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gut microbiota and colitis in mice. We generated Rgmb knockout mice and inducible
Rgmb knockout mice and induced colitis using dextran sulfate sodium (DSS) in these
mice. 16S ribosomal RNA (rRNA) high-throughput sequencing was performed to acquire
the gut microbiota composition and abundance. We found that Rgmb deficiency
significantly altered the diversity of gut microbiota and also induced dysbiosis. In sharp
contrast to the balanced distribution of various bacteria in control mice, Prevotellaceae
was almost exhausted in Rgmb-deficient mice under both basal and inflammatory
conditions. Correlation analysis indicated that Prevotellaceae was negatively associated
with inflammation in Rgmb-deficient mice with colitis. Similar results were obtained at the
early inflammatory stage of colitis associated colon cancer (CAC). Taken together, our
results reveal that Rgmb deficiency leads to dysbiosis of predominant gut microbiota
under basal and inflammatory conditions. Rgmb-deficiency-mediated Prevotellaceae
loss may render mice more susceptible to intestinal inflammation. Therefore, RGMb
may be a novel potential target for reconstruction of the gut microbiota for the treatment
of IBD.

Keywords: Rgmb deficiency, colitis, gut microbiota, Prevotellaceae, intestinal mucosa

INTRODUCTION

Inflammatory bowel disease (IBD) including ulcerative colitis (UC) and Crohn’s disease (CD)
can be induced by multiple causes (Feuerstein et al., 2020; Torres et al., 2020). In addition
to the environmental, genetic, and immune factors, dysbiosis of microbiota has been found to
contribute to the initiation and development of IBD (Aschard et al., 2019; Lloyd-Price et al., 2019;
Ansari et al., 2020). Accumulating evidence demonstrates that IBD is associated with altered gut
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microbiome and immune abnormalities (Chen et al., 2014;
Imhann et al, 2018; Franzosa et al, 2019). Rebuilding the
normal gut microbiota has become a new strategy for the
IBD treatment. Specific genetic deficiency weakens the mucosal
defense ability and increases the susceptibility to colitis. Although
the important role of gut microbiota has been widely accepted,
the mechanisms of dysbiosis are not fully understood. Exploring
the genetic contributions to gut microbiota contributes to our
understanding of the mechanisms underlying IBD development
(Aschard et al., 2019).

Intestinal chronic inflammation is an established risk factor
for colorectal cancer (CRC) in patients with IBDs. With the
colitis progression and the mucosal epithelial barrier injury,
the risk of CRC increases (Dupaul-Chicoine et al, 2010).
Inflammatory epithelial cells produce reactive oxygen species,
which affect carcinogenesis-related genes and proteins via genetic
or epigenetic modifications (Chiba et al., 2012; Aviello et al.,
2019). The intestinal epithelium is exposed to a huge burden of
foreign antigens and various microorganisms, which collectively
contribute to the development of intestinal inflammation into
carcinoma (Plichta et al., 2019).

Repulsive guidance molecule b (RGMb/Dragon) is a member
of RGM family, which consists of RGMa, RGMb, and RGMc.
RGMb is a co-receptor for bone morphogenetic proteins (BMPs)
(Xia et al., 2007). Previously, we found that RGMb was highly
expressed in macrophages, and RGMb is an important negative
regulator of IL-6 expression in immune cells (Xia et al,
2011). RGMb promoted CRC via the Erk1/2-BMP4-Smad1/5/8
pathways and induced oxaliplatin resistance by inhibiting JNK
and p38 MAPK activation (Shi et al., 2015, 2016).

RGMD is highly expressed in normal resting lung interstitial
macrophages and alveolar epithelial cells, whereas programmed
death ligand-2 (PD-L2) is expressed in lung dendritic cells. It has
been reported that PD-L2 and BMP-2/4 bind to distinct sites on
RGMb (Xiao et al., 2014). Blockade of the interaction between
RGMb and PD-L2 markedly interfered with the initial T cell
expansion required for respiratory tolerance and impaired the
development of respiratory tolerance. PD-1 inhibits antitumor
immunity, while RGMb regulates respiratory immunity (Xiao
et al., 2014; Ohaegbulam et al., 2015). PD-L2 binds to both PD-
1 and RGMb. These observations suggest that RGMb may play
an important role in immune and inflammatory disorders. In
the present study, we examined the gut microbiota in Rgmb-
deficient mice under basal conditions, and after induction of
colitis, we found dysbiosis of gut microbiota in those mice. Our
results suggest that RGMD plays an important role in controlling
microbiota homeostasis.

