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The cell wall integrity (CWI) pathway is composed of three mitogen-activated protein kinases 
(MAPKs), Bck1, Mkk1/2, and Slt2, and is one of the main signaling pathways for fungal 
pathogenesis, cell wall synthesis, and integrity maintenance. In this study, we characterized 
orthologs of Saccharomyces cerevisiae Bck1 and Mkk1 in the nematode-trapping (NT) 
fungus Arthrobotrys oligospora by multiple phenotypic comparison, and the regulation of 
conidiation and cell wall synthesis was analyzed using real-time PCR (RT-PCR). Both 
ΔAoBck1 and ΔAoMkk1 mutants showed severe defects in vegetative growth, cell nucleus 
number, and stress resistance. Both the mutants were unable to produce spores, and the 
transcription of several genes associated with sporulation and cell wall biosynthesis was 
markedly downregulated during the conidiation stage. Further, cell walls of the ΔAoBck1 
and ΔAoMkk1 mutants were severely damaged, and the Woronin body failed to respond 
to cellular damage. In particular, the mutants lost the ability to produce mycelial traps for 
nematode predation. Taken together, AoBck1 and AoMkk1 play a conserved role in mycelial 
growth and development, CWI, conidiation, multi-stress tolerance, trap formation, and 
pathogenicity. We highlighted the role of AoBck1 and AoMkk1 in regulating the Woronin 
body response to cellular damage and cell nucleus development in A. oligospora.

Keywords: Arthrobotrys oligospora, cell wall integrity pathway, mitogen-activated protein kinases Bck1 and 
Mkk1, cell wall damage, Woronin body, trap formation

INTRODUCTION

The fungal cell wall is essential to maintain cellular structure and protect the cells from 
environmental stresses; its integrity is very important for fungal survival and adaption under 
adverse condition (Levdansky et al., 2010). The cell wall integrity (CWI) pathway is an important 
and conserved mitogen-activated protein kinase (MAPK) signaling pathway commonly found 
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in fungi, which senses the cell wall stress signals produced by 
fungal cells during normal growth or environmental changes 
and responds in time (Turrà et  al., 2014). The CWI pathway 
is one of the main regulatory pathways for fungal cell wall 
synthesis and integrity maintenance and is also related to the 
pathogenicity of pathogens (Hohmann, 2002). In yeast, the 
CWI pathway controls cell wall synthesis and cell cycle progression 
through a conserved MAP kinase cascade (Bck1, Mkk1/2, and 
Slt2) in response to cell surface stress; its signal transmission 
depends on the cascade phosphorylation reaction, where protein 
kinase C first activates the phosphorylation of Bck1, and Bck1 
activates the phosphorylation of MKK1/2 which finally triggers 
the phosphorylation of Slt2, thereby transmitting signals to 
downstream effectors (Levin, 2005, 2011; Jin et  al., 2015).

In recent years, the CWI pathway has also been characterized 
in several filamentous fungi, such as Aspergillus fumigatus (Valiante 
et  al., 2009; Levdansky et  al., 2010), Magnaporthe grisea (Zhao 
et  al., 2005; Jeon et  al., 2008), and Beauveria bassiana (Luo 
et  al., 2012; Chen et  al., 2014). These studies indicated that 
after the cascade components of the CWI pathway were destroyed 
in fungi, the mutant strains showed varying degrees of cell wall 
defects and increased their sensitivity to cell wall interfering 
agents, which affected their pathogenicity. In addition, the 
components of the CWI-MAPK cascade are also involved in a 
variety of biological processes, such as mycelial growth, conidiation, 
and environmental stress response. In Saccharomyces cerevisiae, 
Slt2 plays an important role in regulating the cell cycle and 
promoting cell polarization (Zarzov et  al., 1996). Similarly, the 
homologous gene of Slt2 is necessary for conidiation in several 
filamentous fungi such as A. fumigatus (Valiante et  al., 2009) 
and Metarhizium robertsii (Chen et  al., 2016). Slt2 also plays a 
role in osmotic pressure regulation in several fungi, such as 
B. bassiana (Chen et  al., 2014), M. robertsii (Chen et  al., 2016), 
and Botrytis cinerea (Liu et al., 2011). Evidently, the CWI-MAPK 
signaling pathway cascade participates in the regulation of multiple 
biological processes in different pathogenic fungi.

