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dominant species (Stegophiura sladeni, Ophiopholis mirabilis, Ophiura sarsii vadicola,
and Ophiura kinbergi) with two feeding types (suspension feeding/herbivores and
scavenger/carnivores) from the Yellow Sea, China. Results showed that 56 phyla
and 569 genera of microbiota were identified among ophiuroid guts. Multivariate and
diversity analyses showed that the ophiuroid gut microbiota were independent and have
higher biodiversity to the sediment microbial in the Yellow Sea. Phyla Proteobacteria,
Firmicutes, Tenericutes, and Bacteroidetes were the dominant bacteria, with more than
80% abundance among the four ophiuroid species. A comparison among the gut
microbial compositions among four ophiuroids showed the similarity of two offshore
carnivore ophiuroids (S. sladeni and O. sarsii vadicola) and variation in the dominant
microbiota types of three nearshore ophiuroids (S. sladeni, O. mirabilis, and O. kinbergi).
The functional analysis revealed the significant differences of the environment-related
expression in S. sladeni gut microbiota between nearshore and offshore environments.
The Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States (PICRUSY) functional annotation showed the significant divergence of metabolism
pathways between two nearshore species, the herbivores O. mirabilis and carnivores
S. sladeni, such as the Lipid metabolism, Carbohydrate metabolism, and Metabolism
of cofactors and vitamins. The homolog search and phylogenetic analysis identified the
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first gut symbiotic Candidatus Hepatoplasma in S. sladeni with important roles for the
nutrient metabolisms. Overall, our study reported the comprehensive data of ophiuroid
gut microbiota, while the functional microbiome provides insight into the physiology and
environmental adaptation in ophiuroids.

Keywords: gut microbiota, ophiuroids, feeding type, symbiotic bacteria, functional microbiomes, Yellow Sea

INTRODUCTION

Ophiuroidea (brittle stars), with 2,064 known species from 16
families, are the largest class of Echinodermata (Geraldi et al,
2017). They play an important ecological role in food webs
(Wu and Shin, 1997; Harris et al., 2009; Enoksen and Reiss,
2017) and nutrient recycling in the marine benthic ecosystems
(Lebrato et al., 2010; Ravelo et al., 2015). The Ophiuroids possess
two feeding types: suspension feeding and scavenger. Brittle
stars from families Gorgonocephalidae and Amphiuridae are
primarily suspension feeding on organic detritus, plankton, and
bacteria (Iken et al., 2001). Scavenger ophiuroids, including
Ophiopyrgidae and Ophiacanthidae, feed on dead organisms and
small animals (usually dead), including crustaceans, mollusks,
and worms (Adarsha et al., 2018). In addition, the assemblage
of ophiuroid populations is a common phenomenon in different
habitats (Murat et al., 2016), given that they could enhance
the process of benthic-pelagic coupling in the sea floor
(Geraldi et al., 2017).

The gut microbiota plays key roles in nutrient absorption,
environmental adaptation, and anti-pathogens of the host
animals (Sugita et al., 1991; Cho and Blaser, 2012; Zhang et al,,
2016). The habitat environment (Trabal et al., 2012; Pierce
et al, 2016; Nguyen et al, 2020), host feeding habits, and
life stages (Tanaka et al, 2004; Li et al, 2019) have effects
on the gut microbial community. Studies on the microbiome
of echinoderms revealed that gut microbiota in sea cucumber
(Zhang et al., 2012, 2013), starfish (Lee et al., 2018), and sea
urchin (Hakim et al., 2016) can enhance the digestion and
provide missing nutrients from diets to the host. However, the
role of gut microbiota still remains unclear, which hinders the
understanding of physiologies, ecologies, and life histories of
ophiuroids. In addition, the composition of gut microbiota may
have divergences among species with different feeding types (Guo
et al., 2020). Some echinoids have evolved gut symbiotic bacteria
for acquisition of essential nutrients (Temara et al., 1993; Becker
et al., 2009). In ophiuroids, symbiotic bacteria have identified
on larvae and adult subcuticle to facilitate the uptake of free
amino acid from the ambient environment (Walker and Lesser,
1989; Morrow et al., 2018), while the gut symbiont has not
been reported yet.

