
fmicb-12-652486 March 27, 2021 Time: 18:24 # 1

REVIEW
published: 01 April 2021

doi: 10.3389/fmicb.2021.652486

Edited by:
Gkikas Magiorkinis,

National and Kapodistrian University
of Athens, Greece

Reviewed by:
Tara Patricia Hurst,

Birmingham City University,
United Kingdom
Hiroaki Takeuchi,

Tokyo Medical and Dental University,
Japan

*Correspondence:
Daniela Lener

d.lener@ibmc-cnrs.unistra.fr
Matteo Negroni

m.negroni@ibmc-cnrs.unistra.fr

Specialty section:
This article was submitted to

Virology,
a section of the journal

Frontiers in Microbiology

Received: 12 January 2021
Accepted: 15 March 2021

Published: 01 April 2021

Citation:
Toccafondi E, Lener D and

Negroni M (2021) HIV-1 Capsid Core:
A Bullet to the Heart of the Target
Cell. Front. Microbiol. 12:652486.
doi: 10.3389/fmicb.2021.652486

HIV-1 Capsid Core: A Bullet to the
Heart of the Target Cell
Elenia Toccafondi, Daniela Lener* and Matteo Negroni*

CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, Strasbourg, France

The first step of the intracellular phase of retroviral infection is the release of the viral
capsid core in the cytoplasm. This structure contains the viral genetic material that
will be reverse transcribed and integrated into the genome of infected cells. Up to
recent times, the role of the capsid core was considered essentially to protect this
genetic material during the earlier phases of this process. However, increasing evidence
demonstrates that the permanence inside the cell of the capsid as an intact, or almost
intact, structure is longer than thought. This suggests its involvement in more aspects
of the infectious cycle than previously foreseen, particularly in the steps of viral genomic
material translocation into the nucleus and in the phases preceding integration. During
the trip across the infected cell, many host factors are brought to interact with the
capsid, some possessing antiviral properties, others, serving as viral cofactors. All these
interactions rely on the properties of the unique component of the capsid core, the
capsid protein CA. Likely, the drawback of ensuring these multiple functions is the
extreme genetic fragility that has been shown to characterize this protein. Here, we
recapitulate the busy agenda of an HIV-1 capsid in the infectious process, in particular
in the light of the most recent findings.

Keywords: HIV-1, capsid, uncoating, reverse transcription, cellular cofactors, restriction factors, genetic fragility,
nuclear transport

INTRODUCTION

Retroviral infection begins with the fusion of the viral and cell membranes, carried out by the viral
envelope proteins (Coffin et al., 1997). This causes the entry in the cytoplasm of the viral capsid
core (also simply referred here as the core), a shell constituted by approximately 1,500 copies of
the capsid protein CA. The capsid core contains the viral genomic RNA (gRNA) and protects it
from cellular sensors of innate immunity and antiviral factors. The infectious cycle requires the
reverse transcription of the gRNA to convert it into double-stranded DNA. The capsid core favors
this step by providing a confined environment where the concentration of the viral components is
high. At the moment of integration, though, the genetic material must have been released from the
core, in order to interact with, and integrate into, the chromosomes. When and how the protective
shell is dismantled is still not clear. According to the earliest models, disassembling of the core
occurred soon after its entry into the cytoplasm (Bukrinsky et al., 1993; Miller et al., 1997; Fassati
and Goff, 2001). This view has been challenged recently by an increasing number of observations
that support the idea that capsid cores remain intact or almost intact, long after their entry into
the cell, and even once in the nucleus (Burdick et al., 2020; Dharan et al., 2020; Selyutina et al.,
2020b). This implies that the core constitutes a protective shell all along the trip from entry to
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almost the occurrence of integration. This review focuses on
these aspects of viral infection: how and where the capsid
core is dismantled in the light of the latest observations and
which cellular factors, including those that control its stability,
it comes across during its longer than expected presence in the
newly infected cell.

STRUCTURAL BASES DETERMINING
THE STABILITY OF THE CAPSID CORE

The capsid core is generated by the proteolytic processing of the
Gag and Gag-Pol precursors that must free the CA protein. In
the immature budding particle, these precursors assemble with
each other to form the immature Gag lattice, a spherical protein
shell located immediately underneath the lipidic envelope of the
particle (Briggs et al., 2009). This structure is constituted by a
vast majority of Gag precursors that include, from the N to the
C terminus, the matrix (MA), the capsid (CA), the spacer peptide
1 (SP1), the nucleocapsid (NC), the spacer peptide 2 (SP2), and
peptide 6 (p6) domains (Henderson et al., 1992; Figure 1A).
Present in the lattice (at a ratio of approximately 1:20 with respect
to Gag) are some molecules of Gag-Pol precursors, that contain
MA, CA, SP1, and NC fused to the protease (PR), the reverse
transcriptase (RT), and the integrase (IN) domains (Jacks et al.,
1987; Reil et al., 1993; Figure 1A).

The structure of CA has been determined for the free
protein, showing an organization in two globular domains (the
N-terminal, NTD, and the C-terminal, CTD, domains) connected
by a flexible linker (Figure 1B). The NTD is composed of
seven alpha-helices and a beta-hairpin on the amino-terminal
side while the CTD is composed of four alpha-helices (Gamble
et al., 1996, 1997; Gitti et al., 1996). This structural arrangement
has then been confirmed also for the CA domain in the Gag
precursor (Tang et al., 2002; Schur et al., 2016; Wagner et al.,
2016b). In the immature Gag lattice, MA points toward the
exterior of the viral particle and, proceeding toward the interior,
are present the NTD and CTD of CA and the SP1 domain,
respectively (Figure 1C). Each of these domains multimerizes
forming hexamers (Wright et al., 2007; Briggs et al., 2009; Schur
et al., 2015, 2016). The interaction among CTDs of CA, stabilized
by the six-helix bundles formed by SP1, is responsible for the
formation of the immature Gag lattice, while the NTD of CA is
not strictly required for assembly and it rather has the role of
spacing the hexamers within the Gag lattice (Accola et al., 2000;
Wright et al., 2007; Briggs et al., 2009; Bharat et al., 2012; Schur
et al., 2016; Wagner et al., 2016b; Figure 1D).