MATERIALS AND METHODS

Ethics Statement

All procedures involving experimental animals were performed
in accordance with protocols that were approved by the Ethics
Committee for Animal Research of Jinan University, Guangzhou,
China (No. IACUC-20180316-01) and complied with the Guide

for the Care and Use of Laboratory Animals (NIH publication
No. 86-23, revised in 1985).

Global Rgmb Knockout Mice

Rgmb¥//10* mice on C57BL/6 background have been described
(Liu et al., 2018). Stra8-icre mice were purchased from Jackson
Laboratory (Stock No: 017490). In the Stra8-icre transgenic line,
cre is expressed in pre-meiotic germ cells. To obtain global
Rgmb knockout (gKO) mice, Rgmb/ /¥ mice were mated with
Stra8-icre mice to Rgmb/’**/"; Stra8-icre mice, which then were
intercrossed to obtain heterozygous gKO. Heterozygous animals
were bred to obtain heterozygous and homozygous Rgmb-null
(RgmbgX©) mice. Mice were housed under specific pathogen-free
(SPF) conditions with a light/dark cycle of 12/12 h.

Inducible Rgmb Knockout Mice

Inducible knockout mice (igKO) were obtained by crossbreeding
of Rgmb/o¥/flox with ROSA26-CreERT2 mice on the C57BL/6
background. Customized food pellets with Tamoxifen (Sigma-
Aldrich, T5648), with a concentration of 500 mg Tamoxifen/1 kg
pellets, were provided to induce global deletion of the Rgmb gene.

DSS-Induced Colitis in Mice

The inducible Rgmb knockout and control mice were free to
drink fresh 3% (w/v) dextran sulfate sodium (DSS) (31404,
Sigma) solution continuously for 7 days to induce colitis. Control
mice were free to drink distilled water only. Body weights and
disease activity index (DAI) were monitored. Serum and colon
tissues were harvested for analysis.

AOM/DSS-Induced Colitis Associated
Colon Cancer in Mice

Mice were injected intraperitoneally with AOM at a dose of
12.5 mg/kg body weight. One week after the injection, 3% DSS
was administered to mice via their drinking water for 7 days, and
they then were switched to normal drinking water for 16 days.
The treatments were repeated for three cycles.

Immunohistochemical Staining

Colon tissue samples were formalin-fixed, paraffin-embedded,
and sectioned. Antigen was retrieved by Citrate Antigen Retrieval
solution (Maxim, Fuzhou, China). Sections were treated with
peroxidase and blocked with 10% donkey serum. The sections
were incubated with the RGMb antibody (AF3630, R&D Systems,
Minneapolis, MN, United States) overnight at 4°C. After washes,
the sections were incubated with anti-goat secondary antibodies
(HAF109, R&D Systems, Minneapolis, MN, United States) and
DAB Detection Kit (Maxim, Fuzhou, China) before they were
counterstained with hematoxylin.

ELISA

Serum was collected from DSS-induced colitis mice and
measured using the IL-10 (EMC005.48), IL-6 (EMCO004.48),
TNF-a (EMC102a.48), and INF-y (EMCI101g.48) ELISA
kits (Neobioscience, China) according to the manufacturer’s
instructions. Detection reagents A and B were added following
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the substrate solution, and the reaction was terminated with the
STOP solution. The absorbance at 450 nm was measured using a
microplate reader.