In this study, we focus on the gut microbiota communities of
ophiuroids that lived in the Yellow Sea, a marginal sea between
China and Korean Peninsula with hydrological phenomena
and high biodiversity (Li, 2011). Four dominant microbenthic
ophiuroids, including Stegophiura sladeni, Ophiopholis mirabilis,
Ophiura sarsii vadicola, and Ophiura kinbergi (Peng et al., 2017),
were selected for 16S rRNA sequencing of their gut microbial
communities, which covered two feeding types, scavengers

(O. sarsii vadicola, O. kinbergi, and S. sladeni; Harris et al.,
2009) and suspension feeder (O. mirabilis; Yu et al., 2019). The
alpha diversity and multivariate analysis revealed the spatial
variation among nearshore and offshore ophiuroids, and their
surrounding sediments. The diversity and functional analyses of
microbiome indicated significant variation between scavenging
and suspension-feeding ophiuroids. Integration of metagenomic
sequencing and functional-inference-based approaches provided
insight into the metabolic and environmental adaptation from
gut communities, which facilitate their survival and organic
matters recycling in benthic ecosystems.

MATERIALS AND METHODS

Sample Collection

Ophiuroid specimens were collected by bottom trawling from the
Yellow Sea: offshore (water depth > 50 m) station H (34°00'N,
124°00'E, 80-m depth) for S. sladeni and O. sarsii vadicola in
March 2018 and nearshore station Y (35°00' N, 121°00" E, 16-m
depth) for S. sladeni, O. mirabilis, and O. kinbergi in October 2018
(Figure 1). All specimens were immediately fixed in 95% ethanol
and stored at —20°C. After cruises, specimens were transferred
to the First Institute of Oceanography, Ministry of Natural
Resources, for further analysis. To reduce the contamination by
environmental bacteria, the ophiuroids were rinsed with Milli-
Q water before dissection. The oral shield was removed, and
the gastric contents were sampled under a stereomicroscope.
All gut contents were stored in a freezer at —20°C until use
for DNA extraction.

Total DNA Extraction and 16S rRNA

Sequencing

To understand the gut microbiota, genomic DNA was extracted
from the gut contents of 23 ophiuroid specimens (nearshore:
four S. sladeni, five O. mirabilis, and five O. kinbergi; offshore:
five S. sladeni and four O. sarsii vadicola) and used for
sequencing on the V3-V4 region of the microbial 16S
rRNA gene. In brief, total microbial community DNA was
isolated using the DNeasy Blood & Tissue Kit (Qiagen,
Germany) following the manufacturer’s protocol. DNA
quality was assessed using agarose gel electrophoresis and a
Qubit fluorometer (Thermo Fisher Scientific, Waltham, MA,
United States). The V3-V4 hypervariable region of 16S rRNA
gene were amplified using the forward primer 338 F (5'-
GTACTCCTACGGGAGGCAGCA-3') and the reverse primer
806 R (5-GTGGACTACHVGGGTWTCTAAT-3'). The PCR
contained 30 ng of DNA template (30 ng), 1 pl each of 5 mol/L
of primers, 3 pl of bovine serum albumin (BSA) (2 ng/pl),

Frontiers in Microbiology | www.frontiersin.org

March 2021 | Volume 12 | Article 645070


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Dong et al. Gut Microbiota of Ophiuroids
38°N
250m
36°N ® 105 @ H09
S1 100m
@HI3 OHi!
Y @ @119 @126
34°N : 3 o H L
Y 4 ‘ Y v 50m
Stegophiura sladeni Ophiopholis mirabilis Ophiura kinbergi
39°N Stegophiura sladeni  Ophiura sarsii vadicola L
118°E 120°E 122°E 124°E 126°E 128°E
FIGURE 1 | Location of sampling sites in the southern Yellow Sea. Ophiuroids were collected from nearshore (station Y) with blue color and offshore (station H) with
red color. Sediment stations were HO5, H18, H19, H09, HS1, H11, and H26 (Zhang et al., 2019).