Multimerization, which occurs soon after budding, activates
the viral protease, embedded in the Gag-Pol precursor. Once
activated, the PR proceeds to an ordered sequence of cuts that
cleave the Gag and Gag-Pol precursors into their individual
components (Pettit et al., 1994, 2005). For CA, the first cleavage
occurs at the junction between MA and CA. Subsequently, SP1
undergoes a conformational switch that allows the cleavage of the
CA-SP1 junction releasing the free CA protein (Pettit et al., 2005).
Once released, CA dissociates from the hexamers of the Gag
lattice and spontaneously re-assemble to reform hexamers and

form pentamers. The arrangement of CA NTD and CTD in the
hexamers of mature capsid is different from that of the hexamers
of the lattice. The orientation is inverted, with the NTDs that
point toward the center of the structure and, by interacting with
each other, stabilize the structure of the hexamer. The CTDs, in
contrast, are located toward the exterior, in a radial disposition,
and are involved in inter-hexamers interactions, holding together
the capsid core (Ganser-Pornillos et al., 2007; Byeon et al.,
2009; Pornillos et al., 2009; Zhao et al., 2013; Mattei et al.,
2016; Figure 1E). Approximately 250 hexamers are involved,
together with 12 pentamers, in the formation of the fullerene cone
structure, 120 nm long and 60 nm wide (Ganser et al., 1999; Li
et al., 2000; De Marco et al., 2010; Zhao et al., 2013; Figure 2A).
Even for a given virus, the fullerene cones can vary in number
of CA molecules, shape, and positioning of the 12 pentamers.
This variability makes this structure highly pleiomorphic, which
endows it with a certain conformational flexibility, an important
feature for a viral component that has a central role in the
interaction with several factors both of viral and of cellular origin
(Ganser-Pornillos et al., 2004; Mattei et al., 2016). Pentamers
are highly similar to hexamers in their structure, although the
pocket between the CA domains in hexamers that, as discussed
below, interacts with host factors, is unfolded in pentamers
(Figure 2B). It is therefore expected that this interaction, if
still occurring, is modified in the case of the pentamers. Also,
the interactions between the monomers are slightly different in
pentamers (Ganser et al., 1999; Cardone et al., 2009; Pornillos
et al., 2011; Mattei et al., 2016). A detailed knowledge of the
interactions established between CA monomers is important
since several cellular components specifically recognize only the
multimerized form of the protein, implying that the interactions
between CA monomers generate functional elements per se.

TURNING CELL PROTEINS INTO VIRAL
COFACTORS

The infectious cycle is strictly intertwined with the cell
components. The viral proteins, indeed, interact with various cell
proteins that can act as antiviral factors or as viral cofactors.
Among these, some have been shown to interact directly with
the capsid. They include the cyclophilin A (CypA) (Luban et al.,
1993), the cleavage and polyadenylation specificity factor 6 (F6)
(Lee et al., 2010), two proteins that are part of the nuclear pore
complex (NPC) (Nup358 and Nup153), and the transportin 3
(TNPO3) (Brass et al., 2008; König et al., 2008; Table 1).

The first intracellular protein to be described to interact with
HIV-1 CA was CypA that was identified through a two-hybrid
screening of a human cDNA library of proteins interacting with
Gag (Luban et al., 1993). Importantly, ever since this observation,
the interaction with CypA has been shown not to be specific for
HIV-1 but to be common among lentiviruses, for which it has
been documented to exist for millions of years (Katzourakis et al.,
2007; Gilbert et al., 2009; Goldstone et al., 2010; Malfavon-Borja
et al., 2013; Mu et al., 2014). CypA is a peptidylprolyl isomerase
that is incorporated in the viral particle via an interaction with
G221 and P222 of Gag (G89 and P90 in mature capsid), and it

Frontiers in Microbiology | www.frontiersin.org 2 April 2021 | Volume 12 | Article 652486

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-652486 March 27, 2021 Time: 18:24 # 3

Toccafondi et al. HIV Capsid and Infection

FIGURE 1 | Capsid forms throughout the HIV life cycle. (A) Gag and Gag-Pol precursors simplified structures. Gag precursor includes the matrix protein (MA), the
capsid (CA, depicted with the NTD in green and the CTD in magenta), the spacer peptide 1 (SP1), the nucleocapsid (NC), the spacer peptide 2 (SP2), and the
peptide 6 (p6). A frameshift during translation allows the production of Gag-Pol precursor, with a ratio of 1:20 with respect to the Gag precursor. In this structure the
NC is fused to the protease (PR), the reverse transcriptase (RT), and the integrase (IN) domains. (B) Structure of CA monomer. CA is composed of two domains
connected by a flexible linker: the NTD (in green), formed by a beta-hairpin and seven alpha-helices, and the CTD (in magenta), formed by four alpha-helices. The
CypA binding loop in the NTD is indicated. PDB ID: 6WAP (Lu et al., 2020). (C) Schematic structure of the Gag precursor composed from top to bottom of MA,
CA-NTD, CA-CTD, SP1, NC, SP2, and p6. (D) Schematic structure of a hexamer in the immature lattice, after the first proteolytic cleavage, which occurs between
SP1 and NC. The MA are attached to the membrane through their myristoylated domain. Proceeding toward the center of the viral particle there are three hexameric
structures composed by the CA-NTDs, CA-CTDs, and SP1. (E) Schematic top view of the mature capsid lattice where CA monomers are arranged in hexamers and
are connected to each other through the NTDs, while the CTDs are involved in the interactions between hexamers.

FIGURE 2 | Capsid core structure. (A) The mature capsid core has the shape of a fullerene cone, formed by 125 hexamers (in orange) and 12 pentamers (in yellow).
Image republished with permission of Nature Publishing Group (Pornillos et al., 2011). (B) Top and lateral view of pentameric and hexameric capsid assemblies. In
both structures, the NTDs (in green) are forming the inner ring while the CTDs (in magenta) are forming the external ring. The pocket present in the hexamer, at the
NTD-CTD interface (involved in the interaction with host factors, see main text) is indicated. The pocket is absent in the pentamer. PDB IDs: 5MCX, 5MCY (Mattei
et al., 2016).
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TABLE 1 | Host factors interacting with the viral capsid.

Host factor Gene Biological rolea Role in HIV-1 Infection Interaction with the capsid

Bicaudal D2 Protein BICD2 Links the dynein motor complex to
its cargos.

• Promotes the trafficking of viral cores
toward the nucleus (Dharan et al.,
2017).

Interacts with the assembled core
through its C-terminal domain (Dharan
et al., 2017; Carnes et al., 2018).

Cleavage and
Polyadenylation
Specificity Factor 6

CPSF6 One of the four subunits of the
cleavage factor Im (CFIm), required
for 3′-end RNA cleavage and
polyadenylation processing.

• Participates in the nuclear import of the
RTC/PIC complex (Chin et al., 2015;
Burdick et al., 2020).
• Involved in the choice of the integration

sites (Chin et al., 2015; Rasheedi et al.,
2016; Sowd et al., 2016; Achuthan
et al., 2018; Francis and Melikyan,
2018; Bejarano et al., 2019).

Binds the hexameric form of CA in the
nucleus at the NTD-CTD pocket (Lee
et al., 2012; Price et al., 2012, 2014;
Bhattacharya et al., 2014).

Cyclophilin A PPIA Cytoplasmatic peptidylprolyl
cis-trans isomerase involved in
proteins folding.

• Helps to maintain the stability of the
capsid core (Li et al., 2009; Setiawan
et al., 2016).
• Involved in the choice of the nuclear

import pathway (Schaller et al., 2011).
• Protection from host restriction factors

like TRIM5 (Kim et al., 2019; Selyutina
et al., 2020a; Yu et al., 2020).

Binds to the capsid core in the
cytoplasm by recognizing a conserved
loop present in the NTD of CA (Franke
et al., 1994; Gamble et al., 1996).

