from the perspective of both protocols and ethics, enabling
investigation of the roles of host factors including immunity
in biofilm formation (D’Argenio et al., 2001; Antoshechkin
and Sternberg, 2007; Chakrabarti et al., 2012). Third, non-
mammalian organisms are highly fertile with short reproduction
times and easy maintenance (Antoshechkin and Sternberg, 2007;
Jennings, 2011), making high-throughput candidate screens

possible (Ewbank, 2002; Squiban and Kurz, 2011; Conery et al.,
2014). However, there are profound differences in physiology,
many immune responses, circulation, pharmacokinetics, and
prospective delivery methods, and data gleaned are not useful
in formal drug development. In addition, the short lifespan of
C. elegans and D. melanogaster makes these models difficult
for representing chronic infections, and the body temperatures
of C. elegans (16-25◦C) are not optimal for growth of many
pathogens and do not reflect that of mammals (Kong et al.,
2016). Thus, the use of mammalian models, which have a more
complex immune system, relatively longer lifespan, and closer
evolutionary relationship to humans, is required.

Mammalian in vivo models are indispensable tools to
mimic human biofilm infection in the context of host-microbe
interactions and to assess antimicrobial therapies before clinical
trials (Festing, 2004). There are many well-established mouse
(Mus musculus) models for biofilm-related diseases, including
cystic fibrosis and chronic obstructive pulmonary disease-
associated infections, urinary tract infections, intestinal infection,
chronic skin/wound infections, chronic rhinosinusitis, and
periodontitis (Coenye and Nelis, 2010). The small size, ease
of handling and housing, short gestation period, and high
reproductive rate of mice make such models attractive when
compared to other mammalian models (Rumbaugh and Carty,
2011; Masopust et al., 2017). A recent study used a very
simple cutaneous infection mouse model to demonstrate the
efficacy of synthetic cationic peptides IDR-1018 and DJK-5,
and their synergy with conventional antibiotics in all ESKAPE
pathogens, as well as their relationships to the stringent response
(Pletzer et al., 2017, 2018). Both peptides were effective in
reducing abscess size and bacterial load, and showed synergy with
several different antibiotics, in part through decreased (p)ppGpp
synthesis due to spoT down-regulation. This abscess model
can be used to evaluate other peptides and anti-biofilm agents
for chronic wounds.

In addition, a large number of inbred mouse strains (which
are genetically uniform to enhance reproducibility), outbred
strains (which better represent genetic diversity in human hosts),
and genetically modified strains are commercially available
and well characterized (Thomas and Capecchi, 1987; Svenson
et al., 2012; Masopust et al., 2017). Genetically modified strains
allow investigators to induce immunodeficiency, humanize the
immune system, and knock in/out specific genes to create
phenotypes similar to certain human diseases (Criswell and
Sack, 1990; Masopust et al., 2017; Gurumurthy and Lloyd,
2019). For example, a cystic fibrosis transmembrane conductance
regulator (CFTR) knockout mouse model was used to study cystic
fibrosis and the QS inhibiting effects of azithromycin against
P. aeruginosa biofilms (Hoffmann et al., 2007).

Another mammalian model that more closely resembles
humans than do mice, is the pig (Sus scrofa domesticus), especially
in terms of their anatomy and immune system (Dawson, 2011;
Meurens et al., 2012). Due to the close resemblance of porcine
skin to human skin in terms of structure, immune responses,
and the process of wound healing, the porcine model has been
deemed the most relevant preclinical model of skin wound
healing by the Wound Healing Society (Sullivan et al., 2001;
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Gordillo et al., 2013). Gloag et al. (2019) used the porcine
skin biofilm model to identify hyperbiofilm strain variants of
P. aeruginosa, which were found to have mutations in the
Wsp pathway (a chemosensory pathway involved in c-di-GMP
regulation) and resistance to prophages in the wound. There are
also recent developments to create ex vivo porcine skin models
for use as a surrogate for live pigs, to improve ease of use and
allow for high-throughput setups (Alves et al., 2018).

Although in vivo animal models are invaluable to investigate
host-pathogen interactions, there are also some limitations.
Interspecies differences still contribute to discrepancies in
pharmacokinetic profiles, safety, and efficacy of therapeutic
candidates between animal models and humans (Jansen et al.,
2020). The growing awareness of animal welfare and related
ethical issues encourages researchers to follow the 3Rs: Replace
the use of animal models, Reduce the number of animals required
for each experiment, and Refine experimental techniques to
minimize animal suffering and improve animal welfare (Bailey
and Balls, 2019; Hubrecht and Carter, 2019). To satisfy the
first “R,” an alternative model that can investigate host-pathogen
interactions in the context of anti-biofilm therapies is tissue
culture-based in vitro models.