12.5 pl of 2 x Taq Plus Master Mix, and 7.5 pl of ddH;O in
a volume of 25 pl. PCR amplification was performed with the
following program: pre-denaturation at 94°C for 5 min; 30
cycles of denaturation at 94°C for 30 s, annealing at 50°C for
30 s, and an extension at 72°C for 60 s; and a final extension
at 72°C for 7 min. The PCR products were sequenced using an
IMlumina MiSeq sequencer to produce 300-bp paired-end reads
by Allwegene Technology (Beijing, China).

Data Filtration and Amplicon Sequence
Variant Clustering

The raw sequencing reads were filtered by removing adapters
using Cutadapt software (Marcel, 2011; Callahan et al,
2016). The following taxonomic analyses were performed
using the R script implemented in dada2 v1.16.0 packages
(Callahan et al, 2016) with the default parameters. The
clean reads were further quality filtered, dereplicated, and
merged using the R script filterAndTrim, derepFastq,
and mergePairs, respectively. The makeSequenceTable
command was used to construct an amplicon sequence
variant (ASV) table. Potential chimeras were removed using
the removeBimeraDenovo command. ASVs were annotated
compared with the Silva SSU rRNA database (version

138) for taxonomic classification (Benjamin, 2017) using
assignTaxonomy command.

To compare the microbial community in ophiuroid gut
and in the sediment, 16S rRNA sequences of the Yellow
Sea sediments (three stations near the Y site, four stations
near the H site) were downloaded from Zhang et al. (2019;
Figure 1). The sequence filtering, clustering, and annotation
were performed the same as above. The gut microbiota of
ophiuroids and sediment had different ASV numbers and
compositions. The results of species-level annotation showed
that the proportion of unknown species was 97.5%, so we
performed downstream analysis based on the genus and
above level. The functional profiles of the gut microbial
communities based on 16S rRNA sequences were annotated
using Tax4Fun (Aflhauer et al, 2015) and Phylogenetic
Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt) (Langille et al., 2013) with Kyoto Encyclopedia
of Genes and Genomes (KEGG) Orthology (KO) (Minoru
et al,, 2015). To compare functional differences among samples,
abundances of predicted functional pathways were normalized
sequencing depth as percentages of the total number of
predicted functions from the KO database. Three sets of
pairwise comparison analysis were performed for the bacterial
function pathways of ophiuroid gut microbial communities,
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including S. sladeni and O. mirabilis from the nearshore Statistical Analysis of Metagenomic Profiles (STAMP) analysis
environment, S. sladeni and O. sarsii vadicola from the offshore  indicated the significant variations in KOs with expression levels
environment, and S. sladeni from both two environments. above 1% contribution.
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FIGURE 2 | Taxonomic abundance of gut microbiota at the phylum level (A) and genera level (B) in ophiuroid species from the Yellow Sea, China. Other, the
taxonomic groups with abundances less than 1%; Y, the nearshore environment; H, the offshore environment.
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Phylogenic Analysis

To investigate any possible gut symbionts, the ASVs of gut
microbiota were BLASTn search against GenBank database with
threshold of identity >80% and E-value of le—20. Among
ASVs, only genus Candidatus Hepatoplasma showed homology
to known gut symbionts. To further elucidate the microbial
candidates, eight ASVs of Ca. Hepatoplasma, their top BLAST
hit sequences, and nine 16S rRNA symbiont sequences [from
Cheng et al. (2019) and National Center for Biotechnology
Information (NCBI)] were aligned by ClustalW and manually
trimmed. Maximum likelihood (ML) and neighbor joining (NJ)
were selected for phylogenetic analysis with MEGA v7 (Kumar
etal., 2016). The best model of Kimura two-parameter selected by
model test in MEGA and 1,000 bootstrap replications were used.

