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Microbes are closely associated with the formation and development of diseases.
The identification of the potential associations between microbes and diseases can
boost the understanding of various complex diseases. Wet experiments applied to
microbe–disease association (MDA) identification are costly and time-consuming. In this
manuscript, we developed a novel computational model, NLLMDA, to find unobserved
MDAs, especially for colon cancer and colorectal carcinoma. NLLMDA integrated
negative MDA selection, linear neighborhood similarity, label propagation, information
integration, and known biological data. The Gaussian association profile (GAP) similarity
of microbes and GAPs similarity and symptom similarity of diseases were firstly
computed. Secondly, linear neighborhood method was then applied to the above
computed similarity matrices to obtain more stable performance. Thirdly, negative MDA
samples were selected, and the label propagation algorithm was used to score for
microbe–disease pairs. The final association probabilities can be computed based on
the information integration method. NLLMDA was compared with the other five classical
MDA methods and obtained the highest area under the curve (AUC) value of 0.9031
and 0.9335 on cross-validations of diseases and microbe–disease pairs. The results
suggest that NLLMDA was an effective prediction method. More importantly, we found
that Acidobacteriaceae may have a close link with colon cancer and Tannerella may
densely associate with colorectal carcinoma.

Keywords: microbe–disease association, negative sample selection, linear neighborhood similarity, label
propagation, information integration, colon cancer, colorectal carcinoma

INTRODUCTION

Microbes are the most widespread microscopic organisms and affect many key biological
processes including metabolic function and immune function (Qu et al., 2019; Sachdeva
et al., 2019). There are many microbes in the human tissues, for example, skin (Fredricks,
2001), gut (Grenham et al., 2011), and lung (Cole, 1989). Normal microbial flora help
the host health (Peng et al., 2018; Langella and Martín, 2019). Beneficial microbes, such
as probiotics, synbiotics, and biotherapeutic agents, are effective therapeutic clues when
normal microflora are disrupted (McFarland, 2000; Langella and Martín, 2019). However,
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the body easily gets sick when a microbial community
is not balanced. Therefore, there are close associations
between microbes and human diseases (Consortium, 2012;
Peng et al., 2018).

Microorganisms have dense linkages with various diseases
including infectious diseases and non-infectious diseases (Findley
et al., 2013; Chen et al., 2017; Abu-Ali et al., 2018; Liu
et al., 2019; Huang et al., 2020). For example, there is a close
association between colorectal cancer and gut microbes (Heavey
and Rowland, 2004; Belcheva et al., 2014). There was evidence
that the changes in composition of the intestinal microbiota
could induce human type 2 diabetes (Larsen et al., 2010). Toxins
generated by microbes, such as Streptococcus and Staphylococcus
aureus, could induce or even worsen inflammatory skin diseases
(Belcheva et al., 2014). Thus, identifying the associations
between microbes and diseases not only helps to characterize
the pathogenesis of diseases but also provides new clues for
the diagnosis and treatment of diseases (Peng et al., 2018).
Although several validated microbe–disease associations (MDAs)
have been reported in the Human MDA Database (HMDAD)
dataset, there remains far from enough. Experimental methods
to uncover new associations between two biological entities (for
example, MDAs) are costly and time-consuming (Peng et al.,
2017a, 2020b). Therefore, it is imperative to identify the possible
disease-related microbes based on the computational models.

Based on the assumption that similar microbes tend to
associate with similar diseases, computational methods are
developed to predict MDAs. Ma et al. (2016) obtained the
reported MDAs from documents and constructed the HMDAD.
According to the computed microbe similarity, disease similarity,
and known MDAs, various computational models are designed
to find the associations between microbes and diseases. Chen
et al. (2017) exploited the first MDA prediction method
(KATZHMDA) based on the KATZ technique. Several MDA
prediction models are then developed to discover the possible
MDAs, for example, recommendation model based on neighbor
information and MDA graph (NGRHMDA) (Huang et al., 2017),
network consistency projection method (NCPHMDA) (Bao et al.,
2017), network topological similarity method (NTSHMDA) (Luo
and Long, 2018), adaptive boosting method (Peng et al., 2018), bi-
direction similarity integration propagation method (Zhang et al.,
2018), binary matrix completion method (BMCMDA), matrix
decomposition method (Qu et al., 2019), and matrix factorization
method combing credible negative MDA selection (Peng et al.,
2020a). The above models obtained better performance for MDA
prediction. Especially, the RNMFMDA method provided by Peng
et al. (2020b) significantly improved MDA prediction through
credible negative MDA selection based on positive-unlabeled
learning (Peng et al., 2017b) and the matrix factorization with
neighborhood regularization method. As such, RNMFMDA is
one of the state-of-the-art MDA identification methods.