Fecal Sample Collection and DNA

Extraction

Fresh feces were collected from heterozygous Rgmbs<® (Rgmb™*)
and wildtype (Rgmb*/T) mice at 10 weeks of age, and
from Rgmb’¢KO and control mice after the end of Tamoxifen
administration. Each fecal sample was pooled from five
littermates. DNAs of fecal samples were extracted using QIAamp
Fast DNA Stool Mini Kit (Qiagen, DE). Quality of the extracted
DNAs was evaluated by 1.5% agarose gel electrophoresis in Tris-
Acetate-EDTA buffer. DNA samples were stored at —20°C until
library preparation and 16S ribosomal RNA (rRNA) sequencing.

Library Preparation and 16S rRNA
Sequencing

The V4 hypervariable region of the bacterial 16S rRNA
was amplified with the forward primer 515F (5'-
GTGYCAGCMGCCGCGGTAA-3') and the reverse primer
806R (5'-GGACTACNVGGGTWTCTAAT-3') using KAPA HiFi
HotStart ReadyMix (KAPA Biosystems, United States). The
PCR products were purified using an AxyPrep PCR Cleanup Kit
(Axygen, United States) following the manufacturer’s protocol.
Paired-end sequencing was performed using Illumina FC-420-
1004 MiniSeq Mid Output Kit (Illumina, United States) based on
an Illumina MiniSeq System (Illumina, United States).

The raw paired-end reads were assembled and merged
by FLASH (Magoc and Salzberg, 2011; Zhang et al, 2019).
The PCR primers were subsequently truncated by cutadapt
(Martin, 2011). The quality-controlled sequences were further
chimerically removed and OUT-clustered by Usearch (Edgar,
2013). In detail, all reads were demultiplexed into one file,
clustered at 97% similarity, and then the chimera checking was
performed using UCHIME in reference mode. Representative
sequences were generated, singletons were removed, and then
a final operational taxonomic unit (OTU) table was created.
The representative sequences of OTU were aligned on the Silva
database for taxonomic classification by RDP Classifier.

Bioinformatics and Statistical Analyses

Alpha-diversity (a-diversity) metrics [ACE, Shannon and Pielou’s
evenness index (J)] and beta-diversity (B-diversity) metrics
[principal component analysis (PCA)] were all performed by
R package vegan (version 2.5-5) (Oksanen et al., 2015). The
taxa abundance in different levels was measured and plotted
using ggplot2 (Wickham, 2009). LEfSe analysis was performed to
identify taxa with differentiating abundance in the different group
with LEfSel.0 (Segata et al., 2011). The differential bacteria taxa
in different groups were screened by wilcox.test with the P-value
adjustment method FDR. ANOVA tests were either conducted
by a one-way test or pairwise t-test with the P-value adjusted
to the “BH” method for multiple comparisons or the Bartletts
test using the equal variance and Duncan’s method (package

laercio) to group differences. Pearson’s correlation coefficient was
statistically analyzed by IBM SPSS statistics 25.0.

Statistical analysis for non-genomics data was performed
using SPSS 21.0 software (SPSS Inc., Chicago, IL, United States).
Data between two groups were compared by using Student’s t-test
(means + standard deviation). Pearson’s correlation coefficient
(r) is used to analyze the correlation between two variables. All
of the values are expressed as the mean + SD of at least three
independent experiments performed in triplicate, and P < 0.05
was considered to be statistically significant. Graphs were plotted
using GraphPad Prism 8 software (GraphPad Software Inc., San
Diego, CA, United States).

Data Availability

The 16S sequencing raw reads of this research are available on the
NCBI SRA. The accession number for the 16S rRNA sequencing
data reported in this paper is NCBI SRA: PRINA690936.