Nematode-trapping (NT) fungi are an important natural 
enemy of nematodes. The vegetative hyphae of NT fungi can 
specifically form a variety of traps (such as adhesive networks, 
adhesive knobs, and constricting rings) to capture and infect 
nematodes (Su et  al., 2017; Yang et  al., 2020). The trapping 
initiates a series of processes, including adhesion, penetration, 
and immobilization of nematodes (Nordbring-Hertz, 2004; Yang 
et  al., 2011). Trap formation is a prerequisite for NT fungi 
to capture nematodes and is also an important indicator for 
their lifestyle switch from a saprophytic to a predacious stage 
(Nordbring-Hertz et  al., 2001; Su et  al., 2017). Arthrobotrys 
oligospora is a species of NT fungi which usually forms adhesive 
networks (traps), and when prey, such as nematodes, appear 
in the environment, the vegetative hyphae of A. oligospora 
specialize to form adhesive networks for nematode predation 
(Nordbring-Hertz, 2004). In 2011, we  sequenced the genome 
of A. oligospora, and proteomic analysis suggested that the G 
protein signaling pathway might be  involved in trap formation 
and pathogenicity (Yang et  al., 2011). Subsequently, Yang et  al. 
(2020) proved that G protein signaling plays an indispensible 
role in trap formation and pathogenicity of A. oligospora. 

Genomic analysis showed that there is a conserved MAPK 
cascade pathway in A. oligospora that is homologous to Bck1-
Mkk1-Slt2  in yeast. Recently, we  found that orthologous Slt2 
plays an important role in two NT fungi, A. oligospora and 
Monacrosporium haptotylum (syn. Dactylellina haptotyla), which 
is involvement in mycelial growth and stress resistance. 
Specifically, the deletion of Slt2 abolished conidiation and trap 
formation (Zhen et  al., 2018). Similarly, a Slt2 deletion mutant 
of A. oligospora displayed severe defects in vegetative growth, 
conidiation, and trap morphogenesis (Chen et al., 2021). However, 
the functions of Bck1 and Mkk1 upstream of Slt2 are poorly 
understood in A. oligospora and NT fungi specifically. In this 
study, orthologous A. oligospora Bck1 (AoBck1) and Mkk1 
(AoMkk1) were characterized via multi-phenotypic analyses, 
and their regulatory mechanisms in conidiation and stress 
resistance were analyzed by real-time PCR (RT-PCR).

MATERIALS AND METHODS

Fungal Strains, Plasmid Vector, and 
Culture Conditions
Arthrobotrys oligospora (ATCC24927) and the mutant strains 
ΔAoBck1 and ΔAoMkk1 were cultured on potato dextrose agar 
(PDA) plates at 28°C. Saccharomyces cerevisiae strain FY834 
(ATCC90845) was cultured in YPD (10 g/L yeast extract, 20 g/L 
peptone, and 20  g/L glucose) broth or solid YPDA medium 
(YPD with 16  g/L agar). Plasmids pRS426 and pCSN44 were 
used to construct the recombinations, and they were maintained 
in the Escherichia coli strain DH5α (TaKaRa, Shiga, Japan). 
PDAS medium (PDA supplemented with 0.6  M sucrose) was 
used for protoplast regeneration, and cornmeal-molasses-yeast 
(CMY), tryptone-glucose (TG), and tryptone yeast-extract glucose 
agar (TYGA) media were used to analyze mycelial growth and 
related phenotypic traits, as previously described (Ma et  al., 
2020). Caenorhabditis elegans (strain N2) worms were incubated 
in an oatmeal medium at 26°C for the bioassays (Xie et al., 2020).

Analysis of the AoBck1 and AoMkk1 
Sequence
The sequences of AoBck1 (AOL_s00054g475) and AoMkk1 
(AOL_s00076g699) were retrieved based on the homologous 
sequences of the model fungi S. cerevisiae, A. nidulans, and 
N. crassa by performing BLASTP searches in the NCBI database. 
Homologous sequences of AoBck1 and AoMkk1 in diverse fungi 
were searched using the BLAST algorithm in GenBank, and 
the DNAman software was used to align and examine their 
similarity. The Expasy-Compute pI/MW tool1 was used to 
calculate the theoretical isoelectric point (pI) and molecular 
weight (MW) of AoBck1 and AoMkk1.

Disruption of AoBck1 and AoMkk1 Genes
The AoBck1 and AoMkk1 genes were disrupted using homologous 
recombination, as previously described (Tunlid et  al., 1992; 
Colot et  al., 2006). Briefly, 5' and 3' flanking sequences of the 

1 https://www.expasy.org/resources/compute-pI-mw
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target gene and the hygromycin-resistance gene cassette (hph) 
were amplified from A. oligospora and pCSN44 with paired 
primers (Supplementary Table S1), respectively. Then, three 
DNA fragments and linearized pRS426 (digested with EcoRI 
and XhoI) were co-transformed into S. cerevisiae using 
electroporation. Finally, the recombinant plasmids, pRS426-
AoBck1-hph and pRS426-AoMkk1-hph, were individually 
transformed into A. oligospora protoplasts, as described previously 
(Yang et  al., 2018). Southern blots and PCR analyses were 
used to further verify the transformant colonies grown on the 
PDAS medium (Tunlid et  al., 1999). The Plant Genomic DNA 
Kit (TaKaRa) was used to extract genomic DNA from fungal 
strains, and their DNA were individually digested with restriction 
enzymes SphI and NheI for Southern blot analysis. The 
North2South Chemiluminescence Hybridization and Detection 
Kit (Pierce, Rockford, IL, United  States) was used for the 
Southern blots according to the manufacturer’s instructions.

