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The misuse of antibiotics is leading to the emergence of multidrug-resistant (MDR) bacteria, 
and in the absence of available treatments, this has become a major global threat. In the 
middle of the recent severe acute respiratory coronavirus 2 (SARS-CoV-2) pandemic, 
which has challenged the whole world, the emergence of MDR bacteria is increasing due 
to prophylactic administration of antibiotics to intensive care unit patients to prevent 
secondary bacterial infections. This is just an example underscoring the need to seek 
alternative treatments against MDR bacteria. To this end, phage therapy has been 
proposed as a promising tool. However, further research in the field is mandatory to assure 
safety protocols and to develop appropriate regulations for its use in clinics. This requires 
investing more in such non-conventional or alternative therapeutic approaches, to develop 
new treatment regimens capable of reducing the emergence of MDR and preventing 
future global public health concerns that could lead to incalculable human and 
economic losses.
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INTRODUCTION

The current global health emergency caused by severe acute respiratory coronavirus 2 (SARS-
CoV-2), the causative agent of coronavirus disease (COVID-19), highlights the challenge 
to combat emergent pathogens with uncharacterized pathogenesis, limited treatments, and 
unavailable vaccines. The rapid and uncontrollable geographic dissemination of SARS-CoV-2, 
which has hit almost every country on earth, is still ongoing (Lai et  al., 2020). As another 
example, recent Ebola virus outbreaks in different African countries, with low transmissibility 
but high mortality rates (around 50%), also put the already fragile health system in those 
countries under immense stress (Delamou et  al., 2017). These two outbreaks reflect the 
need to invest more in science, and the importance of basic and translational research to 
improve public health and become ready for future pandemics. It is thus of particular 
interest to increase the scientific knowledge of better prevention, rapid detection, and effective 
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treatment of emerging and/or re-emerging pathogens. Emerging 
zoonotic diseases are a growing public health concern and 
require close monitoring to understand the mode of 
transmission between people and animals. Thus, the “One 
Health” approach, with the aim of monitoring and integrating 
animal and human diseases through a systematic surveillance 
program (Mackenzie and Jeggo, 2019), will provide a better 
understanding to control zoonotic infections and enable rapid 
outbreak detection.

Bacterial infections, despite their longer replication times 
compared to viruses, are also responsible for high mortality 
and morbidity rates worldwide (O’Neill, 2014). The emergence 
of multidrug-resistant (MDR) bacteria is a significant concern 
nowadays (Lomazzi et al., 2019), and international institutions 
such as the WHO, the Centers for Disease Control and 
Prevention (CDC), or the European Commission, are calling 
for research into the development of alternative treatments 
(Binns, 2020). To date, infections from untreatable bacteria 
known as pan-resistant pathogens, resistant to all available 
classes of antibiotics, have been reported in many countries 
(David et  al., 2019; Havenga et  al., 2019). This has led to 
a high-priority challenge of understanding and countering 
progressive antibiotic resistance both in nosocomial and 
non-nosocomial settings. Thus, alternative therapies to treat 
and control MDR bacterial infections are highly desired in 
medicine today. One alternative that is gaining attention is 
bacteriophages (phages) due to their therapeutic potential 
administer alone (Martinecz and Wojewodzic, 2020), in 
combination with antibiotics (Manohar et  al., 2020), or by 
interfering with eukaryotic viruses (Górski et  al., 2020). It 
is time to learn from mistakes and invest in research against 
MDR bacteria. Prevention in health is not only about saving 
lives but also avoiding economic, social, or cultural burdens.

THE EMERGENCE OF MDR BACTERIA 
AND ITS IMPACT ON PUBLIC HEALTH

The discovery of antibiotics was a revolution in medicine. Since 
then, antibiotics have become crucial in the healthcare system, 
and have helped to improve the quality of life for humans 
and increased life expectancy. However, bacteria can be resistant 
to antibiotics through genomic alteration or acquiring mobile 
genetic elements harboring resistance and virulence-related 
genes (Oz et  al., 2014; Baym et  al., 2016; Reygaert, 2018; 
Wistrand-Yuen et al., 2018). The widespread misuse of antibiotics 
has fostered the selection of antibiotic-resistant bacteria and 
now infections due to antimicrobial-resistant strains are 
considered the second leading cause of death worldwide by 
killing around 7,000,000 people a year (O’Neill, 2014). According 
to the WHO, 10 million MDR deaths are expected in 2050, 
exceeding cancer, and it would cost the world up to 100 trillion 
USD (O’Neill, 2014; de Kraker et al., 2016). These expectations 
disregarded the current health crisis caused by COVID-19 that 
might exacerbate the worst scenario (Monnet and Harbarth, 
2020). Bacterial co-secondary infections are common when a 
viral infection is established and they further increase morbidity 

