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Background: The human norovirus Gll.2 outbreak during the 2016-2017 winter season
was of unprecedented scale and geographic distribution.

Methods: We analyzed 519 complete VPT gene sequences of the human norovirus
Gll.2 genotype sampled during the 2016-2017 winter season, as well as prior (dating
back to 1976) from 7 countries. Phylodynamic analyses of these sequences were
performed using maximum likelihood and Bayesian statistical frameworks in order to
estimate viral evolutionary and population dynamics associated with the outbreak.

Results: Our results revealed an increase in the genetic diversity of human norovirus
GlI.2 during the recent Asian outbreak and diversification was characterized by at least
eight distinct clusters. Bayesian estimation of viral population dynamics revealed a highly
fluctuating effective population size, increasing in frequency during the past 15 years.

Conclusion: Despite an increasing viral diversity, we found no evidence of an elevated
evolutionary rate or significant selection pressure in human norovirus Gll.2, indicating
viral evolutionary adaptation was not responsible for the volatility of or spread of the
virus during this time.

Keywords: human norovirus, genetic diversity, positive selection, virus evolution, phylogenetic analyses

INTRODUCTION

Human norovirus (HuNoV) is a pathogenic agent that contributes substantially to the global
burden of sporadic cases and outbreaks of acute gastroenteritis across all settings and age groups
in humans (Ahmed et al., 2014). HuNoV is a non-enveloped, single-stranded, positive-sense RNA
virus from the genus Norovirus in the family Caliciviridae (Glass et al., 2009). HuNoV is classified
into at least 10 genogroups (GI-GX) and 48 genotypes, based on phylogenetic analyses of the
capsid gene (Zheng et al., 2006; Vinje, 2015; Chhabra et al., 2019, 2020). Among these different
genogroups, genotypes belonging to the GI, GII, and GIV are primarily responsible for the acute
gastroenteritis cases in humans (Kroneman et al., 2013; Vinje, 2015). GI and GII strains can be
further stratified into nine and twenty-six genotypes, respectively (Kroneman et al., 2013; Chhabra
etal, 2019, 2020).

Genotype GIL2 strains recently emerged, causing large outbreaks of acute gastroenteritis
in Japan and China during the 2016-2017 winter season, mainly in childcare centers
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(Aoetal, 2017, 2018; Hata et al., 2018; Nagasawa et al., 2018).
Many other countries also reported GIL.2-dominated HuNoV
outbreaks during the 2016-2017 winter season (Bidalot et al.,
2017; Niendorf et al., 2017; Tohma et al., 2017; Medici et al., 2018;
Thanusuwannasak et al., 2018).

To gain a better understanding of genetic variation during
the recent HuNoV epidemic, it is essential to analyze
the VPI gene, which is crucial for viral attachment and
entry, as well as the production of neutralizing antibodies
(Prasad et al, 1999; Tan et al, 2004; Chakravarty et al,
2005). Therefore, in order to gain a more comprehensive
understanding of the viral evolutionary factors responsible for
the emergence and spread accompanying the recent HuNoV
epidemic, we performed a detailed analysis of the complete
VP1 gene of the GIL.2 strains with known sampling dates
and geographic locations. Our findings suggest that close
monitoring of the global spread of this emergent GIL2 strains
is necessary for the prevention and mitigation of HuNoV acute
gastroenteritis outbreaks.

MATERIALS AND METHODS

Sequence Data Set

All available complete ORF2 region sequences (at least 1,626 bp
in length) of GII.2 strains with known sampling date and
geographic location were retrieved from GenBank' on 28 April
2018. Sequences were aligned using MAFFT v7.409 (Katoh and
Standley, 2013) and then adjusted manually in BioEdit v7.2.5
(Hall, 1999). The best-fit model of nucleotide substitution for
this data set was identified according to the Bayesian information
criterion in jModelTest v2.1.10 (Darriba et al., 2012). Given
the phylogenetic scope of our analysis, we chose to exclude
models that allowed a proportion of invariable sites (Jia et al.,
2014). For this data set, the SYM + I's model provided the
best fit and was used in genetic distance calculations and
tree reconstruction.