Comparison of Mycelial Growth, 
Morphology, and Conidiation
The wild-type (WT) A. oligospora strain and the mutant strains 
ΔAoBck1 and ΔAoMkk1 (two independent transformants were 
used for phenotypic analysis) were cultured on PDA plates 
at 28°C for 6  days, following which 7  mm diameter hyphal 
discs of each strain were inoculated separately in PDA, TYGA, 
and TG media at 28°C for 3–7  days, and the mycelial growth 
rate and colony morphology were observed at specific time 
intervals (Xie et  al., 2019). To assess the conidiation capacity 
of each strain, the fungal strains were cultured on CMY 
medium at 26°C for 15  days, and the conidial yield was 
determined as previously described (Liu et  al., 2017). The 
hyphae of the WT and mutant strains were stained with 
20  μg/ml calcium fluoride fluorescent white (CFW; Sigma-
Aldrich, St. Louis, MO, United States) to observe the mycelial 
morphology. To observe the mycelial septum and cell nucleus, 
the hyphae of the WT and mutant strains were stained with 
20 μg/ml 4′,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich, 
St. Louis, MO, United  States) for 30  min, then washed three 
times with phosphate buffer (pH 6.8–7.2), and further stained 
with 80  μg/ml CFW for 5  min. The samples were observed 
using an inverted fluorescence microscope (Carl Zeiss, 
Heidenheim, Germany). Mycelial morphology was observed 
via scanning electron microscopy (SEM) 7  days post PDA 
culture (Quanta-200; FEI, Hillsboro, OR, United  States), and 
cell wall damage and the Woronin body of hyphae were 
further examined via transmission electron microscopy (TEM; 
Hitachi, Tokyo, Japan) 28  h post PD culture, respectively. 
Samples for the SEM and TEM were treated as previously 
described (Zhang et  al., 2013, 2019b).

Stress Assays
Hyphal discs (7  mm diameter) of each strain were incubated 
on TG medium alone (control) or supplemented with chemical 
stressors like Congo red and SDS (cell wall interfering 
agents), NaCl and sorbitol (osmotic agents), H2O2 (oxidant), 
and menadione. The colonies were cultured at 28°C for 6 days, 

and the relative growth inhibition (RGI) rate of each strain 
was calculated on different media to evaluate the response to 
chemical stress, as previously described (Liu et  al., 2017; Zhen 
et  al., 2018). In addition, the fungal strains were incubated 
on PDA medium at 28°C for 2  days, then placed at different 
temperatures, such as 28, 34, 38, 40, 42, and 44°C for 8  h, 
and then left to grow at 28°C until the 6th day. The colony 
diameter was measured, and RGI values were calculated as 
described above. All the stress assays for each strain were 
repeated thrice.

Trap Formation and Nematocidal Activity 
Analyses
Hyphal discs (7  mm diameter) of each strain were incubated 
on water agar (WA, 20%) medium at 28°C for 5  days. Then, 
approximately 300 wild-type L4-stage C. elegans nematodes 
were added to each WA plate to induce trap formation and 
nematode predation. A microscope (Olympus, Tokyo, Japan) 
was used to observe and count the traps and the captured 
nematodes from each plate at 48  h. The bioassays for each 
strain were repeated three times.

Transcriptional Analyses of Selected 
Genes
The hyphae of the WT and mutant strains were cultured on 
TYGA at 28°C, and the mycelia samples were collected on 
the 3rd, 5th, and 7th day, and the total RNA of mycelia samples 
was isolated using an AxyPrep multisource RNA miniprep kit 
(Axygen, Jiangsu, China), and then reverse-transcribed into 
cDNA using a FastQuant RT kit with gDNase (TaKaRa). The 
cDNA samples of each strain were used as templates for RT-PCR 
analysis with specific paired primers (Supplementary Table S2). 
The β-tubulin gene of A. oligospora was used as an internal 
standard, and the transcriptional level of the genes associated 
with conidiation and cell wall synthesis was calculated using 
the 2−ΔΔCt method (Livak and Schmittgen, 2001). Three replicates 
were performed in the RT-PCR experiments, and the RT-PCR 
analysis for each gene was repeated three times. The relative 
transcript level (RTL) of candidate genes was estimated as the 
transcript ratio of each mutant vs. the WT.

Statistical Analyses
GraphPad Prism version 8.0 (GraphPad Software, San Diego, 
CA, United  States) was used for statistical analysis of data 
from three repeated experiments, and the variance between 
the WT and mutants was estimated by the Tukey’s honest 
significant difference (HSD) test. Value of p  <  0.05 was 
considered significant.