Extracellular
Signal-Regulated
Kinase 2

MAPK1 Serine/threonine-protein kinase part
of the MAP kinase signal
transduction pathway.

• Indirectly involved in promoting the
uncoating step since its
phosphorylation substrate is then
recognized by Pin1 (Misumi et al.,
2010; Dochi et al., 2014).

Phosphorylates the Ser16 of CA (Dochi
et al., 2014).

Fasciculation and
Elongation Protein Zeta
1

FEZ1 Kinesin-1 adaptor protein
participating in the transport of
cargos along microtubules.

• Promotes trafficking of the capsid core
toward the nucleus (Malikov et al.,
2015; Huang et al., 2019).

Binds the core at the hexamer pore
(Huang et al., 2019).

Maternal Embryonic
Leucine Zipper Kinase

MELK Serine/threonine-protein kinase
involved in many cellular pathways.

• Promotes viral uncoating (Takeuchi
et al., 2017).

Phosphorylates the Ser149 of CA
(Takeuchi et al., 2017).

MX Dynamin Like
GTPase B

MX2 Interferon-induced dynamin-like
GTPase protein located in the
peripheric region of the nucleus.

• Blocks viral nuclear entry (Dicks et al.,
2018; Kane et al., 2018).
• Reduces integration efficiency (Kane

et al., 2013; Liu et al., 2013; Matreyek
et al., 2014).

Interacts with a negatively charged
surface of CA (Smaga et al., 2019).

Non-POU Domain
Containing Octamer
Binding

NONO RNA-binding protein with various
roles in the nucleus including
transcriptional regulation and RNA
splicing.

• Restricts infection by activation of the
immune response, via cGAS, after
recognition of CA (Lahaye et al., 2018).

Binds to CA associated with the
RTC/PIC complexes in the nucleus
(Gao et al., 2013; Lahaye et al., 2013,
2018).

Nucleoporin 153 NUP153 NPC protein located in the nuclear
basket of the complex with a role in
the nucleocytoplasmic transport of
proteins and mRNAs.

• Participates in the nuclear import of the
viral complex (König et al., 2008;
Matreyek and Engelman, 2011; Di
Nunzio et al., 2012, 2013).
• Directly or indirectly involved in the

choice of the integration site (Koh et al.,
2013; Marini et al., 2015).

It interacts with the multimeric form of
CA at the NTD-CTD pocket at the
same binding site of CPSF6 (Buffone
et al., 2018; Bejarano et al., 2019).

Nucleoporin 358 RANBP2 RAN-binding protein located on the
cytoplasmatic filaments of the NPC
that promotes the nuclear import of
large cargos.

• Favors the nuclear import of the viral
complex (Schaller et al., 2011; Di
Nunzio et al., 2012; Meehan et al.,
2014; Dharan et al., 2016; Burdick
et al., 2017).
• Promotes uncoating of the capsid core

at the NPC (Bichel et al., 2013).

Binds to the NTD domain of CA via a
cyclophilin-homology domain as it
approaches the NPC (Schaller et al.,
2011).

Peptidylprolyl Cis/Trans
Isomerase,
NIMA-Interacting 1

PIN1 Peptidyl-prolyl cis/trans isomerase
that specifically binds to
phosphorylated ser/thr-pro motifs.

• Participates in the uncoating step
(Misumi et al., 2010).

Recognizes the phosphorylated Ser16
of CA (Misumi et al., 2010).

Transportin 1 TNPO1 Involved in nuclear protein import
as a receptor for nuclear
localization signal.

• Involved in keeping the correct stability
of the capsid core (Fernandez et al.,
2019).
• Helps the viral nuclear import

(Fernandez et al., 2019).

Binds to the CypA binding-loop
(Fernandez et al., 2019).

(Continued)
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TABLE 1 | Continued

Host factor Gene Biological rolea Role in HIV-1 Infection Interaction with the capsid

Transportin 3 TNPO3 Beta-karyopherin protein involved
in the nuclear import of
serine/arginine-rich (SR) proteins.

• Participates in the nuclear import step
(Christ et al., 2008; Logue et al., 2011).
• Involved in post-nuclear entry steps

(Valle-Casuso et al., 2012; Shah et al.,
2013).
• Favors infection by participating in the

nuclear localization of CPSF6 (De Iaco
et al., 2013; Fricke et al., 2013).

Even if TNPO3 is also found in the
cytoplasm, it most likely interacts with
CA in the nucleus (Valle-Casuso et al.,
2012; Shah et al., 2013).

Tripartite Motif
Containing 5

TRIM5 Member of the tripartite protein
family (TRIM) located in the
cytoplasm of the cell where it
autoassembles in cytoplasmic
bodies.

• Affects the stability of the capsid core by
either reducing it (Stremlau et al., 2006;
Roa et al., 2012) or increasing it (Lu et al.,
2015; Quinn et al., 2018).
• Induces CA degradation via the

proteasome (Lukic et al., 2011; Danielson
et al., 2012; Kutluay et al., 2013) and/or the
autophagy pathway (O’Connor et al., 2010;
Mandell et al., 2014; Keown et al., 2018).

Forms a net around the intact capsid
core in the cytoplasm by binding near
or at the CypA binding site on CA
(Quinn et al., 2018; Kim et al., 2019;
Selyutina et al., 2020a; Yu et al., 2020).

aAdapted from RefSeq.

is found with a stoichiometry of approximately 1:10 (CypA:Gag)
(Franke et al., 1994; Braaten et al., 1996b). Despite the fact that
CypA is packaged in the viral particle from the infected cell,
which could suggest that it plays a role at the level of the producer
cells, it has been shown that it is the interaction between CA and
the CypA molecules present in the target cells to be the major
determinant for the effect exerted by CypA on HIV-1 infection
(Hatziioannou et al., 2005). CypA interacts with the capsid core
in two different ways. On one hand, the active site interacts with
G89 and P90 of the P85VHAGPIAP93 loop (Gamble et al., 1996;
Figure 1B) and, due to its isomerase activity, could destabilize
the core (Braaten et al., 1996a,b; Bosco et al., 2002; Ylinen et al.,
2009). On the other hand, other parts of the protein contact
the hexamer interface and, bridging hexamers, likely stabilize the
capsid core (Liu et al., 2016; Ni et al., 2020). Indeed, the effect
of CypA on infection is to alter the stability of the capsid core,
albeit the results are rather controversial since, depending on the
cell type, it has been shown either to increase or to decrease it (Li
et al., 2009; Setiawan et al., 2016). However, since mutating the
CypA binding site on CA or the use of cyclosporin A (CsA), a
drug that competes with the CA for CypA binding, both severely
interfere with HIV infectivity (Franke et al., 1994; Braaten et al.,
1996b) it appears that the virus relies on the interaction with
this cellular cofactor to reach the optimal stability of the core.
Another role of CypA during infection is to avoid the recognition
by the tripartite motif (TRIM) containing protein TRIM5 of the
capsid core either by inducing a conformational change through
its isomerase activity or by steric hindrance (Kim et al., 2019; Ni
et al., 2020; Selyutina et al., 2020a; Yu et al., 2020). Finally, the
interaction between CA and CypA also appears to regulate the
pathway of nuclear import of the reverse transcription and/or
pre-integration complexes (RTC/PIC) that differs, according to
whether CypA interacts with CA or not (Schaller et al., 2011).

