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chain recombination, actinophages integrase-mediated integration, and transposition
mutation, has accelerated the molecular study of C. glutamicum. More importantly,
emerging gene editing tools based on the CRISPR/Cas system is revolutionarily
rewriting the pattern of genetic manipulation technology development for C. glutamicum,
which made gene reprogramming, such as insertion, deletion, replacement, and point
mutation, much more efficient and simpler. This review summarized the recent progress
in molecular genetic manipulation technology development of C. glutamicum and
discussed the bottlenecks and perspectives for future research of C. glutamicum as
a distinctive microbial chassis.
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INTRODUCTION

Corynebacterium glutamicum has been widely used in the food industry for amino acid production
(Wendisch et al., 2016). It is also being considered as a promising general-purpose chassis strain for
other high-value chemicals (Woo and Park, 2014; Heider and Wendisch, 2015; Becker et al., 2018),
as well as an emerging heterologous protein expression host (Liu et al., 2016). However, there are
some challenges in developing C. glutamicum as a synthetic biology platform (Woo and Park, 2014),
especially in the aspect of genome editing tools, lagging far behind Escherichia coli.

The genetic modification of C. glutamicum can be traced back to 1984 (Ozaki et al., 1984),
but the development and application of genetic manipulation technology are progressing slowly
(Nesvera and Patek, 2011; Suzuki and Inui, 2013; Yang et al., 2020), which may be attributed
to the fact that C. glutamicum is a type of Gram-positive actinomyces with high GC content in
the genome (Ikeda and Nakagawa, 2003). Unusual cell wall together with deficient homologous
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recombination (HR) (for DNA repair) of C. glutamicum results
in extremely low efficiency in shuttle plasmid transformation and
subsequent gene editing (Nesvera and Patek, 2011; Ruan et al,,
2015; Yang et al., 2020). In the post-genomic era of C. glutamicum
(Kalinowski et al., 2003; Lv et al., 2011, 2012), genomics and
transcriptomics have promoted the mining and characterization
of synthetic biological elements (such as promoters, replicons,
and selectable markers) to a certain extent (Tauch et al., 2003;
Nesvera et al, 2012; Patek et al, 2013; Rytter et al., 2014;
Shang et al.,, 2018). More and more genetic manipulation tools
have been applied in C. glutamicum (Nesvera and Patek, 2011;
Suzuki and Inui, 2013), including type strain ATCC 13032
and no-model industrial strains such as Brevibacterium flavum
and Corynebacterium crenatum (Xu et al., 2010; Shu et al,
2018). Most importantly, the gene editing technology mediated
by CRISPR/Cas system has been successfully developed in
C. glutamicum, revolutionizing the study of genetic manipulation
technology (Jiang et al., 2017).

Here, we reviewed recent advances in genome editing
technology of C. glutamicum, as summarized in Table 1, with a
special focus on the CRISPR/Cas system. Technical bottlenecks
and future development trends are also discussed.

CLASSIC ALLELIC-EXCHANGE-BASED
GENOME EDITING TOOLS

Since C. glutamicum can hardly repair DNA through Non-
Homologous End Joining (NHE]), allelic exchange based on HR
is the most commonly used genetic manipulation tool (Suzuki
and Inui, 2013; Yang et al., 2020). In C. glutamicum, both suicide
plasmid and replicable plasmid can be used for allelic exchange
(Wang et al., 2019a; Wu et al., 2020). Allelic exchange could be
achieved by single crossover and double crossover, the results of
which vary dependent on the characteristic of homology arms
(Figures 1A,B).

In C. glutamicum, genetic tools based on allelic exchange
can basically implement genetic manipulation such as insertion,
substitution, deletion, and point mutation (Nesvera and Patek,
2011; Suzuki and Inui, 2013; Yang et al., 2020) and have been
widely used in metabolic engineering and chassis development
(Woo and Park, 2014). However, there are some drawbacks for
allelic exchange. For example, it usually takes a long period (about
8 days) to complete one round of gene editing. Besides, the low
efficiency of the second single crossover prevents the desired
mutant to be obtained, even after a large number of colony
PCR screening (Wen et al., 2020). To ensure the availability of
desired mutant strains, counter-selectable markers and nuclease
systems are introduced.