RESULTS

Sequence Analyses of AoBck1 and 
AoMkk1
The nucleotide sequences of AoBck1 (8,518 bp with four introns) 
and AoMkk1 (4,525  bp with four introns) were retrieved from 
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FIGURE 1 | Comparison of colonial and hyphal morphologies between the wild-type (WT) and mutants. (A) Colony morphology of the WT and mutants incubated 
on tryptone yeast-extract glucose agar (TYGA) medium for 5 days at 28°C. (B) Colony diameters of the WT and mutants incubated on potato dextrose agar (PDA), 
TYGA, and tryptone-glucose (TG) media for 7 days. Error bars: SD from three replicates; asterisk: significant differences between mutant and WT (p < 0.05). 
(C) Mycelial morphologies of the WT and two mutants as observed by light microscopy. Arrows: mycelial tip and the third branch of mycelium. Bar = 20 μm. (D) The 
distance from the tip of the mycelium of each strain to the third branch.

the fungus A. oligospora. AoBck1 encodes a polypeptide of 
1,816 amino acids with a predicted MW of 198  kDa and a 
pI of 8.31. AoMkk1 encodes a polypeptide of 478 amino acids 
with a predicted MW of 52  kDa and pI of 9.09. Both the 
encoded proteins contain multiple conserved domains and 
motifs, such as the protein kinase-like domain superfamily 
(IPR011009), protein kinase domain (IPR000719), ATP binding 
site of protein kinase (IPR017441), and active site of Ser/Thr 
protein kinase (IPR008271). It was found that both AoBck1 
and AoMkk1 contain the conserved active site motif “-D[L/I/V] 
K-,” AoBck1 contains the conservative motif “-G[S/T][V/P]
[F/M][W/Y]M[A/S]PE-” (Supplementary Figure S1A), and 
AoMkk1 contains the conservative motif “-[S/T] xxx [S/T] in 
addition to “-D[L/I/V] K-” (Supplementary Figure S1B). 
Moreover, AoBck1 shares a high degree of similarity (79.4 and 
85.5%) with the orthologs of the NT fungi Drechslerella 
stenobrocha (Liu et  al., 2014) and D. haptotyla (Meerupati 
et  al., 2013), respectively. Similarly, AoMkk1 also shares a high 
identity (89.4 and 93.1%) with the orthologs of NT fungi D. 
stenobrocha (Liu et  al., 2014) and D. haptotyla (Meerupati 
et  al., 2013), respectively. In contrast, 21.1–59.3% identity was 
found between AoMkk1/AoBck1 and the orthologs of other 
filamentous fungi.

Verification of the Positive Transformants 
of AoBck1 and AoMkk1
Single-gene disruption mutants of AoBck1 and AoMkk1 were 
constructed by homologous recombination. The positive 
transformants were verified by PCR amplification with primers 
YZBck1-F/R and YZMkk1-F/R (Supplementary Table S1; 
Supplementary Figures S2A,B), respectively. To avoid the 
presence of false positives due to multi-site insertion or incorrect 

insertion sites, further identification was performed using 
Southern blots. Only one specific hybridization band was 
identified in the ΔAoBck1 and ΔAoMkk1 mutants, respectively, 
indicating that there was no non-specific recombination in 
the ΔAoBck1 and ΔAoMkk1 strains (Supplementary Figures 
S2Aa-c,Ba-c). Finally, two transformants for AoBck1 and AoMkk1 
were confirmed to contain the correct mutations. A single 
strain from each mutant was selected for subsequent studies 
because the independent mutant strains for each gene showed 
similar phenotypic properties.

AoBck1 and AoMkk1 Regulate Mycelial 
Growth, Morphology, and Cell Nucleus 
Number
Deletion of AoBck1 and AoMkk1 caused a significant reduction 
in mycelial growth in the PDA, TG, and TYGA media 
(Figures  1A,B). In addition, the WT strain had very dense 
aerial hyphae in the TYGA medium, whereas colonies of the 
ΔAoBck1 and ΔAoMkk1 mutants were irregular and lacked 
aerial hyphae (Figure  1A). In addition, the mycelial tip of the 
third branch in the ΔAoBck1 and ΔAoMkk1 mutants was longer 
than that of the WT strain (Figures 1C,D). After CFW staining, 
it was found that the hyphal widths of the ΔAoBck1 and 
ΔAoMkk1 mutant strains were significantly smaller, curly short 
branches were increased, and the hyphal cell length was 
significantly uneven compared to the WT strain (Figures 2A–C). 
Moreover, the nuclei of the WT and the ΔAoBck1 and ΔAoMkk1 
mutant strains were observed by DAPI staining, and the number 
of nuclei in the mycelial cells of the ΔAoBck1 and ΔAoMkk1 
mutant strains was significantly reduced (only 2–4 nuclei per 
cell), whereas the hyphal cells of the WT strain contained 
6–22 nuclei (Figures  2D,E).
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AoBck1 and AoMkk1 Are Necessary for 
Conidiation
Deletion of AoBck1 and AoMkk1 resulted in a deleterious 
effect in conidiation, and two mutants were unable to produce 
conidia (Figures  3A,B). In order to probe into the regulation 
of AoBck1 and AoMkk1 for conidiation in A. oligospora, nine 
sporulation-related genes, VeA, FlbC, NsdD, FluG, RodA, VosA, 
VelB, AspB, and AbaA, were selected, and their transcription 
was analyzed at different growth stages using RT-PCR. The 
fungus A. oligospora usually begins to form conidiophores 
for conidiation on the 3rd day, the number of conidiophores 
and conidia increase rapidly on the 5th day, and most 
conidiophores and conidia are produced on the 7th day. The 
expression levels of all genes were significantly downregulated 
in the ΔAoBck1 mutant (Figure  3C). Similarly, all genes 
involved in sporulation, except NsdD and AspB at days 3, 
were significantly downregulated in the ΔAoMkk1 mutant 
(Figure  3D). Specifically, VelB and FluG were downregulated 
more significantly at day 3 and day 7, respectively, in the 
ΔAoBck1 mutant (Figure  3C). Our analysis indicated that 
AoBck1 and AoMkk1 play important roles in the conidiation 
of A. oligospora.