Many cytoplasmic factors interact with the capsid core, on
its way to the nucleus. Bicaudal D2 protein (BICD2) and the
fasciculation and elongation protein zeta 1 (FEZ1) are two

dynein adaptor proteins, required for HIV-1 infection, that
interact with HIV-1 assembled multimeric cores (Malikov et al.,
2015; Dharan et al., 2017; Carnes et al., 2018; Huang et al.,
2019). Their depletion results in impaired cytoplasmic trafficking,
uncoating, and nuclear import (Dharan et al., 2017; Huang
et al., 2019). Uncoating has also been shown to be influenced
by other host factors, as Pin1, MELK, ERK2, and TRN-1.
Pin1 is a peptidyl-prolyl isomerase that facilitates HIV-1 core
disassembly by interacting with the phosphorylated Ser16-Thr17
motif (Misumi et al., 2010). Responsible for the phosphorylation
of Ser16 is the extracellular signal-regulated kinase 2 (ERK2), a
cellular factor that is incorporated in the viral particle through
its interaction with CA (Dochi et al., 2014). Another kinase
involved in destabilizing the viral capsid, in this case through
phosphorylation of Ser149, is the maternal embryonic leucine
zipper kinase (MELK). The mutant where Ser149 is replaced
by the phosphor-mimetic amino acid Glu undergoes premature
disassembly of the capsid core and is impaired in nuclear import
of the reverse transcription products (Takeuchi et al., 2017).
Finally, β-karyopherin transportin 1 (TRN-1) recognizes the
CypA binding site with high affinity and it can displace CypA
from its association to the core. Knock out of TRN-1 leads to
reduced infection and premature uncoating (Fernandez et al.,
2019). Overall, the trend observed with these factors indicates
that they are required in order to maintain in balance the subtle
equilibrium between uncoating and retention of a closed capsid
required to accomplish infection. Defects in nuclear import
observed by depleting these factors appear to be a consequence
of alteration of capsid uncoating rather than a direct interference
with the import process.

Nuclear pore complex proteins regulate trafficking between
the nucleus and the cytoplasm in eukaryotic cells (Strambio-
De-Castillia et al., 2010; Labokha and Fassati, 2013). Two of
these proteins are well-characterized interactants of HIV-1 CA:
Nup153 and Nup358 (also known as RANPB2) (Brass et al.,
2008; König et al., 2008). Nup358 is associated with filaments
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that stem from the pore into the cytoplasm and it promotes the
recruitment of nuclear import cargos (Hutten et al., 2009). It
contains a cyclophilin-homology domain that is responsible for
the interaction with CA (Schaller et al., 2011). As CypA, Nup358
has a cis-trans prolyl isomerization activity through which it
can promote capsid core uncoating by catalyzing isomerization
of CA (Bichel et al., 2013). This suggests that uncoating of the
viral core could occur, at least partially, at the nuclear pore,
once docked onto Nup358. Accordingly, depletion of Nup358
severely affects HIV-1 nuclear import, with a reduction of the
amount of RTC/PIC docked at the NPC (Zhang et al., 2010;
Schaller et al., 2011; Di Nunzio et al., 2012; Meehan et al.,
2014; Dharan et al., 2016; Burdick et al., 2017). Nup153 is one
of the components of the nuclear basket involved in the NPC
formation and Nups recruitment (Vollmer et al., 2015). Through
its C-terminal domain it binds the NTD-CTD pocket of CA
(Buffone et al., 2018; Bejarano et al., 2019) and it favors its
translocation into the nucleus (König et al., 2008; Matreyek and
Engelman, 2011; Di Nunzio et al., 2012, 2013). Its depletion
also alters the choice of the sites of integration (Koh et al.,
2013; Marini et al., 2015). Since Nup153 binds CA hexamers
with high affinity compared to monomeric CA (Matreyek and
Engelman, 2011; Di Nunzio et al., 2012; Buffone et al., 2018), this
translocation likely involves capsid cores that, if not intact, are at
least partially assembled.

Another cellular protein interacting with CA is CPSF6, a pre-
mRNA splicing factor, and a member of the serine/arginine-rich
protein family (Rüegsegger et al., 1998). CPSF6 is part of the
cleavage factor I (CFIm), together with CPSF5 and CPSF7, but
its activities related to HIV-1 do not involve the other proteins
of the complex (Rasheedi et al., 2016). CPSF6 binding site on
CA is bipartite as CPSF6 binds at the N-terminal region of
CA monomers but also at the NTD-CTD pocket of adjacent
monomer on CA hexamers (Lee et al., 2012; Price et al., 2012,
2014; Bhattacharya et al., 2014). CPSF6 was initially identified to
be relevant for HIV-1 infection through the functional screening
of a mouse cDNA expression library that led to the isolation
of a truncated form of CPSF6 (CPSF6-358) inhibiting HIV-1
replication (Lee et al., 2010). The truncation removes in CFSP6-
358 the C-terminal arginine-serine like domain (RSLD) that
is required for its nuclear import by transportin 3 (TNPO3)
(Jang et al., 2019). As a consequence, the two forms of CPSF6
display different localizations inside the cell, with CPSF6 being
predominantly nuclear while CPSF6-358 is found exclusively in
the cytoplasm (Lee et al., 2010). This difference is responsible
for the antiviral effect exerted exclusively by CPSF6-358 that
blocks HIV-1 infection by interacting with the capsid core in the
cytoplasm and preventing nuclear import (Lee et al., 2010). The
integral form of CPSF6, in contrast, favors HIV-1 infection. Its
effect is dependent on the cell type considered. Indeed, CPSF6 is
an important factor in primary CD4+ T cells and macrophages,
where it directs integration toward euchromatin regions, and its
deletion leads to an accumulation of RTC/PIC complexes at the
nuclear pore and integration in chromatin regions close to the
nuclear pore (Chin et al., 2015; Rasheedi et al., 2016; Sowd et al.,
2016; Achuthan et al., 2018; Francis and Melikyan, 2018; Bejarano
et al., 2019; Burdick et al., 2020). These effects are not observed

in HeLa or HEK 293T cells (Lee et al., 2010; Kane et al., 2018;
Bejarano et al., 2019). The CPSF6 binding site on CA appears
to overlap the region recognized by the nuclear pore protein
Nup153, important for HIV-1 nuclear import, as discussed above,
implying a competition for CA binding that could favor, once
imported in the nucleus, the release from Nup153 to allow
CPSF6 binding and its translocation into deeper nuclear regions
(Bejarano et al., 2019).