RESULTS

Rgmb-Deficiency Exacerbated Colitis in
Mice

In order to explore the role of Rgmb in colitis, we induced
colitis in Rgmb-deficient (Rgmb¢XO, Supplementary Figure 1a)
and control mice using 3% DSS in drinking water for 7
consecutive days (Figure 1A). Immunohistochemistry showed
that naive control mice exhibited RGMb expression in both
epithelial and parenchymal cells, while this expression was
absent in Rgmb-deficient mice. Consistent with our previous
observation (Shi et al., 2015), RGMb expression in the colonic
epithelial cells was increased after DSS treatment in control mice
(Figure 1B). Histological examination demonstrated a loss of
crypts, infiltration of inflammatory cells into the mucosa and
submucosa, and edema of the submucosa in control mice, and
these phenotypes were much more severe in Rgmb-deficient
mice. Mucosal injury scores were dramatically increased in
Rgmb-deficient mice compared with control mice (Figure 1C).
Body weights were much more decreased in Rgmb-deficient mice
than in control mice as the colitis progressed (Figure 1D). DAI of
Rgmb-deficient mice was dramatically increased compared with
control mice (Figure 1E). After 7 days of DSS administration,
colitis was observed in both Rgmb-deficient and control mice.
Serum concentrations of IL-6, IL-10, TNF-o (P = 0.05), and
INF-y were higher in Rgmb-deficient mice than in control mice
(Figure 1F). Thus, deletion of Rgmb exacerbated colitis.

Rgmb Deficiency Induced Dysbiosis of
Gut Microbiota in Mice With Colitis

To understand the mechanisms by which Rgmb deficiency
promoted colitis, we pooled fresh feces from littermates of Rgmb-
deficient and control mice after colitis induction, and performed
16s rRNA gene sequencing for fecal microbiota. As shown
by ACE index, reduced species and community richness were
observed in Rgmb-deficient mice (Figure 2A). Shannon indexes
indicated that more gut microbial diversities were captured with
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FIGURE 1 | More severe colitis in Rgmb-deficient mice. (A) The schematic diagram showing the protocol for induction of colitis by DSS in Rgmb-deficient (igkO) and
control (Ctrl) mice. (B) H&E and IHC staining. H&E staining shows colon tissues of normal or colitis mice with or without DSS treatment. IHC staining indicates that
Rgmb was expressed in the colons of control mice, but the signal was lost in Rgmb igkO colons. Brown color represents staining for RGMb protein. Blue represents
the nuclei. (C) Histological scores of intestinal tissues of Rgmb-deficient and control mice with calitis. (D) Body weights of colitic Rgmb igkO and control mice.

(E) DAIl of colitic Rgmb igkO and control mice. (F) Serum concentrations of serum IL-6, IL-10, TNF-a, and INF-y in colitic Rgmb igkO and control mice. n = 5,

the current sequencing depth in Rgmb-deficient mice than in
control mice. ] index demonstrated a significant rise in species
evenness in Rgmb-deficient mice (Figure 2A). Observed OTUs
from weighted Unifrac PCA showed significant compositional
discriminations of fecal microbiota between Rgmb-deficient and
control mice (Figure 2B).

Colitis associated bacterial taxa were determined by
differential abundance analysis. Several bacterial OTUs
were differentially abundant in Rgmb-deficient mice
compared with control mice in different taxonomic
ranks (Figures 2C,D). Moreover, bacterial richness was
correspondingly altered by Rgmb-deficiency in colitic

mice. We observed enrichments of Muribaculaceae,
Lachnospiraceae, Ruminococcaceae, Akkermansiaceae,
Rikenellaceae, Bacteroidaceae, Burkholderiaceae, Tannerellaceae,

Lactobacillaceae, and Marinifilaceae, and reduction of
Prevotellaceae, Helicobacteraceae, Deferribacteraceae,
Desulfovibrionaceae, and Mitochondria in Rgmb-deficient

colitis mice as shown by genus taxonomic rank (Figure 2E).
Of note, depletion of Prevotellaceae was observed in Rgmb-
deficient mice (Figures 2EG, left panel). We also analyzed
other bacteria and found that significant differences were only
observed in Ruminococcaceae and Odoribacter (Supplementary
Figure 2). Although there was no significant difference in
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Muribaculaceae, but the ratio of Prevotellaceae to Muribaculaceae
was significantly reduced in Rgmb-deficient mice compared with
control mice (Figure 2G, right panel). These results indicate
that Rgmb deficiency leads to gut microbiota dysbiosis in
DSS-induced colitis.