AoBck1 and AoMkk1 Play a Crucial Role in 
CWI
Scanning electron microscopy observations showed that the 
mycelial surface of the ΔAoBck1 and ΔAoMkk1 mutants was 
severely damaged, and the mycelia was fragmented and meshed 
(Figure  4A). Further TEM observation also revealed a similar 
phenomenon; the cell walls of the ΔAoBck1 and ΔAoMkk1 
mutants were loosely distributed outside the cell membrane; 
and their cell membranes were incomplete. In contrast, compact 
cell walls and distinctly outlined membranes were observed 
in the WT hyphae cells (Figure  4B). To further detect cell 
wall damage, the WT and the mutant strains ΔAoBck1 and 
ΔAoMkk1 were cultivated in PD broth for 24 h and the mycelia 
of each strain were treated with cell wall-degrading enzymes, 
snailase, and cellulase. As a result, the hyphal cells of the 
ΔAoBck1 and ΔAoMkk1 mutants released 3.5–3.7 and 6.04–6.12-
fold more protoplasts than that of the WT strain after 3 and 
6  h treatments, respectively (Supplementary Figure S3). 
Moreover, three to four independent Woronin bodies were 
observed near the hyphal septa of the WT strain, and the 
injured hyphal septa were sealed by Woronin bodies (Figure 4C). 
The Woronin bodies are reduced in the mutant strains, although 

A

B C E

D

FIGURE 2 | Comparison of hyphal septum, branch, and cell nucleus between the WT and mutants. (A) Hyphal septa of the WT and mutants were stained with 
20 μg/ml calcofluor white (CFW) after the fungal strains were incubated on cornmeal-molasses-yeast (CMY) medium for 7 days. White arrows: hyphal septa; red 
arrows: hyphae branch. Bar = 10 μm. (B) Comparison of mycelial width of each strain. (C) Comparison of mycelial cell length of the WT and mutants; 61 mycelial 
cells were randomly selected, and the width and length of hyphal cell were measured using ImageJ software. Error bars: SD from 61 replicates. (D) Hyphae of the 
WT and each mutant strain were stained with CFW and 4',6-diamidino-2-phenylindole (DAPI) after the fungal strains were grown for 7 days on CMY medium; 
samples were examined using an inverted fluorescence microscope. White arrows: septa; red arrows: cell nucleus. Bar = 10 μm. (E) Comparison of mycelial cell 
nuclei between the WT and each mutant strain. Thirty hyphal cells were randomly selected for counting cell nuclei. Error bars: SD from 30 replicates; an asterisk 
indicates a significant difference compared to the WT (p < 0.05).
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they are near the opening of the septa (Figure  4C). Six genes 
of A. oligospora involved in cell wall biosynthesis were 
transcriptionally compared between the WT and mutant strains 
by RT-PCR, and it was observed that all the genes were 
downregulated in the ΔAoBck1 and ΔAoMkk1 mutants compared 
to the WT strain (Figures  4D,E).

AoBck1 and AoMkk1 Regulate Multiple 
Stress Responses
Compared to the WT, the ΔAoBck1 and ΔAoMkk1 mutants 
showed increased sensitivity to several chemical stressors like 
two cell wall interfering agents (Congo red and SDS) and two 
osmotic agents (NaCl and sorbitol), whereas they were unaffected 
by oxidants H2O2 and menadione (Figure 5A). The RGI values 
of the ΔAoBck1 mutant exposed to 0.2 M NaCl, 0.5 M sorbitol, 
0.07  mM Congo red, and 0.7  mM SDS were increased by 
15.27, 30.60, 28.5, and 27.1%, respectively, as compared to the 
WT strain. At similar exposure concentrations of the chemical 
stressors as the ΔAoBck1 mutant, the RGI values of the ΔAoMkk1 
mutant colonies with sorbitol, NaCl, Congo red, and SDS were 
increased by 16.02, 20.32, 33.5, and 27.4%, respectively, in 
comparison to the WT (Figure  5B). Moreover, the heat shock 
results showed that the colony growth of the ΔAoBck1 and 
ΔAoMkk1 mutants was significantly inhibited at 42°C compared 
to the WT (Figure  5C; Supplementary Figure S4).