According to the recent report by EUROCARE, colon
cancer and colorectal cancer demonstrated a minimal but
significant increasing trend in the 5-year survival rate across the
years by approximately 4–6%. More importantly, colon cancer
(Terziæ et al., 2010; Ahmed, 2020) is the third most frequently
diagnosed cancer in the United States. The disease is increasingly

being certified now-a-days, even at an early or advanced stage.
Colorectal cancer is now the fourth most widespread diagnosed
cancer and the second most common cause of cancer death in
the United States. Siegel et al. (2020) predicted that about 147,950
cases will be diagnosed with colorectal cancer and 53,200 will die
from the cancer, including 17,930 individuals and 3,640 deaths
in persons with age less than 50 years in 2020. Research studies
suggest that colon cancer and colorectal cancer evolve in close
associations with microbes (Garrett, 2019).

Therefore, in this manuscript, inspired by the neighborhood
information method provided by Liu et al. (2020) and Peng et al.
(2020a) and the neighbor propagation algorithm provided by
Zhang et al. (2018), we developed an MDA prediction framework
by integrating negative MDA selection, linear neighborhood
similarity, label propagation, and information integration to
find microbes associated with colon cancer and colorectal
cancer. Firstly, microbe similarity matrix and disease similarity
matrix were computed based on their Gaussian association
profile (GAP) and symptom features. Secondly, the linear
neighborhood similarity of microbes and diseases was calculated
based on their neighborhood information, respectively. Thirdly,
negative MDAs were selected according to the positive-unlabeled
learning algorithm provided by Peng et al. (2020a). Fourthly, a
label propagation method was designed to score all unknown
microbe–disease pairs, and the scores were integrated based
on the information integration method. Finally, NLLMDA was
used to find the possible microbes related to colon cancer and
colorectal cancer.

MATERIALS AND EQUIPMENT

We downloaded MDAs from the HMDAD (Ma et al., 2016). The
HMDAD contains 483 MDAs from 292 microbes and 39 diseases,
and finally, 450 MDAs remain after preprocessing. Assume that
the ith microbe and the jth disease are denoted as mi and di,
respectively. The associations between n microbes and m diseases
are represented as a binary matrix Y(n = m) where

yij =

{
1 if mi associates with di

0 otherwise
(1)

The elements with the values of 1 in Y are MDA data and taken
as positive samples. The zero entities in Y are unknown microbe–
disease pairs and taken as unlabeled samples. The microbe and
disease similarity matrices are represented as SM ∈ Rn = n and
SD ∈ Rm = m, respectively.

METHODS

Microbe GAP Similarity
Assume that the GAP A(m (i)) of a microbe mi can be denoted as
the ith row of the MDA matrix Y . For two microbes mi and mj,
their GAP similarity can be defined as:

SM(m(i), m(j)) = exp(−γm||A(m(i))− A(m(j))||2) (2)
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where γm = γ
′

m/( 1
n
∑n

k = 1 ||A(m(k))||2) denotes the
normalized kernel bandwidth with parameter γ

′

m. The microbe
similarity SM(n = n) can be computed based on Eq. (2).

Disease Similarity
Disease GAP Similarity
Assume that the GAP A(d (i)) of a disease di can be denoted as
the jth column of the MDA matrix Y . For two diseases di and dj,
their GAP similarity can be defined as:

SG(d(i), d(j)) = exp(−γd||A(d(i))− A(d(j))||2) (3)

where γd = γ
′

d/(
1
m
∑m

k = 1 ||A(d
(
k
)
)||2) denotes the normalized

kernel bandwidth with parameter γ
′

d.

Disease Symptom Similarity
The disease symptom similarity matrix Ss can be computed
according to the method provided by Zhou et al. (2020).

The final disease similarity matrix SD(m = m) can be defined
based on the above two similarity measurements:

SD(d(i), d(j)) = SG(d(i), d(j))+ γSs(d(i), d(j)) (4)

where the parameter γ is used to measure the importance
between the two similarity measurements.