We also collected fresh feces from Rgmb-deficient or control
mice under basal conditions for 16s rRNA gene sequencing.
OTUs differentially abundant in Rgmb-deficient
mice compared with control mice in different taxonomic
ranks, and bacterial richness was correspondingly changed
(Supplementary Figures 1b,c). We also found enrichments

were

of  Muribaculaceae, =~ Ruminococcaceae, Akkermansiaceae,
Bacteroidaceae, Helicobacteraceae, Desulfovibrionaceae,
Tannerellaceae, and  Marinifilaceae, and reduction of

Prevotellaceae, Lachnospiraceae, Burkholderiaceae, Rikenellaceae,
Erysipelotrichaceae, Lactobacillaceae, and Mitochondria in
Rgmb-deficient mice (Supplementary Figure 1d). Strikingly,
depletion of Prevotellaceae and decreased ratio of Prevotellaceae
to Muribaculaceae were observed in Rgmb-deficient mice even
under basal conditions (Supplementary Figures le,f). These
results indicate that Rgmb deficiency induces dysbiosis of gut
microbiota in both normal and colitic mice.

Prevotellaceae Was Negatively
Correlated With Inflammation in
Rgmb-Deficient Mice With Colitis

Since Prevotellaceae depletion was observed in Rgmb-deficient
mice, we hypothesize that Prevotellaceae plays a role in
colitis in Rgmb-deficient mice. We analyzed the correlation of
Prevotellaceae abundance with colitis associated characteristics
(Figure 3). The abundance of Prevotellaceae was negatively
correlated with histological mucosal injury and inflammatory
cytokines including IL-6, IL-10, TNF-a, and INF-y, whereas
positively associated with body weights.

Correlation analyses were also performed between other
fecal bacteria and inflammation in Rgmb-deficient mice with
colitis (Figure 3 and Supplementary Table 1). We found
that other bacteria were corrected with colitis-associated
characteristics to various degrees. Muribaculaceae was positively
correlated with serum IL-10, TNF-a, and INF-y. Changes in
Bacteroides and Parabacteroides were positively correlated with
histological mucosal injury. Changes in Odoribacter, Blautia,
Oscillibacter, and Ruminococcaceae were negatively correlated
with body weights, whereas positively correlated with serum IL-
6. Ruminiclostridium_6, Ruminococcaceae_UCG-014, Alistipes,
Lachnospiraceae, and Lachnospiraceae_NK4A136_group were all
positively correlated with serum IL-6. Prevotellaceae_UCG-001
and Akkermansia were positively correlated with serum TNF-a.
These results further support the involvement of Prevotellaceae
in the colitis in Rgmb-deficient mice.

Prevotellaceae Was Depleted at the Early
Inflammatory Stage of Colitis Associated

Colon Cancer in Rgmb-Deficient Mice
Since IBD is a precancerous condition, and colitis has a close
relationship with colon cancer, we, therefore, induced colitis

associated CRC (CAC) in Rgmb global knockout (Rgmb$X©)
and wildtype (Rgmb™/*) mice (Figure 4A and Supplementary
Figure 3a). Since homozygous Rgmb knockout mice die
within 2-3 weeks after birth (Xia et al, 2011), we used
heterozygous Rgmb knockout mice. We analyzed heterozygous
Rgmb knockout mice under basal conditions and observed
depletion of Prevotellaceae and decreased ratio of Prevotellaceae
to Muribaculaceae in heterozygous Rgmb knockout mice
compared with wildtype mice (Supplementary Figures S3b,c).
Analysis of similarities (ANOSIM) of the bacterial community
composition showed that there was no difference in the baseline
microbial community composition between global and inducible
Rgmb knockout mice (Supplementary Figure 3d; R = —0.035,
P = 0.496).