and mortality (Morens et al., 2008; Smith and McCullers, 2014; 
Morris et  al., 2017). Similar results were observed in 2009 
during the H1N1 influenza virus outbreak, where bacterial 
infections contributed to 50% of the total deaths (Papanicolaou, 
2013). The on-going pandemic is not an exception, and it has 
been shown that around 50% of patients who died from 
COVID-19 had secondary bacterial infections (Zhou et  al., 
2020). Also, it has been observed that critical patients had a 
higher percentage of bacterial coinfections (34.5%) than patients 
with severe or moderate disease (8.3 and 3.9%, respectively), 
increasing the mortality rate and duration of hospitalization 
(Feng et  al., 2020). These infections include MDR bacteria 
(Lescure et  al., 2020; Sharifipour et  al., 2020), although their 
extent over the total cases remains unknown (Clancy et  al., 
2020). However, they are expected to be  relevant given the 
high percentage of patients admitted to the intensive care units, 
where MDR infections are known to be  common (Vincent 
et  al., 2020). In fact, half of the hospital-acquired infections 
in COVID-19 patients occurred in critical units (Rawson et al., 
2020). These are clear examples of the devastating effects of 
bacterial infections in the face of pandemics caused by viruses. 
In these cases, broad-spectrum antibiotics are misused to avoid 
undesirable secondary infections (Deng and Peng, 2020). For 
instance, in a random cohort of 1,705 patients of Michigan 
hospitals, antibiotics were prescribed to 57% of COVID-19 
hospitalized patients, while only 3.5% had a confirmed bacterial 
co-infection (Vaughn et  al., 2020). This was even worse in 
hospitals from The Netherlands, where bacterial infections were 
rare (1.2%), but more than 60% of patients received antibiotics 
(Karami et  al., 2021). Thus, even if the frequency of bacterial 
infections seems to be  low in the SARS-CoV-2 pandemics, 
this indiscriminate use of antibiotics fosters the spread of MDR 
bacteria (Rawson et  al., 2020). Maybe this effect could 
be  compensated due to travel restrictions and better sanitation 
practices in developed countries, but the increase of MDR 
bacteria in places with poor health systems seems unavoidable 
(Collignon and Beggs, 2020; Egyir et  al., 2020; Monnet and 
Harbarth, 2020).

Lastly, it is also worth mentioning that the extensive use 
of antibiotics in farming is contributing to the spread of 
antibiotic resistance. Antibiotics are used in animals for growth 
promotion and for the prevention of diseases. This usage is 
responsible for 80% of total antibiotic consumption in the 
United  States and is predicted to rise by 2030 (Van Boeckel 
et  al., 2015). This has led to isolating MDR bacteria from 
food animals (Zhu et  al., 2013) and livestock wastes (He 
et al., 2020), promoting their dissemination into environments 
where humans can be  exposed, thus increasing antibiotic-
resistance (Manaia, 2017). For example, several bacterial 
pathogens from the food animals can cause several health 
issues in humans (Strawn et  al., 2013; Hellberg and Chu, 
2016; Chlebicz and Śliżewska, 2018), being a major reservoir 
of antibiotic-resistance that can be  transferred to humans 
directly by the food chain. Given the scarce development of 
new antibiotics due to resistance predictability, economic 
incentives, and regulatory requirements over the last years 
(Ventola, 2015), non-canonical alternatives might pave the road.
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THE NEED TO EXPLORE ALTERNATIVE 
TREATMENTS: PHAGE THERAPY IN 
THE SPOTLIGHT

Phages, viruses that infect bacteria, are the most abundant 
biological entities on Earth and can be  found everywhere (soil, 
oceans, human gut, sewage, and wastewater), being stable in 
many conditions (Domingo-Calap and Delgado-Martínez, 2018). 
They were postulated since their discovery as therapeutic tools 
against pathogenic bacteria (D’Herelle, 2007) since they can 
be  isolated and used against bacterial pathogens (Moye et  al., 
2018; Jamal et  al., 2019). Interestingly, phage abundance, 
versatility, ubiquity, and genetic diversity are beneficial for their 
use as therapeutic tools, making phage discovery a rapid, simple, 
and limitless process (Altamirano and Barr, 2019).