Statistical Analysis

Alpha diversity statistics were calculated for diversity metrics
based on Simpson index and Shannon index. The Mann-
Whitney U tests were used to evaluate the differences among

categories in R. Principal component analysis (PCA) reflects
the difference and distance between samples by analyzing
ASVs with Origin 2018 software at the genus level (Wang
et al, 2012). Analysis of similarity (ANOSIM) was used
to evaluate the differences in the microbiota communities
among the gut of ophiuroids, and between ophiuroids’ gut
and benthic sediment (Clarke, 1993). Similarity percentage
analyses (SIMPERs) were used to identify the contribution
of each taxon to the community dissimilarity (Clarke, 1993).
Permutational multivariate analysis of variance (PERMANOVA)
revealed the amount of variation with respect to both
the microbiota in the gut of ophiuroids and sediment
(Anderson, 2014). Those three analyses were performed using
PRIMER version 6 and PERMANOVA + software. The linear
discriminant analysis (LDA) effect size (LEfSe) analysis was
conducted by the Galaxy website under default parameters'
to evaluate the significance of differences (i.e, biomarkers)

Thttp://huttenhower.sph.harvard.edu/galaxy

offshore environment.
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at the phylum, class, order, family, and genus levels in
five ophiuroid groups. In addition, the abundance of KEGG
pathways over 1% was selected to calculate the ANOVA
between two selected ophiuroids by using the STAMP software
(Parks and Beiko, 2010).

RESULTS

Amplicon Sequence Variant Analysis

After quality filtering, 586,254 clean reads (9,101-36,825 reads
per sample) were clustered in 5,759 ASVs (505-2,706 per sample)
from 23 nearshore and offshore ophiuroids (Supplementary
Appendix Al). The ASVs were well annotated from the phylum
and genus levels (Figures 2A,B). Based on the composition
analysis of the gut microbiota at the ASV level (Figure 3A), 31
ASVs were common to ophiuroids’ gut microbiota in different
areas. The number of unique ASVs in each community was
counted, with 730 unique ASVs in the S. sladeni, 1,567 in the
O. kinbergi, and 2,226 in the O. mirabilis from the nearshore
environment, and 167 in the S. sladeni and 301 in the O. sarsii
vadicola from the offshore environment.

Gut Microbiota Composition

The Gut Microbiota of Ophiuroids From Nearshore
Environment

The identified gut microbiota of three ophiuroid species
S. sladeni, O. mirabilis, and O. kinbergi, from nearshore included
56 phyla and 540 genera. In the phylum level, Proteobacteria
was the highest abundance microbiota among the S. sladeni,
O. kinbergi, and O. mirabilis in 63.4%, 60.9%, and 42.0%,
respectively (Figure 2A). The phyla Firmicutes, Tenericutes,
and Bacteroidetes were also the dominant microbiota in
the three species, with various abundance among species.
There were some species-specific abundance phyla in three
ophiuroids, such as Spirochaetota (2.6%) in S. sladeni,
Cyanobacteria (3.0%) in O. kinbergi, and Chloroflexi (5.1%)
in O. mirabilis.

At the genus level, more detailed divergences were found
in the three species (Figures 2B, 4). The genus Candidatus
Hepatoplasma was commonly found in all three ophiuroids with
different abundance: 17.9% in S. sladeni, 0.2% in O. mirabilis,
and 4.5% in O. kinbergi. Lentibacter was the most dominant
group in O. mirabilis (6.9%), while only few (<0.01%) were
detected in another two ophiuroids. In the gut of O. kinbergi,
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Photobacterium (9.1%) and Vibrio (7.5%) were much higher than
those in S. sladeni (0.5 and 0.8%) and O. mirabilis (0.6 and 1.0%).