Phylogenetic, Likelihood-Mapping, and
Genetic Distance Analyses

To evaluate the phylogenetic signal for this data set, we
performed a likelihood mapping analysis (Strimmer and von
Haeseler, 1997) using TREE-PUZZLE v5.3.rc16 (Schmidt
et al., 2002). We then inferred the phylogeny using maximum
likelihood (ML) in PhyML v3.1 (Guindon and Gascuel,
2003). Bootstrap support values were calculated using 1,000
pseudoreplicates. Methods for identifying and defining
phylogenetic clusters differ between studies. In the present
study, we identify them on the basis of bootstrap support
(cut-off of 99%) for groupings with more than two sequences.
Genetic distances between and within clusters were calculated
in MEGA v5.05 (Tamura et al., 2011) using the maximum
composite likelihood model (Tamura et al., 2004) with 1,000
bootstrap replicates.

Uhttp://www.ncbi.nlm.nih.gov/

Evolutionary Rate, Time Origin, and Past

Population Dynamic Inferences

To evaluate the temporal structure of this data set, we plotted
root-to-tip genetic distances against date of sampling within
the ML tree using TempEst v1.5 (Rambaut et al, 2016).
We also estimated the evolutionary rate and the time to
the most recent common ancestor for this data set using
least-squares dating in LSD v0.3beta (To et al, 2016), a
Gamma-Poisson mixture model in treedater package (Volz
and Frost, 2017), and ML dating in TreeTime package
(Sagulenko et al, 2018), respectively. We then employed a
Bayesian phylogenetic approach using Markov chain Monte
Carlo (MCMC) sampling to estimate the rate of evolution
and the time to the most recent common ancestor for
all sequences in BEAST v1.8.2 (Drummond et al, 2012).
Evolutionary rates were estimated using a strict molecular clock
model. A non-parametric coalescent Bayesian skygrid tree prior
model was employed for demographic inference. The overall
evolutionary rate was given an uninformative continuous-time
Markov chain (CTMC) reference prior. The MCMC analysis
was run for 500 million steps, with samples drawn every
50,000 steps. The first 1,000 samples in each chain were
removed as burn-in. All parameters had effective sample sizes
greater than 200, which is indicative of sufficient sampling.
We ran multiple chains to check for convergence to the target
distribution using Tracer v1.7.1 (Rambaut et al., 2018). Trees
were summarized as maximum clade credibility (MCC) trees
using TreeAnnotator v1.8.2 after discarding the first 10% as burn-
in, and then visualized and annotated in FigTree v1.4.3>. We also
employed the skygrowth package in R to estimate the effective
population size for the VPI gene of the HuNoV GIL2 strains
(Volz and Didelot, 2018).

Analysis of Selection
The evidence of gene-wide episodic positive selection along
the backbone of the phylogenetic tree was performed using

http://tree.bio.ed.ac.uk/software/figtree

TABLE 1 | Geographic source and sampling year of human norovirus GlI.2
sequences used in the present study.

n Sampling year
Geographic 1970- 1980- 1990- 2000~ 2010~
source 1979 1989 1999 2009 2017
Australia 3 3
China 302 302
Hong Kong 22 22
Japan 166 1 52 113
Malaysia 1 1
Netherlands 10 1 9
Taiwan 9 9
United Kingdom 1 1
United States 5 1 1 3
Total 519 2 1 3 61 452

Frontiers in Microbiology | www.frontiersin.org

March 2021 | Volume 12 | Article 655567


http://www.ncbi.nlm.nih.gov/
http://tree.bio.ed.ac.uk/software/figtree
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Lietal