Negative MDA Selection
High-quality negative MDA samples help to improve MDA
prediction performance. Peng et al. (2020b) designed a reliable
negative MDA selection method based on positive-unlabeled
learning and random walk with restart. The method significantly
outperformed other MDA prediction methods and is one
of the state-of-the-art negative sample selection methods.
In this manuscript, we used the negative MDA extraction
method provided by Peng et al. (2020b) to select reliable
negative MDA samples.

Linear Neighborhood Similarity
In association prediction area, Gaussian similarity is usually
applied to evaluate similarity according to features of data
points. However, the measurement is not robust to data points
connecting different classes. Therefore, we assumed that each
point can be reconstructed based on the linear combination of
its neighborhoods and designed a linear neighborhood similarity
measurement method to obtain more powerful similarity.

Suppose that Xi represents the feature vector of the ith
microbe. We minimize the following objective function:

θi = ||Xi −
∑

ij:Xij∈N(Xi)

wiij Xij ||
2

s.t.
∑

ij:Xij∈N(Xi)

wiij = 1, wiij ≥ 0 (5)

where Xij denotes the jth neighbor of Xi, N(Xi) represents the set
of K nearest neighbors of Xi, and wiij evaluates the reconstructive

contribution of Xi to Xij . Let Gijik = (Xi − Xij)
T(Xi − Xik) and

θi be rewritten as:

θi =
∑

ij,ik:Xij , Xik∈N(Xi)

wiij Gijik wiik

s.t.
∑

ij:Xij∈N(Xi)

wiij = 1, wiij = 0. (6)

We then introduced L2 norm of the weight wi to avoid
over-fitting based on Tikhonov regularization. The final linear
neighborhood similarity can be described as:

θi =
∑

ij,ik:Xij , Xik∈N(Xi)

wiij Gijik wiik + α||wi||
2
= wT

i (Gi
+ αI)wi

s.t.
∑

ij:Xij∈N(Xi)

wiij = 1, wiij = 0 (7)

where α is a weight used to balance the importance of the weight
and the regularization terms.

We can solve Eqs. (5) and (7) to compute linear neighborhood
weights and regularization linear neighborhood weights of X′is
neighbors based on standard quadratic programming. When
Xj /∈ N(Xi), wii = 0. For each microbe or disease, the weights
of its neighbors can be applied to represent their similarities.
Thus, microbe (or disease) similarity can be computed by their
linear neighborhood similarity and regularized by their linear
neighborhood similarity.

Label Propagation
In this study, we used a label propagation algorithm to find
unobserved MDAs based on known MDAs, the computed
microbe similarity and disease similarity. We first took microbes
(or diseases) as nodes and the similarity weight wij as the
edge from node i and node j and constructed a directed
graph. The known MDAs were denoted as labels, which were
propagated in the microbe graph. In each propagation, the
labeled nodes were updated by integrating label information from
their neighborhoods with the rate of β and keeping its initial label
with the rate of 1− β .

Let Y t
i = {y

t
1i, yt

2i, yt
ni} represent the prediction association

scores of ith disease at time t, where yt
ij denotes the propensities

of disease dj associated with microbe mi. The label propagation
process can be defined as:

Y t+1
i = βWY t

i + (1− β)Y0
i (8)

where Y0
i denotes the association profile of disease di, and Y t

i will
converge to:

Yi = (1− β)(I − βW)−1Y0
i (9)

where Yi is the final MDA score matrix based on disease di, and
the predicted entire MDA matrix can be written as:

Y = (1− β)(I − βW)−1Y0. (10)

Similarly, we can conduct label propagation based on microbes.
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Information Integration
According to different features of microbes and diseases, we
can compute different microbe–microbe similarities and disease–
disease similarities. Different similarities produce different
models and prediction results. Ensemble learning has been
validated to be a powerful tool for dealing with high-dimensional
and complex data. In this study, we considered diverse features
of microbes and diseases and designed a linear combination
technique to integrate different results. We assigned different
weights to each model and integrated the predicted association
scores as follows:

Zij =

S∑
k = 1

ωkYk
ij

s.t.
S∑

k = 1

ωk = 1 (11)

where S = 3 denotes the number of different models, Yk
ij

denotes the predicted association scores for microbe–disease
pair (mi, dj) by the kth model, ωk denotes the weights of the
kth model, and Zij denotes the integrated association prediction
score of microbe–disease pair (mi, dj). The flowchart is shown
in Figure 1, where LNS and LP denote linear neighborhood
similarity and label propagation.