SacB gene encoding a levansucrase, which can convert sucrose
into a toxic metabolite, is the most commonly used counter-
selectable marker in C. glutamicum. Schifer et al. (1994)
successfully deleted the hom-thrB gene of C. glutamicum by
SacB-assisted allelic exchange. In later studies, the streptomycin-
sensitive gene rspl and 5-fluorouracil-lethal gene upp were also
introduced as negative markers in C. glutamicum (Kim et al,
2011; Ma et al., 2015). Screening marker-mediated conditional

lethality can help filter out strains that have not undergone the
secondary crossover, because only strains that have lost the lethal
gene through the second crossover can survive. Therefore, the
screening workload is drastically reduced. However, it does not
improve the efficiency of HR.

In C. glutamicum, nuclease systems such as Cre-loxP and
I-Scel system (Yang et al., 2020) have been introduced to
force the host to activate a second crossover (by specifically
cutting DNA) to survive (Zhang et al., 2015). It not only filters
out the transformants that have not undergone the second
crossover but also stimulates recombination. However, low-
efficiency DNA repair still hinders the acquisition of desired
transformants. Therefore, the RecT recombinase system was
employed. RecT is a single-stranded DNA annealing protein
(SSAPs) (Zhang et al, 1998), which can mediate binding of
template DNA strand and homologous DNA by annealing,
to realize subsequent exchange and invasion. Accordingly,
artificially synthesized ssDNA substrates can effectively achieve
site-directed mutagenesis, insertion, and deletion, through
recombination (Figure 1C).

RecT-mediated ssDNA single-stranded recombination does
not rely on the RecA recombination system of the bacteria, but
relies on the RecT recombination system encoded by the recT
gene from the prophage Rac (Zhang et al.,, 1998). Compared
with the natural recombination system in hosts, it is easier to
operate and is not affected by DNA sequence and length, which
can achieve high-efficiency recombination using even very short
homologous DNA sequences as substrates (Murphy et al., 2000;
Sawitzke et al., 2011). Binder et al. (2013) introduced RecT
recombinase into C. glutamicum for the first time. In later studies,
Krylov et al. (2014) and Wu et al. (2020) optimized the ssDNA
chain length, concentration, base modification, and DNA strand
tendency (leading or lagging strand), which further improved
the recombination efficiency of ssDNA in C. glutamicum. The
exonuclease-recombinase pair RecE + RecT (RecET) has also
be adapted to promote dsDNA recombination. Recently, Huang
et al. (2017) reported an effective and sequential deletion
method based on RecET and Cre/loxP system, which has been
successfully applied for L-leucine production in C. glutamicum
(Luo et al., 2020).

Although  RecT/ssDNA- or  RecET/dsDNA-mediated
recombineering simplifies the operation of genome editing,
only one gene can be edited at one round in C. glutamicum.
By contrast, in E. coli, oligonucleotide-mediated multiple-
site editing of the genome has been successfully applied
for over 10 years (Wang et al., 2009; Isaacs et al, 2011). It
implied that ssDNA/dsDNA electroporation efficiency and the
expression level of the RecT/RecET in C. glutamicum need to be
further optimized.

REVOLUTIONARY CRISPR/CAS-BASED
GENOME EDITING TOOLS

The CRISPR/Cas system has achieved great success in
various prokaryotic and eukaryotic microorganisms and is
regarded as a revolutionary gene manipulation technology
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TABLE 1 | Comparison of different genetic tools applicable in C. glutamicum.

Genome editing tools

Principles or outcome(s)

Advantages

Putative drawbacks

References

Allelic exchange

Counter-marker-assisted allelic
exchange

Cre-loxP or I-Scel
system-assisted allelic
exchange

RecET/ssDNA(dsDNA)-
mediated
recombination

CRISPR/Cas9

CRISPR/Cas9 + RecT/ssDNA

CRISPR/dCas9

CRISPR/Cpf1

CRISPR/Cpf1 + RecT/ssDNA

CRISPR/dCpf1

Cytosine base editor (CBE)

Adenine base editor (ABE)

TadA-dCas9-AID

Base editor (BE3)

MACBETH

Actinophages integrase

mediated integration

Transposon

Transposon + Cre-loxP system

HR (homologous
recombination)-mediated
in-frame deletion or insertion

Marker-mediated conditional
lethality to retain mutants with
second crossover

DNA cleavage by Cre or
I-Scel to accelerate second
crossover

RecT recombination
system-mediated HR

Cas9-mediated DSB to
stimulate DNA repair
Cas9-mediated DSB and
RecT recombination system
mediated HR