We then induced CAC by three cycles of DSS following
intraperitoneal injection of AOM (Figure 4B). Based on the
effects of Rgmb deficiency on the gut microbiota in the DSS
model, we expected to see increased CAC formation in Rgmb KO
mice. To our surprise, Rgmb knockout mice showed decreases
in tumor number and size (Figures 4C,D) compared to wildtype
mice. We, therefore, asked whether the gut microbiota were
differentially regulated by RGMb in the CAC model than in DSS
model. To test this notion, we analyzed the gut microbiota at
different time points of the CAC induction. We first collected
fresh feces for 16S rRNA sequencing after completion of
the first cycle of DSS treatment, a stage when the mice were
in the inflammatory condition. Observed OTUs indicated
significant compositional discriminations of fecal microbiota
between Rgmb KO and wildtype colitic mice. Several bacterial
OTUs were differentially abundant in Rgmb-deficient mice
compared with wildtype ones in different taxonomic ranks
(Figures 5A,B). Moreover, bacterial richness was also altered
in Rgmb-deficient mice. Enrichments of Muribaculaceae,
Akkermansiaceae,  Bacteroidaceae,  Rikenellaceae,  F082,
Tannerellaceae, and Marinifilaceae and Gastranaerophilales, and
reduction of Prevotellaceae, Lachnospiraceae, Ruminococcaceae,
Burkholderiaceae, Desulfovibrionaceae, ~Mitochondria, and
Lactobacillaceae were found in Rgmb-deficient mice (Figure 5C).
Importantly, the depletion of Prevotellaceae and the decreased
ratio of Prevotellaceae to Muribaculaceae were observed in
Rgmb-deficient mice (Figures 5D,E). These results suggest that
there are similar alterations in Rgmb-deficient mice between DSS
treatment and the early stage of CAC.

We then analyzed the gut microbiota after completion of the
three cycles of DSS treatments when CAC are at advanced stages.
The abundance of Prevotellaceae and the ratio of Prevotellaceae
to Muribaculaceae were no longer different between Rgmb
knockout and wildtype CAC mice (Supplementary Figures 3e,f).
These results suggest that Rgmb-deficiency leads to Prevotellaceae
deletion and gut microbiota dysbiosis during the early stage but
not at the late stage of CAC.

DISCUSSION

Inflammatory bowel disease including UC and CD manifests
as relapsing and remitting mucosal inflammation, which may
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result in progressive bowel damage. IBD symptoms such as
strictures, fistula, and abscesses have substantial impacts on a
patient’s quality of life. In the most severe cases, IBD may cause
morbidity (Feuerstein et al., 2020; Torres et al., 2020). However,
the precise etiology of IBD remains incompletely understood.
Accumulating evidence demonstrated that dysbiosis of fecal and
mucosa-associated microbiota plays a role in the occurrence and
development of IBD (Chen et al., 2014; Franzosa et al., 2019).
IBD presents altered gut microbiome and immune abnormalities
(Schirmer et al., 2019). Rebuilding the normal gut microbiota has
become a new strategy for the IBD treatment (Yilmaz et al., 2019;
Sokol et al., 2020).

As a BMP co-receptor, RGMb plays an important role in
the intestinal tract. RGMb promoted CRC via Erk1/2-BMP4-
Smad1/5/8 pathways and induced oxaliplatin resistance by
inhibited JNK and p38 MAPK activation (Shi et al, 2015,
2016). Previous studies showed that RGMb is highly expressed
in RAW264.7 and J774 macrophage cell lines to negatively
regulate IL-6 expression in a BMP ligand-dependent manner.
Furthermore, IL-6 is upregulated in macrophages and dendritic
cells derived from whole lung tissue of Rgmb knockout mice
compared to respective cells derived from wildtype littermates.
These results indicate that RGMb is an important negative
regulator of IL-6 expression in immune cells, and that Rgmb-
deficient mice may be a useful model for exploring immune
and inflammatory disorders in colon (Xia et al, 2011). Our
present study showed that RGMb expression in the colon
was increased by DSS stimulation. Rgmb deletion aggravated
DSS-induced colitis. These results are consistent with our
previous findings, and further support that RGMb exerts anti-
inflammatory effects.

Programmed death ligand 2 is a ligand of PD-1. It has been
reported that PD-L2 and BMP-2/4 bind to distinct sites on
RGMb (Xiao et al., 2014). RGMb is highly expressed in normal
resting lung interstitial macrophages and alveolar epithelial cells,
whereas PD-L2 is expressed in lung dendritic cells (Larsen
et al.,, 2019). Blockade of the interaction between RGMb and
PD-L2 markedly interfered with the initial T cell expansion
and impaired the development of respiratory tolerance. PD-1
inhibits antitumor immunity of T cells, while RGMb regulates
respiratory immunity (Xiao et al., 2014; Ohaegbulam et al., 2015).
Therefore, RGMb may be an important player in the PD-1
complexes. It would be very interesting to study whether the
interaction of RGMb and PD-L2 plays a role in the altered gut
microbiota and colitis.