Transportin 3 is a β-karyopherin that transports
serine/arginine-rich splicing factors in the nucleus (Kataoka
et al., 1999; Lai et al., 2000). It binds to HIV-1 CA and its
depletion affects HIV-1 infection (Christ et al., 2008; Krishnan
et al., 2010; Logue et al., 2011; Zhou et al., 2011; Valle-Casuso
et al., 2012; Shah et al., 2013). The role of TNPO3 in HIV-1
infection is still debated. Some studies suggest a role in nuclear
import (Christ et al., 2008; Logue et al., 2011) while others
rather suggest an implication in post-nuclear import, but prior
to integration (Zhou et al., 2011; Valle-Casuso et al., 2012; Shah
et al., 2013). However, TNPO3 is also responsible for the nuclear
import of CPSF6 (De Iaco et al., 2013; Maertens et al., 2014; Jang
et al., 2019) which, in HIV-1 infection, favors nuclear transport,
as discussed above. It is therefore possible that the effects on
HIV-1 infectivity attributed to TNPO3 are not only direct but
also a consequence of the effect of TNPO3 on CPSF6 (De Iaco
et al., 2013; Fricke et al., 2013). In support of this view is the
observation that another effect of the depletion of TNPO3 is a
change in the choice of the integration sites (Ocwieja et al., 2011),
which is the same phenotype observed when depleting CPSF6.

Besides assisting various steps of the infectious process from
the mechanistic standpoint, as capsid uncoating or nuclear
translocation, these host factors also have a role in the escape
from innate immunity. For example, infection by viruses with
mutated CA that no longer interact with several of these factors
(CPSF6, CypA, and Nup358), triggers an interferon-mediated
antiviral response in human monocyte-derived macrophages
(Rasaiyaah et al., 2013). Consequently, the capsid is subject
to positive selection for maintaining the interaction with these
proteins. At the same time, it is also the target of several cellular
factors endowed with antiviral activity, from which it has to
escape, adding a layer of selective pressure. The most well-
characterized of these factors are constituted by a member of
the tripartite motif-containing proteins family TRIM5 (Stremlau
et al., 2004), the myxovirus resistance gene A and B (MxA and
MxB) (Liu et al., 2013), and the non-POU domain-containing
octamer binding protein (NONO) (Lahaye et al., 2018; Table 1).

ANTIVIRAL FACTORS TARGETING THE
CAPSID

An important cellular antiviral factor directed against the
capsid is TRIM5α. TRIM5α was isolated from rhesus macaque
(TRIM5αrh) in the context of studies aimed at understanding
the reasons for the inability of HIV-1 to establish productive
infections in Old World monkey cell lines (Shibata et al., 1995;
Hofmann et al., 1999; Besnier et al., 2002; Cowan et al., 2002).
Independently, a variant of this protein (TRIMCyp), exclusive
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to owl monkeys, was identified for its ability to confer the same
phenotype of restriction to HIV-1 infection (Sayah et al., 2004;
Stremlau et al., 2004). In both cases, the viral target was identified
to be the capsid and, in particular, the assembled core rather than
the monomeric form of CA (Cowan et al., 2002; Hatziioannou
et al., 2004; Stremlau et al., 2006).

As members of the TRIM family, TRIM5αrh and TRIMCyp
are composed of a N-terminal tripartite motif constituted by
the RING domain, a B-box 2 domain, and a coiled-coil domain
(Reymond et al., 2001). The TRIM is followed by a C-terminal
domain: cyclophilin A in TRIMCyp, and the PRYSPRY in
TRIM5α. These domains bind the CA protein at or near the
CypA-binding domain (Figure 3; Quinn et al., 2018; Kim et al.,
2019; Selyutina et al., 2020a; Yu et al., 2020). TRIM5α and
TRIMCyp dimerize through the coiled-coil domain, which places
the two B-box 2 domains at each extremity of an antiparallel
dimer. The B-box 2 domain can form trimers allowing the
formation of a network of hexamers. These hexamers can
assemble into a hexagonal lattice around an incoming retroviral
capsid core, in which the C-terminal domains interact with the
capsid (Sebastian and Luban, 2005; Li et al., 2016; Wagner et al.,
2016a; Quinn et al., 2018; Yu et al., 2020). If the mechanisms
of binding of TRIM5 to the capsid core are well understood,
by which means it restricts HIV-1 infection is still debated.
Some studies suggest that the ability of the protein to form a
net around the capsid is sufficient to perturb the capsid core
stability and, therefore, infectivity. The net would either induce
the destabilization of the capsid core, resulting in a premature
and non-productive uncoating (Stremlau et al., 2006; Zhao et al.,
2011; Roa et al., 2012), or increase its stability by reducing the
intrinsic flexibility of the core and of the CypA-binding loop in
particular (Lu et al., 2015; Quinn et al., 2018). In both cases,
infectivity would be perturbed. Other works indicate alternative
pathways, activated by TRIM5α, to degrade the capsid core,
as the recruitment of the proteasome, thanks to the ability of
TRIM5α to undergo self-ubiquitylation, thanks to the RING
domain (Fletcher et al., 2018) while associated to the capsid core
(Lukic et al., 2011; Danielson et al., 2012; Kutluay et al., 2013)
or by inducing selective autophagy of the capsid core (O’Connor
et al., 2010; Mandell et al., 2014; Keown et al., 2018). However,
neither blocking the proteasome nor the pathways leading to
autophagy abolishes the restriction activity of TRIM5α suggesting
that several, non-exclusive, pathways are activated in response
to the recognition of the viral core (Perez-Caballero et al., 2005;
Anderson et al., 2006; Diaz-Griffero et al., 2006; Wu et al., 2006;
Kutluay et al., 2013; Imam et al., 2016; Keown et al., 2018).

The wealth of information concerning the restricting function
of TRIM5α comes primarily from studies of the rhesus monkey
protein. Indeed, the human ortholog of TRIM5α does not
block HIV-1 infection in cell lines (Hatziioannou et al., 2004;
Stremlau et al., 2004; Yap et al., 2004), although it protects
human cells from the infection by some non-human retroviruses
(Hatziioannou et al., 2004; Keckesova et al., 2004; Perron et al.,
2004; Yap et al., 2004). Furthermore, a stabilized form of TRIM5α,
obtained by producing a fusion protein with mCherry, protects
human T cells in humanized murine models of HIV-1 infection
(Richardson et al., 2014). Human TRIM5α is also involved in

FIGURE 3 | Interaction between TRIM and the capsid. TRIM5α and TRIMCyp
are represented in their dimeric form. Each monomer (in orange and in blue) is
formed by the RING domain, the B-Box 2 domain, the coiled-coil domain and
the C-terminal domain which is the one responsible for the interaction with the
capsid core. In TRIM5α this domain is the PRYSPRY domain while in
TRIMCyp is CypA.

IFNa-induced inhibition against HIV-1 infection (Kane et al.,
2016; OhAinle et al., 2018; Jimenez-Guardeño et al., 2019).
In fact, high levels of IFNa activate the immunoproteasome,
inducing a rapid turnover of TRIM5α that, being bound to the
capsid core, drives to its degradation blocking viral replication
(Jimenez-Guardeño et al., 2019).