The Gut Microbiota of Two Ophiuroids From Offshore
Environment

The gut microbiota of S. sladeni and O. sarsii vadicola
from offshore were identified, including 31 phyla and 156
genera. Consistent with the gut microbial composition
of ophiuroids from the nearshore area, Proteobacteria
was the dominant phylum in S. sladeni and O. sarsii
vadicola, accounting for 46.4 and 54.6%, respectively
(Figure 2A). Firmicutes (20.5%) was the second highest
group in the gut of S. sladeni, followed by Bacteroidota
(18.1%), Campilobacterota (6.9%), and Tenericutes (6.7%).

For O. sarsii vadicola, the gut microbiota were also
dominated with Bacteroidota (24.8%) and Firmicutes
(7.4%), Campilobacterota (6.9%), Fusobacteriota (2.1%),

and Tenericutes (1.7%).

At the genus level, the high similarity occurred in the gut
microbiota of two species (Figures 2B, 4). The genera had
the similar abundance in Colwellia (10.5% of S. sladeni and
11.0% of O. sarsii vadicola), Poseidonibacter (6.0 and 6.0%),
and Pseudofulvibacter (4.1 and 6.6%). It was worth noting that
Ca. Hepatoplasma (20.0%) was the top dominant genus in
S. sladeni, while its abundance was lower in O. sarsii vadicola
(4.8%, Figure 4).

Alpha Diversity Analysis

The above ASV results showed that the gut microbiota in
O. mirabilis and O. kinbergi were more specific than those of
other species. In terms of alpha diversity (Figures 3B,C), the
Simpson index and Shannon index (a measure of richness and
evenness) were the highest in O. mirabilis (p > 0.05). In contrast,
the Simpson index and Shannon index of nearshore S. sladeni
were the lowest among ophiuroids (p > 0.05). And these indexes
of sediment communities (nearshore and offshore) were lower
than those of ophiuroids (p > 0.05). The alpha diversity metrics
of the gut communities were significantly more diverse (Mann-
Whitney U tests, p > 0.05) than the sediment microbiome.

Multivariate Statistical Analysis Among Ophiuroids’
Gut Microbiota and Sediment Microbiome

Principal component analysis revealed the strong clustering
of nearshore ophiuroids, offshore ophiuroids, and sediment
microbiomes (Figure 5). The first two axes of PCA accounted
for 38.5% of variation with and the gut microbiota of ophiuroids
separated from the sediment communities. The difference
between offshore ophiuroids and sediment was also statically
significant based on the results of ANOSIM and PERMANOVA
(Supplementary Appendix A2, p < 0.05). Overall, the results
of alpha diversity and multivariate analysis demonstrated
the independence of microbial communities between benthic
ophiuroids and sediment in the Yellow Sea.

The result of LEfSe analysis showed that the biomarkers
in the gut microbial communities were different among five
ophiuroid groups (Figure 6; Supplementary Appendix A4).
In the nearshore environment, the LDA scores indicated that
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FIGURE 5 | Principal component analysis (PCA) of gut microbiota in
ophiuroids and sediment microbiome under genus level. Y, the nearshore
environment; H, the offshore environment.

the class Betaproteobacteria was the largest contributor to
intergroup differences in S. sladeni; the phylum Firmicutes
and class Bacilli have significant contributions to O. mirabilis;
the class Alphaproteobacteria was a prominent contributor
to the intergroup differences in O. kinbergi. In the offshore
environment, the class Gammaproteobacteria was the main
contributor to the difference in O. sarsii vadicola. For S. Sladeni,
the genus Ca. Hepatoplasma and higher taxonomy level of this
genus were the most prominent difference contributors.