Human Norovirus GlI.2 Clusters

BUSTED, a test for episodic diversifying selection (Murrell
et al., 2015), implemented in HyPhy software package (Pond
et al, 2005). Initial branch lengths within the fixed MCC
tree topology were estimated using the GTR (general time
reversible) nucleotide model. A likelihood ratio test (LRT) was
used to compare optimized likelihoods under the unconstrained,
alternative model wherein the ratio of non-synonymous to
synonymous rates (dN/dS) is allowed to exceed 1 (positive
selection) and under the constrained (dN/dS = 1), null model
(neutrality). A related test, RELAX (Wertheim et al, 2015)
was used to investigate relaxation or intensification of selective
regimes within each of the eight highly supported clades as
compared to the persisting viral lineages. External branches
were placed in the nuisance category to avoid dN/dS estimate
inflation owing to transient polymorphisms. The selection
intensity parameter (k) was estimated for each clade and
the LRT used to compare the null model in which k is
constrained to 1 (i.e., the same dN/dS distribution on test
and reference branches) to an alternative model in which k is
a free parameter for each clade. p < 0.05 were considered
significant evidence in favor of the alternative selection
model for both tests.

RESULTS

Sequence Data Set Information

This data set included 519 complete ORF2 region sequences of
GIIL.2 strains from Australia (n = 3); the Mainland of China
(n =302); Hong Kong (n = 22); Japan (n = 166); Malaysia (n = 1);
Netherlands (n = 10); Taiwan (n = 9); United Kingdom (n = 1);
and United States (n = 5), with sampling dates between 1976 and
2017 (Table 1 and Supplementary Table S1).

Phylogenetic Analysis

The phylogeny of this data set, inferred using maximum
likelihood, indicated the presence of eight transmission clusters
(Figures 1, 2, Supplementary Figure S1, Table 2, and
Supplementary Table S2). Sequences from Cluster I (n = 4)
were found in Netherlands and Japan between 1999 and 2002.
Cluster II sequences (n = 6) were found in Japan between
2000 and 2006. Sequences from Cluster III (n = 21) were
collected from Japan between 2004 and 2006. Cluster IV
sequences (n = 25) were found in Japan between 2007 and
2015, whereas Cluster V sequences (n = 64) were collected from
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FIGURE 1 | Maximum-likelihood phylogeny of HuNoV GlI.2 strains. The two circles of color show geographic location (inner) and phylogenetic cluster (outer).
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FIGURE 2 | Geographic distribution of HuNoV Gll.2 clusters identified in the present study. Each Gil.2 cluster identified in this study is color-coded, as shown on the
left. The figure was created using Adobe lllustrator CS5 version 15.0.0 software, based on the maps obtained from Craft MAP website (craftmap.box-i.net/).

TABLE 2 | Classification and geographic source of human norovirus Gll.2 sequences used in the present.

Cluster n Geographic source
Australia China Hong Kong Japan Malaysia Netherlands Taiwan United Kingdom United States
| 4 1 3
Il 6 6
Il 21 21
v 25 25
\ 64 59 5
Vi 19 18 1
Vil 4 1 1 1 1
Vil 357 3 301 21 27 3 2
Ungrouped 19 8 1 7 1
Total 519 3 302 22 166 1 10 9 1
Japan and Taiwan between 2008 and 2015. Cluster VI included and were sampled within a wide range (1997, 2000,

eighteen sequences collected from Japan and one sequence
collected from United States between 2010 and 2012. The four
sequences from Cluster VII were collected from Japan, Taiwan,
Hong Kong, and the Mainland of China between 2015 and 2017.
Cluster VIII sequences (n = 357) were found in Australia, the
Mainland of China, Hong Kong, Japan, Taiwan, and United States
between 2016 and 2017.

The remaining 19 sequences (designated as Ungrouped) were
scattered throughout the main GII.2 genotype and had been
sampled in Japan (n = 8), Malaysia (n = 1), Netherlands
(n = 7), United Kingdom (n = 1), and United States (n = 2)
between 1976 and 2014.

Of the 302 Chinese strains in our analysis, all were
found within either cluster VII (n = 1) or cluster VIII

(n = 301) and all were sampled within either 2016
(n = 133) or 2017 (n = 169). However, the 166 Japanese
strains  were interspersed throughout the phylogeny

2002, and 2004-2016.