The weak restriction of HIV-1 by human TRIM5α is suggested
to be due to inefficient recognition of the capsid core (Stremlau
et al., 2005; Yap et al., 2005; Merindol et al., 2018). The fact
that the binding site of CypA on capsid cores overlaps (at least
partially) the region bound by TRIM5α could lead to competitive
inhibition of binding of TRIM5α, contributing to the inefficient
recognition of the core by TRIM5α (Kim et al., 2019; Selyutina
et al., 2020a; Yu et al., 2020). The lack of effectiveness of the
human TRIM5α protein against infection with the human variant
of the virus may reflect the recent exposure of humans to this
virus. Alternatively, it could be imagined that HIV possesses a yet
to be defined activity that counteracts that of TRIM5α.

The human myxovirus resistance (Mx) B protein (MxB, also
known as Mx2) is an important anti-HIV factor that targets the
viral capsid (Goujon et al., 2013; Kane et al., 2013; Liu et al., 2013;
Matreyek et al., 2014). It is a dynamin-like GTPase, a family of
proteins highly conserved in all vertebrates (Verhelst et al., 2013).
MxB is constituted by a globular GTPase domain, a C-terminal
stalk domain, a bundle signaling element (BPE), and a non-
structured N-terminal domain (Gao et al., 2011). It localizes on
the cytoplasmic side of the nuclear envelope, near the NPC (King
et al., 2004). This antiviral factor is effective against herpesvirus,
murine cytomegalovirus (MCMV), and HIV-1 (Goujon et al.,
2013; Kane et al., 2013; Liu et al., 2013; Crameri et al., 2018;
Jaguva Vasudevan et al., 2018; Schilling et al., 2018). In the
N-terminal domain of MxB there is a positively charged motif,
the 11RRR13 motif, that recognizes a negatively charged surface
highly conserved among lentiviral capsid cores (Smaga et al.,
2019). This interaction is responsible for the restriction of the
infection (Goujon et al., 2015; Schulte et al., 2015) that, depending
on the experimental conditions used, has been attributed either
to a decrease of nuclear import of the RTC/PIC complexes by
interfering with nuclear pore associated proteins (Dicks et al.,
2018; Kane et al., 2018) or to a decrease of integration levels
(Kane et al., 2013; Liu et al., 2013; Matreyek et al., 2014). Finally, a
possible implication of MxB in the restriction response of the host
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restriction factor SAMHD1 has been recently suggested although
it is still not clear how this is exerted (Buffone et al., 2019).

Another host factor with anti-HIV-1 activity related to
targeting the viral capsid is the non-POU domain-containing
octamer-binding protein (NONO), a member of the Drosophila
behavior/human splicing (DBHS) family. The proteins of this
family are characterized by the presence of two N-terminal
RNA recognition motifs (RRMs), a NonA/paraspeckle domain
(NOPS), and a C-terminal coiled-coil domain (Knott et al., 2016).
NONO is a nuclear protein and has both RNA- and DNA-
binding properties and it is involved in the activation of the innate
immune response in dendritic cells and macrophages upon HIV
infections, with a more efficient response against HIV-2 than
HIV-1 (Lahaye et al., 2018). In the nucleus, NONO binds CA
associated with the RTC/PIC complexes, and its restriction effect
is exerted through the DNA sensor cyclic GMP-AMP synthase
(cGAS), which activates the innate immune response by sensing
the viral double-stranded DNA (Gao et al., 2013; Lahaye et al.,
2013, 2018). Without NONO, cGAS is found in the cytosol and it
does not activate the immune response (Lahaye et al., 2018).

THE VIRAL UNCOATING STEP AND THE
IMPORTANCE OF ITS TIMING

The timing of dismantling of the viral capsid is a crucial aspect
for a successful infection since premature disassembly would
expose the components of the reverse transcription complex to
the antiviral responses of the host cell and it would dilute the viral
components by releasing them into the cytoplasm. On the other
hand, the delayed dismantling of the capsid core could affect the
process of integration by sequestering the reverse transcription
products. To date, not only when and where reverse transcription
and dismantling of the capsid core occurs is still an open question,
but it is even still debated if and how the two processes are
connected. Indeed, while some works show that DNA synthesis
promotes uncoating (Hulme et al., 2011, 2015; Yang et al., 2013;
Cosnefroy et al., 2016; Francis et al., 2016; Mamede et al., 2017;
Rankovic et al., 2017), others show that the inhibition of reverse
transcription neither affects uncoating nor the nuclear import of
the RTC/PIC (Lukic et al., 2014; Burdick et al., 2017; Bejarano
et al., 2019; Selyutina et al., 2020b).

Answering these questions is technically challenging, though.
A major difficulty comes from the intrinsic properties of
the capsid cores, discussed above, that is at the origin of
the generation of polymorphic capsid cores, most of which
intrinsically unstable and, therefore, non-infectious (Thomas
et al., 2007; Mattei et al., 2016). It is, in fact, considered that only
a minority of viral particles entering the cell leads to successful
infection, while the majority is constituted by defective cores
that undergo proteasomal degradation. The earliest studies on
the capsid were mostly based on the biochemical tracking of the
intact capsid in the infected cell. These analyses, consequently,
followed the fate of the capsids at the “population” level and
documented a rapid dismantling of the capsid after entry into
the cell. The minority of stable capsids that, according to recent
data, is responsible for productive infection, was not detected.

FIGURE 4 | Models for the timing of uncoating. HIV-1 enters the cell after
recognition by the envelope glycoproteins of the cellular receptor CD4 (in gray)
and the cellular co-receptor CXC4 or CCR5 (in black). This leads to the fusion
of the cell and viral membranes and to the release of the capsid core in the
cytoplasm. In the figure, the three models of uncoating covered in this review
are depicted: the cytoplasmic uncoating (on the left), the uncoating at the
nuclear pore complex (NPC) (in the center), and the nuclear uncoating (on the
right). In each model the reverse transcription of the viral genomic RNA (vRNA)
(in red) into viral DNA (vDNA) (in green) has to be completed, allowing its
integration in the host genome (in blue). The reverse transcription complex
(RTC) is schematically shown as the association of a molecule of reverse
transcriptase (RT, in purple) to the vRNA and single-stranded vDNA. The
completed vDNA forms the pre-integration complex (PIC), shown as the
double-stranded vDNA bound to a tetramer of integrase (IN, in orange).

The advent of techniques that allow following, by different means,
the individual capsids has permitted focusing on the minority of
capsids that persist in the cell changing our view of the timing of
uncoating of the particles relevant for productive infection. The
different scenarios that have been depicted for the dismantling of
the capsid core are recapitulated hereafter.