RESULTS

Experimental Settings and Evaluation
Metrics
We conducted 100 trials of 5-fold cross-validation, and an
average performance was calculated to decrease the prediction
bias. Three different cross-validations were conducted as follows:

• 5-fold cross-validation 1 (CV1) on microbes: random rows
(microbes) in MDA matrix were masked for testing.
• 5-fold cross-validation 2 (CV2) on diseases: random

columns (diseases) in MDA matrix were masked for testing.

TABLE 1 | Performance comparison of NLLMDA with the other three MDA
prediction methods under CV1.

Method Sensitivity Specificity Accuracy AUC

KATZHMDA 0.2772 0.6690 0.6653 0.3646

LRLSHMDA 0.3286 0.7538 0.7496 0.4364

NTSHMDA 0.1899 0.6177 0.6138 0.3042

NGRHMDA 0.0777 0.3423 0.4817 0.4156

MDLPHMDA 0.3273 0.6890 0.6855 0.4022

NLLMDA 0.3218 0.5350 0.5350 0.3120

The bold values denote the best performance in each column.

TABLE 2 | Performance comparison of NLLMDA with the other three MDA
prediction methods under CV2.

Method Sensitivity Specificity Accuracy AUC

KATZHMDA 0.8317 0.6487 0.6501 0.8662

LRLSHMDA 0.6944 0.7333 0.7330 0.8086

NTSHMDA 0.7913 0.5905 0.5921 0.8292

NGRHMDA 0.3800 0.3285 0.7403 0.8224

MDLPHMDA 0.7318 0.6653 0.6658 0.8178

NLLMDA 0.8726 0.5592 0.5592 0.9031

The bold values denote the best performance in each column.

• 5-fold cross-validation 3 (CV3) on microbe–disease pairs:
random entries (microbe–disease pairs) in MDA matrix
were masked for testing.

Under CV1, 80% of rows in Y were used as training set in
each round. Under CV2, 80% of columns of Y were used as
training set. Under CV3, 80% of entries in Y were used as training
set. We defined new microbes (or diseases) as the microbes (or
diseases) without any associated diseases (or microbes). The three
cross-validations refer to MDA identification for new microbes,
diseases, and microbe–disease pairs, respectively.

We conducted the grid search to find the optimal combination
of parameters and found that NLLMDA obtained the best
performance when γ

′

m = 1, γ
′

d = 1, γ = 0.7, α = 0.7, and
β = 0.1. Sensitivity, specificity, accuracy, and area under the

FIGURE 1 | The flowchart of the NLLMDA method.
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TABLE 3 | Performance comparison of NLLMDA with the other three MDA
prediction methods under CV3.

Method Sensitivity Specificity Accuracy AUC

KATZHMDA 0.8262 0.6503 0.6518 0.8571

LRLSHMDA 0.7971 0.7412 0.7416 0.8794

NTSHMDA 0.8545 0.5904 0.5926 0.8896

NGRHMDA 0.4207 0.3308 0.7796 0.9025

MDLPHMDA 0.8268 0.6729 0.6741 0.8938

NLLMDA 0.8965 0.5600 0.5600 0.9335

The bold values denote the best performance in each column.

curve (AUC) were applied to evaluate the performance of our
proposed NLLMDA method. AUC is the area under Receiver
Operating Characteristic (ROC) curve, and the remaining are
defined as follows.

Sensitivity =
TP

TP + FN
(12)

Specificity =
TN

FP + TN
(13)

Accuracy =
TP + TN

TP + FP + TN + FN
(14)

where TP, FP, TN, and FN denote true positives, false positives,
true negatives, and false negatives, respectively.

Performance Comparison of Six MDA
Prediction Methods
We compared the proposed NLLMDA method with other
five MDA identification models, that is, KATZHMDA
(Chen et al., 2017), LRLSHMDA (Wang et al., 2017),
NGRHMDA (Huang et al., 2017), NTSHMDA (Luo and
Long, 2018), and MDLPHMDA (Qu et al., 2019). The five MDA
prediction methods separately used the KATZ measurement,
Laplacian regularized least squares, neighbor and graph-based
recommendation, network topological similarity, and matrix
decomposition and label propagation. Tables 1–3 list the
performance of these six methods. The best values in each
column were denoted in boldface in Tables 1–3. Because we took
all unlabeled microbe–disease pairs as negative MDA samples
when computing specificity and accuracy, the two measurements
are almost the same when accurate to four decimal places on
three cross-validations.