The highly specific interaction between phage and host, 
allow them to recognize and lyse specifically the targeted 
bacteria (Hyman and Abedon, 2010), being safe for humans 
and animals, and avoiding dysbiosis (Skurnik et  al., 2007). 
Interestingly, although many phages can infect a narrow range 
of bacteria (closely related strains; Hyman and Abedon, 2010), 
some phages have a broad host range, meaning that they can 
infect multiple species of bacteria or multiple strains of the 
same bacterial species (Mirzaei and Nilsson, 2015).

However, the arms race between phage and bacteria takes 
place as an evolutionary trade-off. Bacteria have evolved resistance 
mechanisms to combat phage infection, whereas phages have 
developed a wide array of mechanisms to overcome bacterial 
defense systems (Oechslin, 2018). Phage-resistant mechanisms in 
bacteria include their ability to alter or mask the cell wall receptors 
or block the phage DNA entry. By the activation of the CRISPR-Cas 
system, the viral DNA in the cell is degraded upon phage infection. 
However, to encounter these mechanisms, phages can recognize 
new or the altered receptors and escape CRISPR-Cas resistance 
through anti-CRISPR viral encoded proteins (Pawluk et al., 2018).

Under this view, phages should be  considered as promising 
adaptable tools in the fight against multidrug-resistant bacteria, 
especially nowadays, where the recent pandemics have increased 
the hospitalization pressure, and nosocomial infections are 
rising fast without effective treatments. Indeed, the potential 
use of phages and phage-derived enzymes in COVID-19 patients 
has recently been highlighted (Martinecz and Wojewodzic, 
2020). We consider that phages could be an interesting alternative 
to combat bacterial pathogens, and we  strongly encourage 
increased investment in the field. Further research in phage 
biology of novel discovered phages, phage-resistance emergence, 
phage stability, pharmacokinetics and pharmacodynamics, 
legislation, and regulation, should be  addressed prior to its 
implementation as a routine therapy.

IMPROVING PHAGE POTENTIAL 
THROUGH GENETIC ENGINEERING

Outbreaks of MDR bacteria challenge the efficacy of phage 
therapy applications due to bacteria’s ability to adapt and develop 
resistance to phages (Labrie et  al., 2010). Whole-genome 

sequencing (WGS) of clinical bacterial genomes isolated from 
patients could reveal the presence of prophages in the 
chromosome, phage resistance encoding genes, or genetic 
modifications in the genome to encounter phage infections 
(Donkor, 2013). Thus, bacterial genomic features and screening 
for prophages will improve the phage therapy efficacy. As for 
phage or phage-derived product use, WGS has become mandatory 
for regulatory approval in both healthcare and food-industry 
(Hayes et  al., 2017; Aziz et  al., 2018).

Characterizing the phage genome is important for therapeutic 
applications. The phage genomes are hyper-mobile and it is 
essential to recognize their properties for a safe phage therapy 
selection (Loc-Carrillo and Abedon, 2011). Screening includes 
the phage life cycle-related genes such as integrase genes, and 
the lack of deleterious genes besides the presence/absence of 
phage genes that encode for virulence and transducible elements 
such as antibiotic resistance genes. Genetic transfer via 
transduction is a defined phage biology by-product by which 
the phage mediates the transfer of antibiotics resistance genes, 
virulence factors, and fitness-related genes as an evolutionary trait.

Essential phage properties can be  evaluated experimentally 
as well as can be  analyzed by computational methods (McNair 
et  al., 2012). The advances in high-throughput genome 
sequencing, along with the development of CRISPR-Cas and 
other recombineering techniques, have opened a wide range 
of opportunities to improve phage intrinsic characteristics. Their 
smaller genome size and ease of propagation and manipulation 
make them ideal candidates subjected to genetic manipulation 
(Litman and Pardee, 1956; Freese, 1959). However, the impact 
of engineered phages on bacterial and phage community 
dynamics are not understood (Nair and Khairnar, 2019). Genetic 
modification of phages is mainly applied to address some of 
the drawbacks of their clinical application as narrow host range, 
lysogeny, or efficacy. Phage host range firstly relies on tail 
fiber and base plate proteins, which are responsible for recognizing 
cell surface receptors. Therefore, these proteins are ideal targets 
to alter a phage host-range. Thus, it is possible to expand the 
phage host range, select those less prone to bacterial resistance 
or extended tropism (Dunne et  al., 2019). In clinical settings, 
the host range specificity supports the approach of administering 
phages as therapeutic agents. The approach of using a single 
phage to infect a bacterium requires precise matching between 
the phage and the bacterial host. However, phage cocktails 
can increase phage host range, and reduce the emergence of 
phage-resistance variants. Cocktails can be composed of phages 
infecting a single bacterial strain, multiple strains, or multiple 
species (Abedon, 2017). With consideration of phage 
pharmacokinetic and phage-host interaction, sequential 
administration of phages to patients at different times during 
the course of treatment has been proposed. This approach 
could reduce bacterial resistance rates caused by modifications 
in host cell receptors, which prevent phage infection (Nilsson, 
2014; Mapes et  al., 2016). Interestingly, with the advance of 
phage bioengineering techniques, it is possible to direct phages 
at specific bacteria. Several studies use customized phages to 
re-sensitize or remove antibiotic-resistance pathogens from the 
mixed bacterial populations (Dunne et al., 2019). These techniques 
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support the phage host range modification to broaden the 
phage-host interaction and make it achievable.