Cytoplasmatic Disassembly
According to the earliest models, uncoating occurs in the
cytoplasm, soon after viral entry (early cytoplasmic disassembly)
(Miller et al., 1997; Fassati and Goff, 2001). This model was
supported by biochemical studies showing the lack of detectable
CA in the cytoplasm (Bukrinsky et al., 1993; Miller et al., 1997;
Fassati and Goff, 2001). However, increasing evidence showing
the presence of CA and/or capsid cores in the cytoplasm of the
infected cells has subsequently challenged this view (McDonald
et al., 2002; Forshey et al., 2005; Shi and Aiken, 2006; Stremlau
et al., 2006; Kutluay et al., 2013; Yang et al., 2013). It has thus
been proposed that uncoating still occurs in the cytoplasm (Miller
et al., 1997; Fassati and Goff, 2001) but delayed with respect
to viral entry (late cytoplasmic disassembly) and coupled with
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FIGURE 5 | Relay race of the capsid core in the host cell. From left to right a temporal view of how CA is passed between host factors in its trip toward the nucleus.
The capsid core is schematically represented as a purple triangle with two host factors binding sites highlighted: the CypA binding-loop (the circle) and the NTD-CTD
pocket (the square). The first to bind to the core is CypA, which recognizes the CypA-binding domain, located in the CA-NTD. The same binding site is recognized
by Nup358 and its binding anchors the capsid core at the NPC, allowing its nuclear import. Then, Nup153 binds to the NTD-CTD pocket of the assembled capsid,
which is the same recognition site of CPSF6. When CPSF6 takes the place of Nup153 on the binding site it can translocate the capsid core (intact or not) to deeper
nuclear regions.

reverse transcription (Hulme et al., 2011; Cosnefroy et al., 2016).
A longer presence of an assembled capsid in the cytoplasm
appeared also more plausible since it accounted for the protective
role of the capsid from the exposure of the viral genome to
host restriction factors and to the potential activation of the
IFN-mediated antiviral response (Iwasaki, 2012). To date, it is
accepted that uncoating in the cytoplasm concerns a fraction
of the infecting particles and that, in general, it is only partial,
with capsid hexamers that remain associated with the RTC/PIC
complex, where they exert important functions in late steps of
the infectious cycle (see below).

Disassembly at the Nuclear Pore
As lentiviruses, unique among retroviruses, are able to infect
non-replicating cells, entry into the nuclear compartment must
proceed through the nuclear pore. Since the capsid core is larger
than the nuclear pore, it was considered that the intact capsid
could not be imported into the nucleus and, rather, it was
blocked once docked at the level of the NPC (Arhel et al., 2007;
Matreyek and Engelman, 2011; Schaller et al., 2011; Burdick et al.,
2017; Francis and Melikyan, 2018; Francis et al., 2020; Zurnic
Bönisch et al., 2020). Uncoating would then occur in situ, before
import of the RTC/PIC could be possible. In support of this view
came the measure of the time of residence of the viral complex
at the nuclear pore that, for HIV-1, spans between 30 and
90 min (Burdick et al., 2017; Francis and Melikyan, 2018). Since

macromolecular complexes of sizes similar to the RTC/PIC of
HIV-1 have very short times of nuclear entry and a total binding
time to the NPC of few milliseconds (Kelich et al., 2015), it was
inferred that the longer time observed for HIV reflected the need
for the capsid core to be dismantled and release the RTC/PIC.
This way, the capsid core would protect the RTC/PIC from
exposure to the proteasome until it has reached the proximity of
the point of entry into the nucleus (Francis and Melikyan, 2018).

Nuclear Disassembly
Increasing evidence, though, supports the possibility that, despite
the apparent incompatibility in terms of size, the capsid core
enters the nucleus intact or almost intact, and disassembles
only once inside it. It has indeed been shown that several host
factors interact, at the nuclear level, with the assembled capsid
rather than CA monomers (Matreyek and Engelman, 2011;
Di Nunzio et al., 2012; Valle-Casuso et al., 2012; Chin et al.,
2015; Buffone et al., 2018; Bejarano et al., 2019). Furthermore,
assuming that uncoating is favored by reverse transcription
(Hulme et al., 2011, 2015; Cosnefroy et al., 2016; Francis et al.,
2016; Mamede et al., 2017; Rankovic et al., 2017), if it constitutes a
requirement for nuclear import of the RTC/PIC, blocking reverse
transcription would be expected to affect nuclear import. This
was not the case though, while increasing evidence supports a
model where reverse transcription is completed only once in the
nucleus (Burdick et al., 2017, 2020; Francis and Melikyan, 2018;
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Bejarano et al., 2019; Dharan et al., 2020; Francis et al., 2020;
Rensen et al., 2020; Selyutina et al., 2020b). The most compelling
evidence in favor of the idea that uncoating can occur in the
nucleus then came from a series of recent works (Burdick et al.,
2020; Dharan et al., 2020; Selyutina et al., 2020b). By labeling the
capsid core with the GFP, producing a GFP-CA fusion protein,
Burdick and coworkers observed that the core enters the nucleus
while still intact (or almost intact), that reverse transcription
is completed, and, finally, that uncoating occurs close to the
integration sites approximately 1.5 h before integration (Burdick
et al., 2020). In a concomitant work, Dharan et al. (2020)
employed an inducible blockade of nuclear import at different
time points and then evaluated the fate of the capsid cores that
had entered the nucleus. In this setting, two main observations
were made. One was that the completion of reverse transcription,
as inferred by sensitivity to treatment with an inhibitor of reverse
transcription, was posterior to nuclear import. The second
observation was that, even after blocking nuclear import, the
infection was susceptible to treatment with PF74. Since this
compound inhibits infection through binding specifically the
interface between CA monomers, these observations indicated
that assembled (or partially assembled) capsid cores were present
in the nuclear fraction. Finally, the observations that uncoating
and reverse transcription are completed in the nucleus, have
also been confirmed by the biochemical analyses of the purified
cytosolic and nuclear fractions in infected cells by Selyutina et al.
(2020b).

These various models of dismantling of the capsid core are
not mutually exclusive and it is possible that, depending on
the cell type considered, the relative predominance of one or
the other scenario is found. Might this be under the form of
RTC/PIC deprived of CA, of a partially dismantled or of an intact
capsid core, the viral element containing the genetic material
must however, be translocated across the nuclear pore of the
cell (Figure 4).

GETTING INTO THE NUCLEUS,
SOMEHOW

The main nuclear import pathway of HIV-1 appears as a relay
race where the capsid core is passed from CypA to Nup358,
which passes it across the nuclear pore to Nup153 that will finally
pass it to CPSF6 (Figure 5). However, alternative pathways exist.
Mutants N74D and A77V of CA, identified for their less efficient
binding to CPSF6 no longer require CypA, Nup153, Nup358, and
TNPO3 (Lee et al., 2010; Schaller et al., 2011; Ambrose et al.,
2012; Saito et al., 2016; Buffone et al., 2018). Despite this, they
retain levels of infectivity comparable to those of the wt viruses,
in primary cells. This suggests that, in these cells, alternative
pathways are favored by these mutations. Concomitantly, these
mutations induce uncoating at the nuclear pore and shift the
integration sites to perinuclear regions (Burdick et al., 2020), in
line with studies that show the importance of CPSF6 for nuclear
import and the choice of the integration sites (Chin et al., 2015;
Rasheedi et al., 2016; Sowd et al., 2016; Achuthan et al., 2018;
Francis and Melikyan, 2018; Bejarano et al., 2019). Along the

same lines, blocking transport across the nuclear pore by an
inducible NPC blockade (Dharan et al., 2020), neither abolished
nuclear import of the capsid nor blocked infection, indicating
that nuclear pores can present a heterogeneous composition
of nucleoporins and that factors alternative to the canonical
Nup153, Nup358, and TNPO3 can also be used by the virus to
achieve integration, in accordance with previous observations
(Dicks et al., 2018; Kane et al., 2018). It is tempting to speculate
that the use of these alternative factors is indicative of ancestral,
less efficient, pathways at the expense of which the current
canonical pathways of infection have evolved. On this note, the
interaction between CA and CPSF6 seems to be preserved by
selective pressure in vivo (Henning et al., 2014; Saito et al., 2016).
This shift in the nuclear entry pathway would be a consequence of
the use of previously unemployed cellular cofactors that allowed
to optimize various steps of the infectious cycle and to improve
escape from innate immunity.