Predictive Function of the Microbiomes
In level 2 KOs, a total of 38 and 47 pathways were annotated
by Tax4Fun and PICRUSt analysis, respectively (Supplementary
Appendix A5, A6). Five metabolism pathways were commonly
detected in all four ophiuroids, including metabolism of cofactors
and vitamins, amino acid metabolism, carbohydrate metabolism,
metabolism of terpenoids, and metabolism of other amino acids.
The results of Tax4Fun showed that there was no significant
difference within the groups of the nearshore and offshore
ophiuroids (Supplementary Appendix A7, A8). The significance
of differences in certain expression pathways was found
between S. sladeni in the nearshore and offshore environments
(p < 0.05, Figure 7A), while the four enriched KOs were Biofilm
formation-Vibrio cholerae, Propanoate metabolism, Biofilm

formation-Pseudomonas  aeruginosa, and Two-component
system, which belonged to three metabolic pathways
Environmental  Information  Processing, Environmental

Information Processing, and Cellular Processes, suggesting
the possible interaction between the gut microbial communities
and environment microbiota in S. sladeni. The PICRUSt
analysis also showed the enriched KOs that were consistent with
those results of Tax4Fun, where the five significantly different
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KOs were related to environmental signaling and metabolism
pathways (p < 0.05, Figure 7B). Using an integrated Tax4Fun
and PICRUSt methods, our results indicated the remarkable
enrichment of functional pathways under Environmental
Information Processing in S. sladeni gut microbiomes.

In the nearshore environment, the results of PICRUSt analysis
showed that eight KOs were significantly divergent (p < 0.05)
between the two species S. sladeni and O. mirabilis, mainly in
Metabolism pathways (Figure 8). In the offshore environment,
gut microbiota of S. sladeni was statistically enriched in four
KOs (p < 0.05) including Folding, sorting, and degradation;
Transport and catabolism; and Translation and Endocrine
system (Figure 9).

The Phylogenetics of Candidatus
Hepatoplasma, the Mainly Symbiotic
Bacteria in Stegophiura sladeni

A BLASTn search indicated that eight ASVs of genus Ca.
Hepatoplasma from S. sladeni were close to bacterial symbionts
of Ca. Hepatoplasma with identity of >80% (Supplementary
Appendix A9, A10). Phylogenetic analysis of Ca. Hepatoplasma

and their 16S rRNA homologs revealed the potential symbiotic
relationship of all eight ASVs and further clustered them into
three groups (Figure 10). Groups A and C, however, were specific
to four Ca. Hepatoplasma ASVs from offshore S. sladeni. Given
their higher abundance than nearshore S. sladeni (10.2 and
1.8%) and PICRUSt annotation at Amino acid metabolism and
Biosynthesis of other secondary metabolites pathways, Groups
A and C Ca. Hepatoplasma might play roles in the adaptation
of offshore dynamics and oligotrophic environments. Group B
comprises four ASVs nested among the uncultured bacterium
(Bauermeister et al., 2012; Hewson et al., 2018).

DISCUSSION

The Gut Microbiota Composition of
Ophiuroids

This study characterized the gut microbiota of the Yellow
Sea ophiuroids using 16S rRNA sequencing. The taxonomic
analysis indicated that the predominant gut microbial phyla
were Proteobacteria, Tenericutes, Firmicutes, and Bacteroidetes
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among the four ophiuroid species. These bacterial phyla have
been found in a variety of Echinodermata guts, such as sea
cucumbers (Plotieau et al., 2013) and starfish (Certonardoa
semiregularis) (Lee et al., 2018), commonly constituting over
93.7% of 16S rRNA reads. In addition, the further classification
of the largest phylum of Proteobacteria to the class of
Gammaproteobacteria showed that this lineage comprised an
average of 43.8% (arranging from 26.6 to 60.1%) of ophiuroid gut
communities. This ecologically important class has been reported
in both the foregut and hindgut of the sea cucumber Apostichopus
japonicus (Gao et al,, 2014), with functions of digesting and
degrading debris organisms (Kang et al., 2017).