Table 1 shows the sensitivity, specificity, accuracy, and AUC
values obtained from KATZHMDA, LRLSHMDA, NGRHMDA,
NTSHMDA, MDLPHMDA, and NLLMDA under CV1. From
Table 1, we can find that all six MDA prediction methods did
not obtain better sensitivity, specificity, accuracy, and AUC under
CV1. We thought that it may be resulted in by different structures
of data.

Table 2 lists the performance of the six MDA prediction
models under CV2. In the cross-validation experiment,
NLLMDA computed the best sensitivity and AUC. Especially,
NLLMDA outperformed 4.69, 20.42, 9.32, 56.45, and 16.14%

FIGURE 2 | The AUC values of six MDA prediction methods under CV1.
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compared with KATZHMDA, LRLSHMDA, NTSHMDA,
NGRHMDA, and MDLPHMDA, respectively, in terms of
sensitivity. NLLMDA outperformed 4.09, 10.46, 8.18, 8.94,
and 9.45% compared with the above five methods in terms

of AUC. AUC is a more important evaluation metric than
the other three metrics. Therefore, NLLMDA obtained better
performance and was more appropriate to find associated
microbes for a new disease.

FIGURE 3 | The AUC values of six MDA prediction methods under CV2.

FIGURE 4 | The AUC values of six MDA prediction methods under CV3.
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Table 3 shows the predictive results from the proposed
NLLMDA method and other five MDA identification methods
under CV3. The sensitivity and AUC values of NLLMDA
significantly outperformed the other five MDA identification
methods. Especially, NLLMDA outperformed 7.84, 11.09, 4.68,
53.07, and 7.77% compared with KATZHMDA, LRLSHMDA,
NTSHMDA, NGRHMDA, and MDLPHMDA, respectively, in
terms of sensitivity. NLLMDA outperformed 8.18, 5.80, 4.70,
3.32, and 4.25% compared with the above five methods in terms
of AUC. AUC is a more important evaluation metric than the
other three measurements. Therefore, NLLMDA outperformed
the other five MDA prediction models and is an effective MDA
prediction method. Figures 2–4 show the AUC values obtained
by all six MDA prediction models under three cross-validations.

Case Study
We further analyzed the performance of NLLMDA by two cases.
We intend to find the possible microbes associated with colon
cancer and colorectal cancer. Although a rare population of

TABLE 4 | The predicted top 20 microbes associated with colon cancer.

Rank Microbe Evidence DOI

1 Acidobacteriaceae Unconfirmed

2 Aeromonadaceae Confirmed https://doi.org/10.
1002/mnfr.201700554

3 Anaerovorax Unconfirmed

4 Cellulomonadaceae Unconfirmed

5 Thiotrichaceae Unconfirmed

6 Clostridium cocleatum Confirmed https://doi.org/10.
1016/S0304-3835(97)
04698-3

7 Clostridiaceae Confirmed https:
//doi.org/10.1007/
s10620-016-4238-7

8 Peptostreptococcaceae Confirmed https:
//doi.org/10.1007/
s10620-016-4238-7

9 Bacillaceae Unconfirmed

10 Syntrophobacteraceae Unconfirmed

11 Polyangiaceae Unconfirmed

12 Desulfovibrionaceae Confirmed https://doi.org/10.
1080/19490976.2016.
1150414

13 Ruminococcus productus Confirmed https:
//dx.doi.org/10.3748%
2Fwjg.v12.i42.6741

14 Paenibacillaceae Unconfirmed

15 Promicromonosporaceae Unconfirmed

16 Nitrospiraceae Unconfirmed

17 Desulfobacteraceae Unconfirmed

18 Bifidobacterium
catenulatum

Confirmed https://www.ncbi.nlm.
nih.gov/pmc/articles/
PMC4171173/

19 Alteromonadaceae Confirmed https:
//doi.org/10.1007/
s10620-016-4238-7

20 Prevotellaceae Unconfirmed

undifferentiated cells is closely associated with tumor formation
and maintenance, this has not still been found for colon cancer.
In addition, colorectal carcinoma has a dense association with
specific eating patterns affecting the gut microbiota (Garrett,
2019). The gastrointestinal tract is closely populated with
microorganisms. Therefore, we predicted the top 20 microbes
associated with the two cancers. The results are shown in
Tables 4, 5.

Table 4 shows the predicted top 20 microbes associated with
colon cancer. The 20 associations are not included in the known

TABLE 5 | The predicted top 20 microbes associated with colorectal carcinoma.