Temperate or lysogenic phages are not desired for phage 
therapy as they get integrated into the host genome, thus 
limiting their efficacy and increasing the risk for horizontal 
gene transfer. As above, temperate phages could be  switched 
to lytic phages by removing factors that allow for lysogeny 
such as integrases and repressors. This approach was used to 
treat a patient with a disseminated drug-resistant Mycobacterium 
abscessus and represented the first case of phage therapy using 
an engineered phage (Dedrick et  al., 2019).

Lastly, one of the pitfalls of phage therapy so far has been 
stability and storage conditions. For that purpose, phages have 
also been manipulated to resist different pH conditions for 
example, displaying lipids on their surfaces (Nobrega et  al., 
2016), or increase thermal stability (Favor et al., 2020). Alternative 
approaches such as the engineering of phage proteins can 
be  used instead since advances in phage protein engineering 
opens up new means to fight MDR bacteria more efficiently 
(Gerstmans et  al., 2020). It is also worth mentioning phage 
display, a promising technique and powerful influential tool 
in molecular biology, based on the display of a unique peptide 
sequence or protein on the outer surface of the phages by 
genetic fusion to coat proteins of phage virion (Smith, 1985). 
Phage display has a role in molecular biology, with widespread 
applications in therapeutics, highlighting drug discovery as a 
major application (Lowman, 1997; Mimmi et  al., 2019), drug 
delivery (Karimi et  al., 2016), cancer imaging (Ghosh et  al., 
2012), vaccine development (Bao et  al., 2019), and treatment 
against infectious diseases (Bazan et al., 2012; Bao et al., 2019).

CURRENT STATUS OF PHAGE 
THERAPY AS A BIOMEDICAL TOOL

Since the first encouraging reports of phage therapy after phage 
discovery, a lot of studies have shown the potential and efficacy 
of phages to treat bacterial infections. However, most of them 
have been done in vitro or were not properly designed/
documented to draw definitive conclusions (Domingo-Calap 
et  al., 2016). During the last years, a growing amount of  
in vivo studies, mainly in mouse models have been carried 
out (Melo et al., 2020). Most of our knowledge of phage therapy 
came from the Eliava Institute of Bacteriophage, in Georgia, 
and the Ludwik Hirszfeld Institute of Immunology and 
Experimental Therapy, in Poland, where phage therapy is 
routinely used as an antibacterial treatment. In contrast, in 
Western Europe and the United States, a regulatory framework 
should be established, since there are still limited studies under 
the guidelines of the Food and Drug Administration (FDA) 
or European Medicines Agency (EMA), most of them as clinical 
reports of compassionate use, due to the lack of clinical trials.

As of December 2020, there are 46 terminated or  
active published clinical trials that contain the term “phage”.1  

1 https://clinicaltrials.gov/

Of these, 19 are strictly related to phage therapy, and only 
one in phase II (NCT03140085), comparing the efficacy of 
a phage cocktail against urinary tract infections (Ujmajuridze 
et  al., 2018). Unfortunately, no significant efficacy rate of the 
phage treatment was reported. Interestingly, no side effects of 
phage therapy were observed and supporting the lack of side 
effects of phages. These results are in line with the PhagoBurn 
trial, the world’s first prospective multicentric, randomized, single-
blind, and controlled clinical trial of phage therapy (Jault et  al., 
2019). PhagoBurn trial focused on patients with burn wounds 
due to bacterial infections, administering a cocktail of 12 phages 
topically. The phage treatment resulted in bacterial reduction 
with less serious events in comparison to the standard care 
group. Yet, the results were less promising than expected. The 
authors have reasoned these results to the manufacturing-related 
process and administration challenges that caused the delay and 
the reduction of phage cocktail titer that led to patients receiving 
doses lower than originally intended. Design of clinical trials 
for phages should consider the unique features of these entities 
as they are self-replicating viruses. This is even more challenging 
when considering phage cocktails, as the interactions between 
the different phages, including storage, are usually poorly 
understood. Therefore, although some phage-based products are 
available in some Eastern European countries, there are no phage 
products approved for human therapy in the United  States or 
the rest of Europe to date (Fauconnier, 2019; Pelfrene et al., 2019).