Likelihood-Mapping and Evolutionary
Divergence Analysis

Our likelihood-mapping analysis revealed significant differences
in phylogenetic signal and the amount of evolutionary
information between each cluster in our data set (Supplementary
Figure S2). The most notable result of the likelihood-mapping
analysis revealed that 45.4% of the quartets from cluster III
were distributed in the center of the triangle, indicating a
relative strong star-like phylogenetic signal reflecting a new
cluster, which might be due to exponential epidemic spread.
Intriguingly, cluster III was characterized by the lowest genetic
divergence among the eight distinct HuNoV GIL2 clusters
(Supplementary Figure S3), which further confirmed that
cluster IIT was most likely a new cluster, in accordance with
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likelihood-mapping analysis. Likewise, 38.5% of the quartets the quartets from cluster VIII were distributed in the center
from cluster VI were distributed in the center of the triangle of the triangle and showed higher genetic divergence than
and showed lower genetic divergence. Conversely, 12.3% of cluster VI. Notably, 43.5% of the quartets from cluster IV
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FIGURE 3 | Regression of the root-to-tip genetic distance against year of sampling for the HuNoV GII.2 sequences. Colors indicate different geographic locations.
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were distributed in the center of the triangle, but with higher
genetic divergence than cluster VI. In contrast, 0, 0, 3.9,
and 0% of the quartets from clusters I, II, V, and VII were
distributed in the center of the triangle, but with higher genetic
divergence, indicating the presence of a strong phylogenetic
signal in the four clusters. Also of note, 3.4% of the quartets
from the overall epidemics were distributed in the center of
the triangle, but with lower genetic divergence (4.1%). We
also observed that the smallest genetic distance separated
clusters III and IV (3.9%), whereas the largest was between
clusters I and VIII (10.1%). Notably, all the genetic distances
between each of the eight clusters are higher than within
each of the eight clusters, except for the genetic distance
between clusters III and IV. We can also observe mixed
genetic distances between and within each of the eight clusters
(Supplementary Figure S3).

Evolutionary Rate and Time Origin
Analyses

The correlation between root-to-tip distances and sampling
time indicated a strong temporal signal (R? = 0.9359), without
any clear outlier sequences (Figure 3). This result suggests
a relatively clocklike pattern of molecular evolution, with an
estimated evolutionary rate of 3.29 x 1073 substitutions per
site per year and the most recent common ancestor occurring
in 1970.37. We also analyzed the correlation between genetic
distances and sampling time intervals, which indicated a strong
linear regression signal for sampling time intervals > 12 years
(Supplementary Figure S4). The estimated evolutionary
rate and the time to the most recent common ancestor
using a Gamma-Poisson mixture model were 2.76 x 1073
substitutions per site per year and 1968.60, respectively.
The estimated evolutionary rate and the time to the most
recent common ancestor using maximum likelihood dating

were 2.48 x 1073 substitutions per site per year (95%
credibility interval: 2.18 x 1073-2.78 x 1073) and 1969.0
(95% credibility interval: 1966.35-1971.65), respectively.
The estimated evolutionary rate and the time to the most
recent common ancestor using least-squares dating were
2.63 x 107 substitutions per site per year (95% credibility
interval: 2.30 x 1073-2.82 x 1073) and 1968.61 (95% credibility
interval: 1965.27-1970.84), respectively. In our Bayesian
phylogenetic analysis, we estimated a evolutionary rate of
3.00 x 107 substitutions per site per year (95% credibility
interval: 2.67 x 1073-3.35 x 1073). And the time to the
most recent common ancestor of 1968.89 (95% credibility
interval: 1965.49-1972.06). The age of each GII.2 cluster was
also estimated in the analysis (Supplementary Table S3 and
Supplementary Figure S5). The divergences between the
sequences from clusters VI and VIII were estimated to have
occurred in 2007.96 (95% credibility interval: 2007.10-2008.75)
and 2012.39 (95% credibility interval: 2011.42-2013.44),
respectively. And the time to the most recent common ancestor
of 2004.61 (95% credibility interval: 2003.22-2005.83) for
clusters VI and VIIL

Analysis of Past Population Dynamics

We further investigated the past population dynamics of this
data set using a Bayesian skygrid plot. The effective population
size of the VPI gene in the HuNoV GIL.2 strains experienced
very high volatility of population size, especially for the past 15
years (Figure 4). The effective population size of the VPI gene
in the HuNoV GII.2 strains was also estimated using MCMC
method in skygrowth package (Supplementary Figure S6), the
estimates of the effective population size were consistent with
the Bayesian skygrid model. The estimates of the phylogenetic
relationships among the HuNoV GII.2 sequences using Bayesian
coalescent framework were consistent with maximum likelihood
tree reconstruction (Figure 5).