Rank Microbe Evidence DOI

1 Proteobacteria Confirmed https:
//doi.org/10.1016/j.
ebiom.2019.09.050

2 Haemophilus Confirmed https://doi.org/10.
3892/or.2015.4398

3 Streptococcus Confirmed https:
//doi.org/10.1016/j.
ebiom.2019.09.050

4 Actinobacteria Confirmed https://doi.org/10.
1155/2019/8020785

5 Tannerella Unconfirmed

6 Eubacterium Confirmed https://doi.org/10.
3892/or.2015.4398

7 Porphyromonas Confirmed https:
//doi.org/10.1016/j.
ebiom.2019.09.050

8 Lactobacillus Confirmed https://doi.org/10.
1080/01635581.2012.
700758

9 Veillonella Confirmed https://doi.org/10.
3892/or.2015.4398

10 Betaproteobacteria Unconfirmed

11 Bacteroidaceae Confirmed https:
//doi.org/10.1186/
s12957-019-1754-x

12 Faecalibacterium Confirmed https:
//doi.org/10.1007/
s12223-019-00706-2

13 Eubacterium rectale Confirmed https:
//doi.org/10.3389/
fmicb.2015.00020

14 Odoribacter Confirmed https:
//doi.org/10.17235/
reed.2015.3830/2015

15 Phascolarctobacterium Unconfirmed

16 Roseburia Confirmed https:
//doi.org/10.1016/j.
ebiom.2019.09.050

17 Eubacterium eligens Confirmed https:
//doi.org/10.3389/
fmicb.2015.00020

18 Subdoligranulum Unconfirmed

19 Eubacteriaceae Unconfirmed

20 Clostridium Confirmed http://dx.doi.org/10.
1590/S1517-
838246420140665
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MDAs in the HMDAD. There are 8 MDAs validated by recent
documents among the 20 MDAs. That is, 40% MDAs have been
validated by publications. More importantly, Acidobacteriaceae
are able to grow on various sugars or polysaccharides, and
some Acidobacteriaceae use amino acids as carbon sources. They
grow with a slow speed and grow better under nutrient-limiting
conditions. They have been validated to associate with irritable
bowel syndrome in the HMDAD (Saulnier et al., 2011). We found
that Acidobacteriaceae may associate with colon cancer with the
highest linkage probability.

Similarly, Table 5 lists the predicted top 20 microbes
associated with colorectal carcinoma. The 20 MDAs are not
included in the HMDAD. Among the 20 MDAs, 15 MDAs were
reported by related publications. That is, 75% MDAs have been
confirmed by documents. In addition, Tannerella forsythia is
one bacterial pathogen related to human periodontitis, which
is a polymicrobial inflammatory disease in tooth-surrounding
tissues. It is closely associated with periodontitis, liver cirrhosis,
atherosclerosis, and esophageal adenocarcinoma (Jorth et al.,
2014; Qin et al., 2014; Bale et al., 2017; Sharma, 2020).
The results showed that Tannerella may densely link with
colorectal carcinoma.

DISCUSSION

Microbes are commonly distributed in various species and
show important role in many biological processes. Many
human diseases, for example, intestinal diseases, involved
microorganisms. Therefore, finding the potential associations
between microbes and diseases can boost the understanding of
the pathogenic mechanisms of diseases and its drug research
and development.

Traditional experimental methods used for MDA
identification are costly and time-consuming. Computational
models were designed to uncover new MDAs. However, the
prediction performance of computational methods further
needs improvement. Therefore, NLLMDA was exploited to
find MDA candidates based on negative MDA selection,

linear neighborhood similarity, label propagation, information
integration, and known biological data. Experimental results
showed that NLLMDA obtained better prediction performance.
After that, we further analyzed two cases about colon cancer
and colorectal carcinoma. We found the top 20 microbes
associated with the above two diseases and need to further
experimental confirmation.

The proposed NLLMDA methods can obtain better predictive
performance. It may be the following characteristics. Firstly, it
selected credible negative MDA samples. Secondly, it used linear
neighborhood similarity to consider neighborhood information.
Thirdly, it conducted information integration based on the
prediction results by the computed three similarity scores.

In the future, we will firstly integrate more biological features
related to microbes and diseases to more completely reflect the
biological information of the two entities. Secondly, we will
design more robust algorithms to extract high-quality negative
MDA samples. Finally, we will exploit more effective models, such
as deep learning, to improve MDA prediction accuracy.
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