AoBck1 and AoMkk1 Are Required for Trap 
Formation and Pathogenicity
The WT strain began to produce immature traps containing 
1–2 hyphal loops 12  h post nematode induction, and mature 
traps composed of multiple hyphal loops began to form at 
24  h. Almost, all the added nematodes were captured by the 
WT strain at 36  h and were digested at 48  h. The WT strain 
produced approximately 25 traps cm−2 at 48  h, whereas the 
ΔAoBck1 and ΔAoMkk1 mutants did not produce any traps 
(Figures  6A,B). Interestingly, approximately 90.1% of the 
nematodes were captured by the WT strain at 48  h, whereas 
no nematodes were captured by the ΔAoBck1 and ΔAoMkk1 
mutants (Figure  6C).

DISCUSSION

Nematodes and fungi depend on and communicate through 
elaborate networks of signaling. The MAPK signaling cascades 
are key evolutionarily conserved signal transducers in all 
eukaryotes, and several MAPKs have been identified in 
A. oligospora, including Slt2 (Zhen et  al., 2018; Chen et  al., 
2021), Fus3 (Chen et  al., 2021), Hog1 (Kuo et  al., 2020), and 
Ime2 (Xie et  al., 2020). In filamentous ascomycetes, the Slt2-
MAPK cascade pathway is an important signaling pathway, 
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FIGURE 3 | Comparison of conidiation and transcript of sporulation-related genes between the WT and mutants. (A) Comparison of conidiophore and sporulation 
the WT and mutants on CMY medium. White arrows: conidium; Bar = 10 μm. (B) Conidial yields in the WT vs. ΔAoBck1 and ΔAoMkk1 mutants. Three asterisks: 
very significant difference between mutant and the WT (p < 0.001). (C) Relative transcript levels (RTLs) of selected genes involved in conidiation of the WT and 
ΔAoBck1 mutants at different time points. (D) RTLs of selected genes involved in conidiation of the WT and ΔAoMkk1 mutants at different time points. An asterisk 
indicates a significant difference between the mutants and the WT strain (p < 0.05). CK under given conditions, using CK with an RTL of 1 as the standard, 
statistical analysis was performed on the RTL of each gene in each mutant and the WT strain. An asterisk indicates a significant difference compared to the 
WT (p < 0.05).
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which consists of Bck1, Mkk1/2, and Slt2 in S. cerevisiae 
(Levin, 2005). In this study, we  characterized the orthologs 
of Bck1 and Mkk1 (AoBck1 and AoMkk1) in the NT fungus 
A. oligospora. It was found that deletion of AoBck1 or AoMkk1 
affects diverse phenotypic traits in A. oligospora.

In several filamentous fungi, deletion of Bck1 and Mkk1/2 
caused defects in mycelial growth and development. For 
example, the ΔBck1, ΔMkk2, and ΔMpka mutants showed 
significantly reduced hyphal growth, elevated branching, and 
abnormal hyphal structure in A. fumigatus (Valiante et  al., 
2009). In Magnaporthe oryzae, the ΔMps1 mutant had severe 
defects in aerial hyphal growth (Xu et  al., 1998). In 
A. oligospora, deletion of AoSlt2 resulted in a serious defect 
in mycelial growth and aerial hyphae development in 
A. oligospora (Zhen et  al., 2018; Chen et  al., 2021). Similar 
to the ΔAoSlt2 mutant, the ΔAoBck1 and ΔAoMkk1 mutants 
also showed a significant reduction in mycelial growth and 
aerial hyphae, where the colonies of the ΔAoBck1 and 
ΔAoMkk1 mutants became irregular and hyphal branches 
were increased compared to the WT strain. Importantly, 
deletion of AoBck1 and AoMkk1 resulted in a significant 
reduction in the cell nucleus number. Thus, AoBck1 and 
AoMkk1 play a conserved role in the regulation of mycelial 

growth and aerial hyphae in diverse fungi, and they also 
regulate cell nucleus number in A. oligospora.