In the inducible Rgmb KO mice, there were significant
alterations in both a-diversity and P-diversity, exhaustion
of Prevotellaceae, and dominance of Muribaculaceae in fecal
microbiota. Importantly, these phenotypes observed in Rgmb€K©
were also found in our global Rgmb knockout (Rgmb$X©) mice.
These results collectively suggest that Rgmb deficiency leads to
dysbiosis of gut microbiota under basal conditions.

RgmbX© showed a considerable variation of species and
community richness in colitis induced by DSS. The shifted
dominance of bacteria observed under basal conditions persisted
in Rgmb®X0 mice even after induction of colitis, which
was associated with more severe colitis in Rgmb®X0 mice.
Prevotellaceae was almost exhausted at species, family, and genus
levels in Rgmb®*® mice. Three enterotypes (robust clusters)
of the human gut microbiome have been identified by the
different levels of one of three genera: Bacteroides (Enterotype
1), Prevotella (Enterotype 2), and Ruminococcus (Enterotype 3),
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FIGURE 5 | Dysbiosis of gut microbiota in global Rgmb knockout mice at the inflammatory stage of CAC. (A) The cladogram of evolution relationship between gut
microbiota from heterozygous global Rgmb knockout (Rgmb®*) and wildtype (Rgmb*/*) mice at the inflammatory stage of CAC. (B) Heatmap on the relative
abundance of gut microbiota from global Rgmb knockout and control mice at the inflammatory stage of CAC. (C) The species tree and distribution of gut bacterium
at species level. (D) The relative abundance of gut microbiota at genus level. (E) The relative abundance of Prevotellaceae (left panel) and the ratio of Prevotellaceae
to Muribaculaceae (right panel) at genus level. *P < 0.05 and **P < 0.01.

which are mostly driven by species composition (Arumugam
et al,, 2011; Gorvitovskaia et al., 2016; Levy et al., 2020). Here,
we demonstrated Rgmb-deficiency shifted the dominance from
Prevotellaceae to Muribaculaceae, thus providing a good example
of host and microbial communications, which may be useful to
manipulate the host-microbial symbiotic states.

Prevotellaceae  exhibited a negative correlation with
inflammation in Rgmb-deficient mice with colitis. Furthermore,
Prevotellaceae dominance even existed in Rgmb-deficient mice
under basal conditions. Therefore, Prevotellaceae is very likely
to be the cause instead of the consequence of the heightened
colitis in Rgmb-deficient mice. Nevertheless, whether the shifted

dominance of bacteria plays a role in the elevated colitis in Rgmb
knockout mice remains to be further clarified.

Colitis has a close relationship with colon cancer; thus, we
studied the effects of Rgmb deletion on CAC development
using the AOM/DSS model. Rgmb-deficient mice had dramatic
alterations in gut microbiota compared to wildtype mice during
the early stage of CAC, and the alterations were similar
to those observed in the DSS model. However, after the
completion of the three cycles of when CAC are already formed,
Prevotellaceae abundance was no longer different between Rgmb
KO and wildtype mice. Therefore, RGMb may play a stage-
dependent role in the gut microbiota during CAC development.
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Even more strikingly, the tumor number and size were
reduced in Rgmb KO mice compared with wildtype mice.
These results are paradoxical but suggest that some yet-to-be-
determined autonomous effects of RGMb on colonic epithelial
cells may have overridden the effects of RGMb on the gut
microbiota. The molecular mechanisms of RGMb's stimulatory
effects on CAC are currently under active investigation
in the laboratory.

Taken together, our results showed that Rgmb deletion led
to gut microbiota dysbiosis and depletion of Prevotellaceae, and
these changes may account for the elevated colitis.
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