Meanwhile, a few cases of compassionate phage therapy have 
been reported. Compassionate treatment refers to the use of 
medicines outside of a clinical trial for a patient with unavailable 
approved therapeutic options and is under the “Helsinki 
Declaration of Ethical Principles for Medical Research Involving 
Human Subjects.” During the last two decades, more than 25 
reports of the compassionate use of phage therapy after antibiotic 
failure have been published (McCallin et  al., 2019; Schmidt, 
2019) and might help in designing new clinical trials. In Belgium, 
this has led to the approved use of phages as ingredients of 
magistral preparations, thus as a means of personalized treatment 
(Pirnay et  al., 2018). The compassionate and personalized use 
of phages, although positive to extend our knowledge about 
the efficacy of phage therapy in vivo, highly relies on the regulatory 
framework of each country. That is why a call-up has been 
made around the regulatory hurdles of phage therapy in order 
to get appropriate therapeutic guidelines that make the adaptation 
and implementation of phages in clinical settings easier (Moelling 
et  al., 2018). Recently, the FDA has approved phage therapy as 
a compassionate treatment for COVID-19 patients (Adaptive 
Phage Therapeutics, Inc., 2020), due to the high incidence of 
MDR secondary infections mentioned previously.

NEED FOR A PHAGE-BASED 
REGULATORY FRAMEWORK AND 
FUTURE PERSPECTIVES

The current regulatory framework worldwide is not allowing 
the use of phage therapy in Western Europe and the United States 
(Parracho et  al., 2012). Hence, the phage community calls for 
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new and specific standards to implement phage therapy. The 
phage therapy-based regulatory framework should include 
providing well-characterized phages, including isolation and 
purification, defining host range, sequencing, and storage in 
phage banks. These will provide an available well-defined 
collection ready-to-use for clinical care. Importantly, patients 
should be  informed of the phage therapy and given the option 
to decide to try it. It is also worth mentioning that it is 
recommended by the FDA to follow phage manufacturing 
under Good Manufacturing Practice (GMP) guidelines and 
infrastructure. However, the implementation of GMP is 
considered for a large phage production whereas phage-specific 
patients are produced for a limited number of phages, thus, 
a simpler GMP system is recommended.

Phage banks are already increasing, and some of them are 
located in Belgium, Republic of Georgia, Russia, Germany, 
Switzerland, Finland, and Canada (Moelling et  al., 2018). In 
addition, Phage Directory, an online database of phage 
laboratories, phages, and bacterial hosts, in which phage 
researchers, regulators, and biotech companies are communicated, 
is an interesting example of a network to implement the use 
of phages in clinics. This huge phage database provides an 
opportunity to continue working on research to form therapeutic 
phages, even as a form of individualized medicine.

Political authorities, stakeholders, academics, and researchers 
around the world must be  aware of the need for urgency to 
treat a high number of people suffering from MDR infections, 
which are predicted to be  much higher as a primary and as 
a secondary infection during the current pandemics, being a 
major global health threat. This can be  achieved by the 
establishment of a phage therapy-related regulation to allow 
for phage therapy research development and to increase incentives 
in order to increase basic research and translate it to proper 
clinical trials.

CONCLUSION

The emerging and growing threat of MDR bacteria is of public 
concern to both health and economic communities around 

the world. In the search for novel treatments against pathogenic 
bacteria, phages have been shown to be  promising therapeutic 
tools. However, the therapeutic use of phages in clinics is 
currently a major challenge. Awareness of the importance of 
phage therapy is increasingly appreciated by society, including 
academics, physicians, patients, and social media. This should 
therefore open the door to more investment in phage research 
and increase support and funding for phage biology and the 
development of phage-based treatments, including clinical trials. 
In addition, it is significant to rebuild the regulatory frameworks 
with respect to phage therapy and its potential applications. 
In conclusion, we  consider that anticipating health is winning, 
and long-term initiatives to prevent future global health outbreaks 
should be  a major concern nowadays.
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