Arthrobotrys oligospora is a typical NT fungal species that 
can reproduce asexually by producing abundant conidia (Zhang 
et al., 2019b). In this study, the ΔAoBck1 and ΔAoMkk1 mutants 
completely lost their ability for conidiation, which is similar 
to the ΔAoSlt2 mutant (Zhen et  al., 2018; Chen et  al., 2021). 
Similar defects in conidiation were also found in other fungi, 
such as the significantly reduced conidial yields of the Slt2-
MAPK cascade mutants in M. robertsii. Moreover, deletion of 
Bck1, Mkk1, and Slt2 caused a decrease in the number of 
conidia in M. oryzae (Xu et  al., 1998; Zhao et  al., 2005; Jeon 
et al., 2008). Regarding the defect in conidiation, the transcription 
of genes associated with conidiation was substantially 
downregulated in the ΔAoBck1 and ΔAoMkk1 mutants compared 
to the WT strain. AbaA is a central developmental regulator 
in the conidiation of A. nidulans and other filamentous fungi 
(Park and Yu, 2012; Krijgsheld et  al., 2013). Deletion of AbaA 
abolished aerial conidiation and submerged blastospore formation 
in vitro despite no negative impact on hyphal growth in various 
media in B. bassiana (Zhang et al., 2019a). Moreover, we found 
that the orthologous gene of VelB (AoVelB) is essential for 
conidiation in A. oligospora, as the ΔAoVelB mutant is unable 
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FIGURE 4 | Observation of mycelial morphology using scanning electron microscopy (SEM) and transmission electron microscope (TEM), and transcript of genes 
associated with cell wall biosynthesis in the WT and mutants. (A) Mycelia of each strain were examined using SEM. Bar = 20 μm. White arrows: the fragmented 
mycelial surface; (B) Observation of hyphal cells by TEM. Bar = 1 μm (WT) or 0.5 μm (mutants). Black arrow: separation of cell wall and cell membrane. 
(C) Comparison of Woronin bodies between the WT and mutants. The hyphae of each strain cultured at 28°C in PD broth for 18 h, after which, post fixing in 2.5% 
glutaraldehyde, samples were examined by TEM. Red arrow: hyphal septum; white arrows: Woronin body. Bar = 0.5 μm. (D) RTLs of selected genes involved in cell 
wall synthesis of the WT and ΔAoBck1 mutant at different time points. (E) RTLs of selected genes involved in cell wall synthesis of the WT and ΔAoMkk1 mutant at 
different time points. CK under given conditions, using CK with an RTL of 1 as the standard, statistical analysis was performed on the RTL of each gene in each 
mutant and the WT strain. An asterisk indicates a significant difference compared to the WT (p < 0.05).
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to produce spores (Zhang et  al., 2019b). These results indicate 
that Bck1, Mkk1, and Slt2 play a conserved role in conidiation 
in A. oligospora and other fungi.

In recent years, an increasing number of studies have 
suggested that Bck1, Mkk1/2, and Slt2 play a crucial role in 
fungal cell wall synthesis and integrity maintenance (Xu et  al., 
1998; Hohmann, 2002; Chen et al., 2014). In this study, deletion 
of AoBck1 and AoMkk1 caused severe damage to the cell wall 
of A. oligospora. Interestingly, protoplasts released by the ΔAoBck1 
and ΔAoMkk1 mutants were significantly increased after 
treatment with cell wall-lysing enzymes. Similarly, the ΔBck1, 
ΔMkk1, and ΔSlt2 mutants released more protoplasts after 
treatment with cell wall-lysing enzymes, and their cell walls 
become thinner or more electron-transparent in B. bassiana 
(Chen et  al., 2014). In M. oryzae, Mps1, Bck1, and Mkk1 were 
necessary to maintain CWI, and their mutants were highly 
sensitive to cell wall-degrading enzymes (Xu et  al., 1998; Zhao 
et  al., 2005; Jeon et  al., 2008). Interestingly, the transcripts of 
several genes related to cell wall biosynthesis were significantly 
downregulated in the ΔAoBck1 and ΔAoMkk1 mutants, which 

was consistent with the phenotypic alterations. In addition, 
the Woronin body is a peroxisome-derived dense-core vesicle 
that is unique to several genera of filamentous ascomycetes 
(Momany et  al., 2002), which is involved in sealing septal 
pores in response to cellular damage (Navarro-Espíndola et al., 
2020). The Woronin body of A. oligospora also plays an important 
regulatory role in conidiation, trap formation, stress resistance, 
and adaptation to nutrient-deficient environments (Liang et al., 
2017). In this study, although Woronin bodies seemed to 
be present in the mutants, they were unable to seal the damaged 
septal pores and failed to respond to cellular damage. These 
results indicate that the Slt2-MAPK cascade pathway plays a 
conserved role in regulating CWI. Furthermore, AoBck1 and 
AoMkk1 are involved in regulating the normal response of 
the Woronin body to cell damage.

It is important to adapt to altered environments for the 
vegetative growth, development, and reproduction in yeast 
and filamentous fungi. The ΔAoBck1 and ΔAoMkk1 mutants 
were more sensitive to some chemical stressors than the WT 
strain but were unaffected by the oxidants used in this study.  