Previous studies showed the multiple associations of gut
microflora with the surrounding environments (Fietz et al,
2018) and hosts (Huang et al., 2020), especially for herbivore
feeders. The study of the Pacific white shrimps indicated that
the bacterial compositions are almost the same between intestine
and sediment with different relative abundance (Fan et al.,
2019). In ophiuroids, although gut and sediment microbiota

shared the same dominant phylum of Proteobacteria, the gut
microbiota were relatively independent reflected by the genera-
level of PCA and SIMPER analysis (Figure 5 and Supplementary
Appendix A3). The species that mainly contributed for diffidence
were of genera Candidatus Hepatoplasma, Colwellia, Aliivibrio,
Poseidonibacter, and Woeseia in Proteobacteria. The difference
of gut and ambient sediment microbial communities was also
illustrated in the sea cucumber using the diversity and PCA
(Gao et al.,, 2014). Since ophiuroids are the keystone species
in the pelagic-sediment coupling layer, further investigations of
gut microbiota relationships among the particle organic matter
in benthic column layer and surface sediment are needed for
ecological roles and correlation in brittle stars and echinoderms.

Despite that our samples were collected from different seasons
and sites in the Yellow Sea, the possible variation caused
by sampling methods might have limited influence on the
composition of gut microbiome. A previous microbial study
of sediments in the Northwest Yellow Sea revealed the stable
microbial community structure and its subtle seasonal changes
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(Li, 2009), indicating the minor influence of seasonal factor
on the gut microbiota of benthic organisms in the Yellow
Sea. In addition, in this study, the microbes of sediment from
nearshore and offshore environments were assembled as a whole
group by PCA (Figure 5), showing the slight influence of
different locations on sediment microbiota. Considering the
feeding behavior and living environment of ophiuroids, the
stable community structure of the environmental microbiota may
provide a relatively steady microenvironment for ophiuroids in
this study. However, further annual observation and sequencing
studies are still needed for better understanding of the association
and interaction between the gut composition of ophiuroids and
their environmental factors.

The Gut Microbiota With the Potential
Functions in Ophiuroids

Host phylogeny and dieting habits all contribute to variation in
the gut microbiota composition. Studies have shown that the
gut microbiota of animals are species-specific and have various
biological functions, depending on the feeding types of hosts,
including herbivores, carnivores, and omnivores (Gaulke et al,,
2018; Huang et al., 2020; Yukgehnaish et al., 2020). Animals
with similar feeding habits have a more similar community
structure of their intestinal microbiota (Guo et al., 2020), while
the composition and functions of gut microbiomes varied among
different feeding types (Liu et al., 2016; Wei et al,, 2018). The
results of various feeding types of fish showed that certain energy
metabolism pathways were enriched in herbivore/omnivore and
zooplanktivore/zoobenthivore fishes, whereas Lipid metabolism
and glycan metabolism were enriched in zoobenthivore/piscivore
fishes (Huang et al., 2020).

In this study, the Tax4fun and PICRUSt were used to analyze
the functional annotation for different cohorts of ophiuroids,
but the consistent results of two methods were obtained only
in S. sladeni from two sampling sites. The remarkably enriched
KEGG pathways belonged to Environmental Information
Processing. Given that the higher temperature dynamics
in nearshore area and stable bottom water temperature
(annual < 10°C annual) of the offshore environment, the
overexpression of these environmental pathways in S. sladeni
might drive their broad-thermal tolerance. The differences of
Tax4fun and PICRUSt analysis were commonly reported in
microbial studies (Koo et al., 2017; Berlanga et al, 2018),
while their variation might be caused by the algorithm for
unknown gene prediction (i.e., ancestral state reconstruction
algorithm in PICRUSt) and reference database (i.e., Silva-
Tax4Fun and Greengenes-PICRUSt; Afthauer et al, 2015).
Further study is essential to integrate the environmental and
biological data for refining the microbial functions obtained from
analytical methods.

In PICRUSt, server energy metabolism pathways were
primarily in abundance in the three scavenger feeders, while
the Lipid metabolism and glycan metabolism pathways were
enriched in suspension feeder. The KEGG results suggested
that the key metabolism pathways associated with growth and
development showed high expression in gut microbiota of
ophiuroids (Supplementary Appendix A5, A6). The comparison
of two nearshore species O. mirabilis and S. sladeni, belonging
to different feeding types, showed significant variations in some
nutrient metabolism pathways (Figure 8). The suspension feeder
O. mirabilis displayed higher-level expression of Carbohydrate
metabolism than that in the scavenger feeder S. sladeni (Adarsha
et al, 2018). The functional difference was likely caused

Frontiers in Microbiology | www.frontiersin.org 11

March 2021 | Volume 12 | Article 645070


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Dong et al.