Steric hindrance effect of
dCas9 to repress
transcription
Cas9-mediated DSB to
stimulate DNA repair

Cas9-mediated DSB and
RecT recombination system
mediated HR

Steric hindrance effect of
dCpf1 to repress transcription
Activation-induced cytidine
deaminase (AID) and
CRISPR/dCas9 convert C to
T in editing window

tRNA adenosine deaminase
and CRISPR/dCas9 convert
A to G in editing window
Combination of CBE and ABE

Cytidine deaminase and uracil
DNA glycosylase inhibitor;
converting specific C-G
nucleotide base pairs to T-A
Robotic system-assisted
multiplex automated base
editing

TP901-1, $C31 or ¢BT1
integrase mediated
integration

Random transposon
disruption or inactivation

Random long or short DNA
fragments deletion

Versatile and broadly
applicable

Filtering out false positives
to reduce workload

Filtering out false positives
to reduce workload;
stimulating HR

Independent of host
recombination system;
straightforward procedure

Broadly applicable and
function diversity
Enhanced recombination
efficiency

Fine transcription level
regulation of any given gene

Decreased toxicity; multiple
sites editing; broadly
applicable

Enhanced recombination
efficiency and multiple sites
editing

Fine transcription level
regulation of any given gene
High efficiency and multiple
sites editing

High efficiency and multiple
sites editing

Bi-directional base
conversion to achieve C-T,
C-G and A-G conversion
High efficiency and multiple
sites editing

Automated,
ultra-high-throughput
multiple sites editing
Site-directed integration of
long DNA fragment

Easy to construct
single-gene disruptant
mutant library

Easy to construct reduced
genome mutant library

Limited to low HR efficiency

Failing to stimulate HR

Remaining recognition site
may interference next
round of operation

Limited to RecET
expression and ssDNA/ds
DNA transformation
efficiency

Toxicity of DSB; limited to
host DNA repair capability
Limited to RecT expression
and ssDNA transformation
efficiency

Dependent on sgRNA and
target gene

Toxicity of DSB; limited to
host DNA repair capability

Limited to RecT expression
and ssDNA transformation
efficiency

Dependent on sgRNA and
target gene

Limited base transition
capability

Limited base transition

capability

Limited base transition
capability

Limited base transition
capability
Limited base transition

capability

Attachment sites need to
be installed in advance

Inaccurate genome editing

Inaccurate genome
reducing

Niebisch and Bott, 2001;
Unthan et al., 2015; Baumgart
etal., 2016; Baumgart et al.,
2018

Niebisch and Bott, 2001; Kim
etal., 2011; Ma et al., 2015

Suzuki et al., 2005b; Suzuki

et al., 2005d; Ma et al., 2015;
Huang et al., 2017; Zhan et al.,
2019; Luo et al., 2020;
Marques et al., 2020; Wu et al.,
2020

Binder et al., 2013; Krylov
etal., 2014; Huang et al., 2017;
Su et al., 2018; Luo et al., 2020

Liu et al., 2017; Peng et al.,
2017; Coates et al., 2019

Cho et al., 2017; Liu et al.,
2018; Wang B. et al., 2018

Cleto et al., 2016; Lee et al.,
2018; Yoon and Woo, 2018;
Gauttam et al., 2019

Jiang et al., 2017; Krumbach
et al., 2019; Zhang et al., 2019;
Dong et al., 2020; Li M. et al.,
2020

Jiang et al., 2017; Wang et al.,
2019b; Zhang J. et al., 2020;
Zhao et al., 2020

Li M. et al., 2020

Wang Y. et al., 2018; Deng
et al., 2020; Li J. et al., 2020

Wang et al., 2019¢; Deng et al.,
2020

Deng et al., 2020

Huang et al., 2020

Wang Y. et al., 2018

Shen et al., 2017; Marques
et al., 2020

Vertes et al., 1994; Inui et al.,
2005; Suzuki et al., 2006;
Gorshkova et al., 2018

Tsuge et al., 2007
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FIGURE 1 | Genome editing tools applicable in Corynebacterium glutamicum. (A,B) Allelic exchange-based tools (single and double crossover);
(C) RecT-ssDNA-mediated recombination; (D) CRISPR/Cas system; (E) CRISPR/Cas system-assisted base editing system; (F) CRISPR/Cas system-assisted
transcription regulation; (G) Cre-loxP system; (H) I-Scel system; (l) integrase-mediated site-specific integration; (J) transposon.