Tissue Culture-Based Biofilm Models
Tissue culture-based are co-cultures of bacterial and human
cells. Conventionally, submerged models are used, where a
biofilm is grown over a monolayer of host cells submerged
in medium (Coenye and Nelis, 2010). Compared to in vivo
models, submerged monolayer models are cheaper, easier
to manipulate, highly reproducible, and amenable to high-
throughput screening, while still enabling investigation of host-
pathogen interaction; however, they lack cell type complexity,
commensal flora, nutrient gradients, shear forces, and immune
components (Coenye and Nelis, 2010). For example, Mycoplasma
pneumoniae biofilms grown on a monolayer of human bronchial
epithelial cells were found to undergo similar architecture
development as those grown on glass, but at a slower pace
(Feng et al., 2020). However, the presence of complement
significantly reduced the growth of M. pneumoniae on epithelial
cells, suggesting that bacterial growth might be significantly
different in a more complex system (Feng et al., 2020).
In addition, most submerged models can only mimic acute
infections, since culturing bacteria and host cells within
a static condition leads to high cytotoxity (Kim et al.,
2012). Hence, it is important to use alternative co-culture
systems than submerged models that more closely resemble
in vivo microenvironments.

A recent advance in tissue culture techniques is the
development of host organoid systems, which overcome some of
the limitations of submerged monolayer models (Barrila et al.,
2018). Organoids are self-organized, multicellular structures
that resemble miniature organs, and can be derived from
immortalized cell lines, primary cells from healthy or diseased
donors, induced pluripotent stem cells, embryonic stem cells,
neonatal tissue stem cells, or ex vivo adult progenitors (Clevers,
2016). In general, organoid systems can be categorized into three
main forms, in order of complexity: air-liquid interface (ALI)

models, 3D spheroid organoids, and organoid-on-a chip models
(Choi et al., 2020).

Air-liquid interface models are grown from a variety of
different starting cells and differentiated on permeable filters
to form sections of epithelium, with the apical region exposed
to air and basal region submerged in medium (Choi et al.,
2020). The dual exposure allows maturation of multiple cell
types with different functions (e.g., mucin production, cilia
movement) similar to those found in vivo, and there are
ALI models for skin, lung, intestinal, gingival, and urothelial
epithelium (Dvorak et al., 2011; Pezzulo et al., 2011; de Breij
et al., 2012; Horsley et al., 2018; Brown et al., 2019; George
et al., 2019). In addition, the presence of an apical and basal
chamber provides a convenient platform for co-culture systems
to investigate immune activity against biofilms on epithelium.
Rudder et al. (2020) developed a triple co-culture ALI system,
with upper respiratory tract epithelial cells, macrophages in
the basal chamber, and donor nasal microbiota in the apical
chamber, and found that diversity of microbial communities was
altered by the addition of macrophages (Rudder et al., 2020).
Similarly, a gingival epithelium ALI model studied oral biofilms
formed by healthy microflora or microorganisms in gingivitis
and periodontitis in the presence of primary peripheral blood
mononuclear cells and CD14+ monocytes in the basal chamber
(Brown et al., 2019). Recently, a miniaturized 96 well air-liquid
interface human small airway epithelial model was developed,
allowing ALI models to be used as a high-throughput screening
platform (Bluhmki et al., 2020). An analogous skin model was
established from N/TERT keratinocytes (Wu et al., 2021; de Breij
et al., 2018), which enabled well-structured biofilms to be grown
from P. aeruginosa and S. aureus and allowed for screening of
the effects of various antibiofilm peptides and their influence
of skin integrity.

A more complex system is 3D spheroid organoids, in
which progenitor cells undergo stepwise directed differentiation
with defined growth factor cocktails that activate and inhibit
specific signaling pathways (Nickerson et al., 2001; Clevers,
2016; Gkatzis et al., 2018). Generally, 3D organoids mimic the
in vivo architecture, multi-lineage differentiation, and organ
development process of the natural epithelium in mammals (Sato
and Clevers, 2013; Kim M. et al., 2019). Their enclosed nature
can allow growth of bacteria that are unable to be cultured
in other in vitro systems (Dutta et al., 2017; George et al.,
2019). Furthermore, the ability of self-regeneration allows 3D
organoids to be maintained and expanded over a long period of
time to study chronic infections (Yamamoto et al., 2017; Sachs
et al., 2019). Coupling the 3D organoids with microinjection
and imaging techniques, Forbester et al. (2015) showed that
Salmonella enterica serovar Typhimurium was able to invade the
epithelial barrier and reside in vacuoles, similar to those found
in vivo (Forbester et al., 2015).