A

B C

FIGURE 5 | Comparison of stress response between the WT and mutants. (A) Colonial morphology of fungal strains under stresses of osmotic, oxidative, and cell 
wall interfering agents stress. (B) Relative growth inhibition (RGI) of fungal colonies after 7 days grown at 28°C on TG plates supplemented with 0.2 M NaCl, 0.5 M 
sorbitol, 0.07 mM Congo red, 0.7 mM SDS, 10 mM H2O2, and 0.05 mM menadione. (C) RGI values of the WT and each mutant grown at different temperatures. An 
asterisk indicates a significant difference compared to the WT (p < 0.05).
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Similar to our observation, the ΔBck1, ΔMkk1, and ΔSlt2 
mutants of B. bassiana showed high cell sensitivity to NaCl 
and sorbitol, but negligible responses to oxidative stress by 
menadione or H2O2 were observed (Chen et  al., 2014). Our 
previous study found that the sensitivity of the ΔAoSlt2 and 
ΔMhSlt2 mutant strains to osmotic agents increased, but 
their sensitivity to oxidants also increased (Zhen et al., 2018). 
In addition, the ΔAoBck1 and ΔAoMKK1 mutants were more 
sensitive to heat shock. Similarly, deletion of Slt2 in B. bassiana 
also resulted in increased cell sensitivity to high temperatures 
(Luo et  al., 2012). These results show that AoBck1 and 
AoMkk1 regulate multi-stress tolerance in A. oligospora and 
other fungi.

The traps are an important feature for A. oligospora and 
other NT fungi to capture nematodes and are essential for 
their survival and virulence (Nordbring-Hertz, 2004). Deletion 
of AoBck1 and AoMkk1 in A. oligospora resulted in the complete 
loss of the ability to form traps and the inability to capture 
nematodes, which is consistent with a previous report regarding 
AoSlt2 (Zhen et  al., 2018; Chen et  al., 2021). Similar results 
were also found in other fungi, such as the virulence of the 
ΔBck1, ΔMkk1, and ΔSlt2 mutant strains being significantly 
reduced in B. bassiana (Luo et  al., 2012; Chen et  al., 2014) 
and M. robertsii (Chen et  al., 2016). In M. oryzae, the ΔBck1 
mutant was nonpathogenic to susceptible rice seedlings 
(Jeon et  al., 2008), the ΔMkk1 mutant lost the ability to 

infect the host (Zhao et  al., 2005), and the ΔMps1 mutant 
was defective in appressorium penetration (Xu et  al., 1998). 
Moreover, deletion of one or two components of the 
CWI-regulated MAP kinase also impaired the virulence (Mehrabi 
et  al., 2006; Jiang et  al., 2018). These results show that 
CWI-regulated MAP kinases play a crucial role in the 
pathogenicity of diverse pathogens.

In this study, we  found that AoBck1 and AoMkk1 not 
only participate in the regulation of several important 
functions, such as CWI, conidiation, multi-stress tolerance, 
and pathogenicity, but also regulate additional biological 
processes in A. oligospora, including the Woronin body 
response to cellular damage and cell nucleus development. 
Accordingly, we  illustrated a schematic model for the 
regulation of AoBck1 and AoMkk1 in A. oligospora (Figure 7). 
Arthrobotrys oligospora perceives nematode or cell wall 
stress signals through receptors at the surfaces of the cell 
membrane (Rsm), which are transferred into the intracellular 
environment and interact with the guanine nucleotide exchange 
factor Rom2 to activate the small GTPase Rho1, followed 
by activation of the protein kinase Pkc (Su et  al., 2017; 
Heinisch and Rodicio, 2018), which triggers the CWI-MAPK 
cascade and drives the transcription of downstream genes 
associated with multiple phenotypic traits. However, the role 
of Rsm, Rho1, and Pkc should be  further verified. Our 
results lay a good foundation for revealing the mechanisms 

A B

C

FIGURE 6 | Comparison of trap formation and nematocidal activity between the WT and mutants. (A) Trap formation of fungal strains induced by nematodes at 
48 h. White arrows: Traps. Bar: 50 μm. (B) Comparison of traps produced by the WT and mutants at 48 h. (C) Comparison of captured nematodes by the WT and 
mutant strains at 48 h. The asterisk indicates a significant difference compared to the WT (p < 0.05).
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of trap formation and lifestyle switching in A. oligospora 
and other NT fungi.

CONCLUSION

We characterized orthologs of S. cerevisiae Bck1 and Mkk1 in 
the NT fungus A. oligospora. Both AoBck1 and AoMkk1 play 
an important role in vegetative growth, CWI, and stress resistance. 
In particular, AoBck1 and AoMkk1 are required for conidiation 
and trap formation, and they also play roles in regulation of 
cell nucleus development and Woronin body response to cell 
damage in A. oligospora. Our findings provide a basis for 
investigating the role and mechanism of MAPK in vegetative 

growth, CWI, cell nucleus development, and pathogenicity of 
NT fungi.
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