(Jinek et al., 2012; Cong et al., 2013). A lot of effort has been paid
to introduce the CRISPR/Cas system into C. glutamicum, but
progress was not smooth initially, because C. glutamicum

cannot tolerate the toxicity of Cas9 expression (Cho
et al, 2017; Jiang et al., 2017). This explains why CRISPR
interference (CRISPRi) mediated by CRISPR/dCas9 [dead
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Cas9, harboring D10A and H840A mutations in Cas9, no
nuclease activity (Bikard et al., 2013)], but not CRISPR/Cas9-
based genome editing, was first applied to C. glutamicum
(Cleto et al., 2016).

CRISPRi can be used to regulate the transcriptional level
of any given gene by steric hindrance effect (Figure 1F)
and is especially suitable to down-regulate essential genes
because they cannot be inactivated directly (Wen et al,
2017). In C. glutamicum, CRISPR/dCas9-mediated single-gene
transcriptional repression (Cleto et al.,, 2016; Lee et al., 2018;
Yoon and Woo, 2018; Gauttam et al., 2019) and CRISPR-dCpf1-
mediated down-regulation of multiple genes have been achieved
(Liu et al,, 2019; Li M. et al., 2020), but hardly no study about
transcriptional activation has been reported.

As for genome editing, after observing lethality of Cas9
expression to C. glutamicum, Jiang et al. (2017) developed a gene
editing tool based on Francisella novicida (Fn) CRISPR/Cpfl
(Figure 1D), in which DSB created by Cpfl (a staggered end)
can be repaired by DNA templates. When ssDNA and RecT
recombination systems were introduced, more types of gene
editing including gene deletion/insertion/point mutation were
realized (Jiang et al., 2017). It represented a milestone in gene
editing tools development of C. glutamicum and was successfully
applied in six other industrial Corynebacterium strains.

Immediately after this work, breakthroughs in CRISPR/Cas9
system development were achieved. Cho et al. (2017) found
that the codon optimization of the Cas9 gene reduced the
toxicity of Cas9 expression; in addition, when RecT and
ssDNA recombineering were employed to further facilitate
recombination at the target loci, genome editing based on the
CRISPR/Cas9 system in C. glutamicum was realized for the first
time. In parallel studies, controlling the expression of Cas9 under
an inducible promoter also achieved the goal of reducing toxicity
(Liu et al., 2017; Peng et al., 2017).

The CRISPR/Cas system was subsequently optimized in the
aspects of Cas9 expression stability (Wang B. et al, 2018),
the convenience of curing Cas9 plasmids (Cho et al., 2017),
transformation efficiency of Cas9 plasmids (Coates et al,
2019), crRNA delivery vector design (Krumbach et al., 2019),
protospacer adjacent motif (PAM) sequence, the length of the
spacer sequence, and the type of repair template (Wang et al.,
2019¢; Zhang et al., 2019), among others. Moreover, counter-
selectable markers (Zhang J. et al., 2020) and ssDNA-RecT
recombination engineering (Liu et al., 2018; Wang B. et al., 2018;
Zhao et al., 2020) have also been introduced to further optimize
the gene editing system. The application of the CRISPR/Cas
system has been expanded from single gene editing to multiplex
gene editing and large DNA fragment deletion (Liu et al., 2017;
Wang B. et al,, 2018; Zhao et al., 2020). However, it is still
conditioned to the inefficient HR of C. glutamicum.