While 3D organoids and ALIs better replicate in vivo
conditions than other in vitro models, they still lack a dynamic
mechanical and biochemical microenvironment with shear force
and nutrient gradients as provided by flow cells. Combining
these two technologies results in the organoid-on-a-chip model,
which is a microfluidics platform where bacteria and/or host
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cells grow in chambers perfused by microchannels (Kim
et al., 2012). By strictly controlling intraluminal fluid flow to
mimic peristalsis, Kim et al. (2012) developed a microfluidic
model with intestinal epithelium that resembled the structure
of intestinal villi and supported growth of Lactobacillus
rhamnosus for >1 week without compromising host cell
viability. Since only a small volume of cells and reagents
are required, organoids-on-a-chip models appear to be a
relatively cheaper and faster organoid screening method,
although it requires a sophisticated, technically complex,
and expensive platform to set up such experiments (Huh
et al., 2011). Cells from microfluidic chambers can also be
extracted for omics studies such as transcriptomics (Benam
et al., 2016). Furthermore, microsensors embedded in the
chip allow monitoring of events such as biofilm formation,
cell migration, barrier function, protein production, and fluid
pressure in real time (Bhatia and Ingber, 2014; Yu et al., 2019;
Yuan et al., 2020). Yuan et al. (2020) developed an integrated
system, combining gut-on-a-chip with optical coherence
tomography, to visualize pathogenic E. coli mediated cellular
changes in the presence or absence of probiotic protection
of Bifidobacterium breve in real-time. Similarly, Sidar et al.
(2019) incorporated 3D spheroid intestinal organoids with a
microfluidics system to study intestinal secretion, absorption,
transportation, and co-culture with intestinal microorganisms.
Finally, a multifaceted combination of microchambers,
microchannels, valves, pumps, and microsensors allows
organoid-on-a-chip models to be tailored to specific needs
for different experiments (Yu et al., 2019). For example, Ye
et al. (2007) utilized a microfluidic device with eight drug
gradient generators and parallel cell culture chambers to
simultaneously test either eight different molecules or eight
different concentrations of one molecule. This system has the
potential to be used as a high-throughput screening system for
antibiofilm agents. Organoid-on-a-chip models are relatively
new, and their versatility makes them perhaps the closest to
a biologically accurate model that still allows the ability of
higher-throughput testing.

Each model has its own advantages and disadvantages, ranging
from cost and ease of use to similarity to in vivo biofilms, with
the latter point perhaps being the most important for success
in developing an anti-biofilm agent that will be effective in
humans. Furthermore, each of these models can also be used
in conjunction with further omics analyses to better understand
the mechanisms of the agents tested. With the advent of new
technologies such as organoid-on-a-chip models, the prospects
of creating a high-throughput, biologically relevant model for
anti-biofilm agent testing are tantalizingly close.

CONCLUSION

In this review, we have provided a summary of current biological
and computational strategies to develop new anti-biofilm
agents. Omics analyses provide a systems biology approach to
the complex interwoven processes of biofilm formation and
are uncovering many potential protein targets and pathways

required for biofilm formation in a variety of species. To
find modulators for these targets, high-throughput screening
using in vitro approaches have been used in the past to test
potential modulators; however, with the increased availability
of defined bacterial protein structures, recent approaches now
more commonly involve an initial virtual screening of large
databases of molecules before experimental validation, which is
more cost-effective and less labor-intensive. Another approach to
identify novel anti-biofilm agents is through machine learning,
where a model is trained using a collection of known anti-
biofilm and non-anti-biofilm molecules, learns patterns in the
features of these molecules, and then applies those patterns to
pick out potential anti-biofilm agents from databases. Finally,
these new agents must be tested in biologically accurate
biofilm models. While in vitro approaches such as microtiter
assays are the easiest to work with, they poorly resemble
actual in vivo infections in humans. However, animal models
are more difficult to manage both ethically and logistically,
and do not accurately resemble human physiology. The rise
of organoid models such as relatively simple ALI models
and more complex organoid-on-a-chip model can provide an
in vitro approach that mimics human physiology yet retains
the high-throughput characteristic of other in vitro models.
Advances in this field may eventually result in organoids
becoming the optimal model for growing and testing anti-
biofilm agents.

Biofilm regulation is a complex process and while we have
summarized key more-conserved biofilm regulation processes
such as the stringent response, quorum sensing, and c-di-
GMP signaling, not all processes have been highlighted here.
However, the approaches we describe can equally be applied
to motility regulation, small non-coding RNA regulation,
and matrix synthesis, as well as new mechanisms discovered
by methods outlined in this review. As mentioned before,
there are no approved agents specifically targeting biofilms,
despite biofilms being the most common form of infection
and major reason for antibiotic resistance. We submit that
anti-biofilm agents, when they do become introduced in the
clinic, will likely be used in conjunction with conventional
antibiotics as an “antibiotic sensitizer” by disrupting the
biofilm and exposing individual bacteria to antibiotic therapy,
or as a prophylactic measure to prevent biofilm formation
on medical surfaces or prior to or after surgery. Our
hope is that this review has provided a comprehensive
introduction, for researchers interested in developing anti-
biofilm agents, to the variety of technologies and models
used for such an endeavor, as such agents are crucially
needed in healthcare.
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