Gut Microbiota of Ophiuroids

by the genus Lentibacter and class Bacteroidia (Figure 4).
The genus Lentibacter is an aerobic Gram-negative bacterium
with association with algae bloom, and their function in
hydrocarbon degradation is facilitating the digestion and uptake
of organic matter (Angelova, 2017). The class of Bacteroidia,
the predominant microbes in O. mirabilis, is a member of
polysaccharide-degrading consortia (Flint and Duncan, 2014).

As both S. sladeni and O. sarsii vadicola share close food diets
and feeding type as scavenger (Adarsha et al., 2018), the PICRUSt
predicted similar expression profiles of metabolism pathways
in their gut microbiota. Variation analysis mainly found
the significant variations in the environmental adaptation
pathways, i.e., Cellular Processes, Genetic Information
Processing, and Organismal Systems in two species (Figure 9;
Supplementary Appendix A6).

Candidatus Hepatoplasma: Potential
Symbiotic Bacteria and Pathogen of
Ophiuroids

Symbiotic bacteria widely identified in the gut microflora from
varied marine invertebrates (Carrier and Reitzel, 2020) Ca.
Hepatoplasma, as a symbiotic bacterium, are comparatively
stable intestinal members, which are reported in a variety of
the isopod species (Sebastian and Zimmer, 2008; Cheng et al.,
2019), sea urchin (Li et al.,, 2018), and shrimps (Dong et al.,
2019). In our study, Ca. Hepatoplasma was abundant in the
gut of S. sladeni from nearshore and offshore environments
and existed in O. kinbergi and O. sarsii vadicola. The BLAST
search revealed the low similarity (<50%) of Ca. Hepatoplasma
between ophiuroids and identified sequences in NCBI. The
phylogenetic analysis further revealed the sister relationship
between Ca. Hepatoplasma in ophiuroids and gut symbionts,
such as the genus in amphipods (Figure 10). In amphipods, the
genus Ca. Hepatoplasma plays an important role in improving
growth rate and survival of host under low nutrient conditions
(Sebastian and Zimmer, 2008; Horvathova et al., 2015). Due
to the high abundance of Ca. Hepatoplasma in ophiuroid
guts, the association of symbiotic bacteria may improve the
nutrition metabolism and survival of brittle stars. Further
studies are needed to characterize these symbiotic bacteria
and their potential roles of the metabolism and environmental
adaptation in ophiuroids.

CONCLUSION

Here, we report the gut microbiota of four dominant ophiuroids
in the Yellow Sea, and we enhance our understanding of diversity
and association of host-microbiomes in the environmental
adaptation of echinoderms. Despite the limitations (different
times and different locations) of sampling efforts, some
interesting phenomena were found in the gut microbiota of
ophiuroids between two different feeding types, such as scavenger
and suspension feeders. The composition of the gut microbiota
exhibited divergent bacterial profiles at higher taxonomic levels
in the four ophiuroid species. Functional analysis revealed the
significant difference in some metabolism-related pathways, such

as Amino acid metabolism and Carbohydrate metabolism, in
the herbivores O. mirabilis and carnivores S. sladeni. Moreover,
the putative symbiotic bacteria Ca. Hepatoplasma was found
in ophiuroid guts, which may facilitate the host’ nutritional
metabolism and life-history adaptation. Our work contributed a
comprehensive set of data for further understanding the diversity
and function of gut microbiota. Further analysis by metagenome
and other relative technologies of ophiuroids and their symbiotic
bacteria should be conducted to elucidate the host-microbiome
interaction and their implication in benthic-pelagic coupling.
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