Base editing can create a missense mutation or null mutation
in a gene via base substitution without introducing a DSB (Komor
et al., 2016; Nishida et al.,, 2016), which is especially suitable
for strains with inefficient HR (like C. glutamicum), and has
attracted increasing attention (Wen et al., 2020). Wang Y. et al.
(2018) developed a cytosine base editor (CBE) applicable in
C. glutamicum based on activation-induced cytidine deaminase

(AID) and the CRISPR/Cas9 system (Figure 1E), which can
efficiently achieve C-T conversion with efficiencies up to 100%,
87.2%, and 23.3% for single-, double-, and triple-locus editing,
respectively. In subsequent work, they fused tRNA adenosine
deaminase from E. coli (TadA) with different Cas9 variants
to construct different adenine base editors (ABEs), which can
convert specific A-T nucleotide base pairs in the CRISPR-Cas9
targeting window sequence to G-C (Wang et al,, 2019¢). By
combining the above CBE and ABE tools in one system, Deng
et al. (2020) developed a bi-directional base conversion tool
TadA-dCas9-AID, which achieved the base conversion of C-T,
C-G, and A-G in the editing window. Most recently, Huang
et al. developed a BE3 Cytidine Base Editor by fusing the cytidine
deaminase (rat Apobecl), nCas9, and uracil DNA glycosylase
inhibitor (UGI). It can convert C to T with a conversion efficiency
up to 90% (Huang et al, 2020), which provided more tools
for base editing.

Parallel to base editing tools development to explore different
base transition capability, the system optimization has also
made progress. Wang et al. found that some Cas9 variants can
accept different PAM sequences, which increased their genome-
targeting scope for base editing. Besides, base editing window was
expanded from 5 to 7 bp when truncated or extended guide RNAs
were adapted (Wang et al., 2019¢). They also provided an online
tool (gBIG") for designing guide RNAs for base editing-mediated
inactivation (Wang et al., 2019¢c). It is particularly exciting that
an integrated robotic system-assisted automation base editing
platform based on MACBETH was constructed (Wang Y. et al.,
2018), which represented a new trend in future studies.

CRISPR/Cas system-based genome and base editing tools have
brought the development of genetic manipulation technology
into a new era due to its multiple functions, higher efficiency,
shorter cycle, and more sophisticated modification over the
traditional allelic exchange (Cho et al.,, 2017; Jiang et al., 2017;
Wang Y. et al, 2018). Currently, the CRISPR/Cas system is
generally preferred and increasingly applied in strain breeding
(Bott and Eggeling, 2017), including rapid identification of
unknown genes (Lee et al, 2018), complicated metabolic
engineering (Zhang J. et al., 2020), and rational genome evolution
(Zhao et al., 2020).

INDISPENSABLE HR-INDEPENDENT
GENOME EDITING TOOLS

There are some HR-independent genome editing tools applicable
in C. glutamicum, such as the aforementioned Cre-loxP
and I-Scel systems. Nuclease Cre mediates intramolecular
recombination of two loxP sites (Figure 1G), so that the DNA
sequence between the loxP sites is deleted or rearranged, leaving
a loxP site in chromosome (Suzuki et al., 2005a,d). Suzuki et al.
(2005¢; 2005d) realized large fragment deletion and genome
rearrangement in C. glutamicum using the Cre-loxP system.
A total of 11 distinct genomic regions (up to 250 kb, 7.5% of
the genome) were successfully deleted. A putative problem is

'http://www.ibiodesign.net/gBIG

Frontiers in Microbiology | www.frontiersin.org

April 2021 | Volume 12 | Article 654058


http://www.ibiodesign.net/gBIG
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Wang et al.

Genome Editing Tools of C. glutamicum

that the loxP sites remaining in chromosome may interfere with
subsequent rounds of Cre/loxP recombination (Suzuki et al.,
2005a). To avoid that, a pair of mutant lox sites (lox66 and lox71)
was introduced to replace the loxP site. The 1ox72 site, generated
from Cre, caused site-specific recombination of lox66 and lox71
and cannot be recognized by Cre, which facilitated continuous
Cre-lox recombination (Suzuki et al., 2005a; Hu et al., 2014).

As for the I-Scel system (Figure 1H), it consists of a
homing endonuclease I-Scel and an 18-bp specific sequence
(5'-TAGGGATAACAGGGTAAT-3') (Zhang et al., 2015). The
system has been adapted in C. glutamicum for genes knock-out
and knock-in (Suzuki et al., 2005b; Ma et al., 2015; Wu et al.,
2020). In addition, it is often used in conjunction with counter-
selectable markers such as SacB, Upp, and the Cre-loxP system
(Suzuki et al., 2005d; Ma et al., 2015; Wu et al., 2020).

It should be noted that the specific recognition sequence of
the nuclease is difficult to customize, and the recognition site
of the recombinase must be introduced into the chromosome
in advance (Nesvera and Patek, 2011; Suzuki and Inui, 2013;
Yang et al., 2020). It explained why site-specific recombination
tools are usually used in combination with allelic exchange-
based tools.