Size also matters for nuclear import. Depending on where
disassembly occurs (Figure 4), the nature and, consequently, the
size of the complex that must cross the nuclear barrier changes
considerably. The intact capsid core is around 60 nm wide (Briggs
et al., 2003) while the nuclear pore is no larger than 40 nm
(Von Appen et al., 2015). As discussed above this incongruence
has long been considered a reason to exclude the possibility
that the intact capsid core can be imported into the nucleus.
Recently, by using a new method of visualization of capsid cores,
based on immunogold labeling, Blanco-Rodriguez et al. (2020)
showed that the capsid core undergoes important structural
rearrangements before, during, and after nuclear import, leading
to the formation of a pearl necklace-like shape that decorates
the reverse transcribed DNA. The CA molecules, present in
this structure that is considerably less wide than the intact
capsid, could more easily mediate nuclear import. The possibility
that structural rearrangements also involve the nuclear pore
counterpart has been foreseen. Indeed, the NPC displays a
marked structural flexibility that can be involved in the passage
of large complexes as viral capsids (Knockenhauer and Schwartz,
2016; Mahamid et al., 2016). Furthermore, recent measurements
of the inner diameter of the NPC by using cryo-EM on intact
infected T cells have estimated a width of the internal channel
of the pore of 64 nm, thereby slightly larger than the capsid core
(Zila et al., 2021). The structure of the nuclear pore was dilated
rather than rearranged with respect to previous observations
made on HeLa cells where the canal appeared considerably
narrower (Von Appen et al., 2015). In conclusion, increasing
evidence supports the view that still “structured” capsid cores do
enter the nucleus, this might be due to either partial uncoating
that induces higher plasticity of the capsid core, either to
structural rearrangements of the nuclear pore, either both.

GENETIC FRAGILITY OF THE CAPSID: A
MARK OF MULTIPLE CONSTRAINTS?

The retroviral capsid core is responsible for chaperoning the
viral genetic material all along from the fusion of the viral and
cellular membranes till its entry (or even after) into the nucleus.

Frontiers in Microbiology | www.frontiersin.org 10 April 2021 | Volume 12 | Article 652486

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-652486 March 27, 2021 Time: 18:24 # 11

Toccafondi et al. HIV Capsid and Infection

To accomplish this, the mature CA protein must meet several
structural requirements to retain its ability to multimerize in
order to assemble into the capsid core (and this relying on two
different types of contacts, one giving rise to CA hexamers, the
other generating pentamers, as discussed above), to interact with
numerous cellular factors (Table 1) and to escape from adaptive
immunity, being a target of cytotoxic T lymphocytes (CTLs)
(Troyer et al., 2009). Furthermore, as a domain of Gag and Gag-
Pol precursors, it must retain structural arrangements that do
not interfere with the proteolytic processing of these molecules.
Altogether, these constraints can account for the extreme genetic
fragility of the protein (Rihn et al., 2013).

Genetic robustness is the ability to retain functionality when
mutations are introduced in the protein (Visser et al., 2003;
Wagner, 2005). Two main factors contribute to determining the
genetic robustness of a protein. One is the number of functions
the protein has to ensure and, consequently, the number of
interactants it must come into contact with, in order to carry
out its functions. The other is its architectural organization. For
example, the presence of intrinsically disordered regions confers
genetic robustness to proteins (Brown et al., 2002; Hultqvist et al.,
2017). In the case of HIV-1 CA, the high number of partners it
interacts with is likely the main determinant.

Local fluctuations in the degree of fragility are observed in
CA. Internal regions of the protein are less tolerant of mutations
as well as helices regions in the NTD rather than in the CTD
and in the interhelical loops among which, surprisingly, the
loop interacting with CypA. In particular, the region with the
highest fragility is the one encoding the alpha-helices present
in the NTD (Manocheewa et al., 2013; Rihn et al., 2013).
This region is responsible, in the assembled core, for the
interaction of each monomer with each other on the internal
side of the hexamer, to form the internal ring (Figure 2B; Li
et al., 2000; Pornillos et al., 2009, 2011). In addition, NTDs
interact with the CTDs of adjacent monomers on the external
portion of the CA (Lanman et al., 2003, 2004; Pornillos et al.,
2009). These interactions must be finely tuned since during the
extracellular life of the virus they must be stable enough to
maintain a closed capsid core, but once inside the target cell
they must allow the progressive dismantling of the structure,
with the appropriate timing, as discussed above (Forshey et al.,
2002). Maintaining this delicate equilibrium can account for the
fragility of these regions. Of particular interest are the epitopes
recognized by CTLs that appear particularly vulnerable to the
introduction of genetic polymorphisms. A similar situation is
found for the external regions of the HIV-1 envelope, which
are the target of heavy artillery by the immune response, in
this case humoral. It has been shown that in these regions the
genomic sequence has evolved in such a way as to reduce the

mutation rate (Geller et al., 2015), an observation interpreted
as a mechanism to limit the cost of deleterious mutations,
particularly high in these regions (Simon-Loriere et al., 2009;
Hamoudi et al., 2013; Gasser et al., 2016). Marked genetic fragility
could therefore constitute a common signature of regions under
strong immune selection. Finally, several mutations that have
a positive effect on viral replication in vitro were not found
in natural populations, suggesting the existence of additional,
presently unknown, sources of selection that counterselect
some positive mutants but not others (Rihn et al., 2013).
Identifying these sources of selection appears an important
step for understanding the molecular bases of successful viral
replication in vivo.

The marked genetic fragility of the capsid therefore likely
derives from the cumulative requirements for interacting with a
plethora of cellular factors that the virus has learned to deal with,
for an optimal adaptation to its host. This fragility is probably
responsible for the limited capacity of the capsid to avoid the
immune response of the host (Troyer et al., 2009) and encourages
to design new drugs targeting this protein. Drugs from which, in
strict analogy to what occurs for the immune response, it should
be difficult to escape.

CONCLUDING REMARKS

The ultimate goal of a retrovirus is to reach the genetic material of
the infected cell to integrate its own. To do so, the infectious cycle
passes through two phases, an extracellular and an intracellular
one. For each of these, a shell has been optimized. We now know
that, as many vulnerable aspects of the envelope proteins are
largely not accessible until the target cell has not been reached,
also for the intracellular delivery of its genetic material, the virus
does not leave a large window of opportunity for the host cell
to sense and attack its genetic material. This, until the final
destination is almost reached.
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