Different from Cre-loxP and I-Scel systems, transposon is
a simple tool that can perform genome editing independently
(Figure 1J). It can cause interruption or inactivation of some
genes by random transposon insertion (Alain et al., 1994).
Many transposable elements have been identified and used
in C. glutamicum, such as 1S31831 (Vertes et al., 1994),
miniTn31831 (Alain et al.,, 1994), Tn14751 (Inui et al., 2005),
IS1249 (Tauch et al,, 1995), Tn5 (Suzuki et al., 2006), and
mini-Mu (Gorshkova et al., 2018). These transposons have
different transposition efficiency, sequence preference (AT-rich
regions or GC-rich regions preference), and cargo delivery
capacity. The combined application of different transposable
elements can make up for each other’s deficiencies, thereby
identifying more genes with unknown functions. For example,
a combination of the miniTn31831 and Tn5 transposome
systems successfully constructed a pool of 13,000 transposon
mutants, equal to a library of 2300 different single-gene
disruptant mutants, covering 75% of genes in C. glutamicum
(Suzuki et al., 2006).

Transposon can be used not only for random knockout
of single gene but also for random deletion of chromosome
fragments when it is combined with nuclease systems (Goryshin
et al,, 2003; Tsuge et al., 2007). Random segment deletion based
on IS31831 and Cre/loxP excision system has been applied for
genome reduction of C. glutamicum by random deletion of DNA
fragments (Tsuge et al, 2007). Compared with conventional
strategies (genomic analysis combined with precise deletion)
(Baumgart et al., 2013, 2016, 2018; Unthan et al., 2015), this
strategy has been considered as a faster way to create a minimum
bacterial genome (Suzuki and Inui, 2013).

Unfortunately, transposons are rarely used for random
integration of heterogenous genes, because the length of cargo
fragments is usually limited (Gorshkova et al., 2018). By contrast,
integrase-mediated site-directed integration of heterologous
genes can integrate fragments up to tens of kb (Figure 1I)

(Huang et al., 2019). Shen et al. (2017) employed a phage
integrase TP901-1-mediated chromosomal integration method
in C. glutamicum, which realized the integration of two reporter
genes, implying good application potential. In another study,
Marques et al. (2020) developed two markerless integrative
systems, respectively, based on actinophage ¢C31 and $BT1 for
stable inheritance of the introduced genetic traits. Similar to
the Cre-loxP and I-Scel system, the prerequisite for integrase-
mediated site-directed integration is that the attB site has been
integrated into the chromosome by allelic exchange in advance
(Shen et al., 2017; Marques et al., 2020). To realize one-step site-
directed integration, Strecker et al. (2019) and Klompe et al.
(2019), respectively, developed CRISPR-associated transposon-
mediated RNA-guided programmable DNA integration methods
in E. coli. These methods do not rely on HR and have achieved
multi-site and multi-copy integration of heterologous genes in
E. coli and Tatumella citrea (Vo et al., 2020; Zhang Y. et al,
2020). It is expected to be introduced into C. glutamicum for
high-efficiency, multiplexed chromosome integration.

Table 1 summarizes and compares the principles, effects,
advantages, and putative drawbacks of various genetic
manipulation tools in C. glutamicum. According to the table, the
CRISPR/Cas system has obvious advantages over other methods
but is far from perfect. Classic tools such as counter-selectable
markers, ssDNA-RecT recombineering, transposons, and
nuclease could be employed in the CRISPR/Cas system to further
improve efficiency and expand functions. The combination
of different genetic manipulation tools to achieve new editing
purposes has become a trend (Suzuki and Inui, 2013; Yang et al.,
2020). Besides, many efforts have been paid to overcome barriers
to introduce these tools to non-model Corynebacterium strains
(Jiang et al., 2017; Coates et al., 2019).

Synthetic biology is profoundly rewriting the development
pattern of genetic modification of C. glutamicum. Artificial
intelligence-assisted massive omics data mining may greatly
enrich the genetic element library of C. glutamicum; advanced
models or algorithms could rationally guide chassis cells design;
coupled with a new generation of high-throughput, automated
biological casting platform, they should enable the future
development of more effective C. glutamicum.
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