1000
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FIGURE 4 | Bayesian skygrid demographic reconstruction of HuNoV Gil.2. The vertical axis shows the effective number of infections (Ne) multiplied by mean viral
generation time (). The solid line and shaded region represent the median and 95% credibility interval, respectively, of the inferred Net through time.
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Analysis of Selection

Given the observed variations in evolutionary dynamics for
this data set, we sought to investigate the selective pressures
driving the persistence of HuNoV GIL2. No evidence of
episodic positive selection was detected among the persisting
viral lineages (Supplementary Table S4, p = 0.18); however,
significant differences in selective strength among outbreaks

when compared to these persisting lineages were found
(p = 0.04). Clusters II, III, V, and VII exhibited intensified
selection (k > 2), whereas sister clusters VI and VIII were
considered to have relaxed in selective strength (k < 0.5).
Clusters I and IV were characterized by relatively similar
selective regimes in comparison to the backbone (k = 0.72 and
0.6, respectively). The results suggested that the evolutionary

_.51< VI
—a
=0.88
&==0.84 %1
A

ol

i

i
o
[0
N

_E1=
1
' ] < |
1 . .
—— 0_83
1
—
I ¥ 1 x 1 1 1 1
1960 1970 1980 1990 2000 2010 2020

FIGURE 5 | Maximum-clade-credibility tree estimated from complete VP17 gene sequences of HuNoV GlI.2. Light blue horizontal bars represent 95% credibility
intervals for estimates of node times. Posterior probabilities are shown at the node. Each cluster is shown with different colors.
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dynamics of the VPI gene of HuNoV GIIL.2 strains in this
data set were influenced largely by natural evolutionary forces,
rather than adaptation to selective pressure from the host
immune system, which was consistent with the previous study
(Tohma et al., 2017).

DISCUSSION

Our evolutionary analyses, based on all of the available complete
VP1 sequences of HuNoV GIL.2 genotype that included country
of origin and year of sampling, revealed the presence of at least
eight independent clusters. Cluster VII was restricted to countries
within Asia, whereas cluster VIII had dispersed to Asia and
North America. The recent sequences from cluster VIII outbreak
formed a highly distinct sister group to cluster VII. As such,
the putative HuNoV GIL2 reservoirs for cluster VIII outbreak
sequences might be distinct from that of cluster VIL.

Our estimates of the evolutionary rate for this data set were
reassuringly consistent across different methods and models.
The mean estimated rates of HuNoV GII.2 molecular evolution
using TempEst v1.5 and BEAST v1.8.2 were 3.00 x 10~% and
3.29 x 1073 substitutions per site per year, respectively. These
were also similar to the mean estimates previously reported for
HuNoV GII.2 using BEAST v2.4.5, which was 3.26 x 1073
substitutions per site per year. However, the mean estimated
rates of HuNoV GIIL.2 molecular evolution using LSD v0.3beta,
TreeTime package, and treedater package were 2.63 x 1073,
2.48 x 1072, and 2.76 x 1073 substitutions per site per year,
respectively, which were lower than the results using TempEst
vl.5 and BEAST v1.8.2. In summary, despite the extensive
and prolonged human-to-human transmission in the recent
HuNoV GIL2 outbreak, HuNoV GIIL.2 was not mutating at
an unusually elevated rate. Thus, we found little evolutionary
signal that the virus has enhanced its virulence and/or
transmissibility in humans during the recent HuNoV GIL2
outbreak. Coalescent-based demographic inference revealed a
rapidly increasing population size for HuNoV GIL.2 from late
2015 to early 2017 (Figure 4), consistent with the outbreak during
this period of time.

Our analyses of selection did not reveal episodic positive
selection representative of continual adaptation, nor was the
more recent human norovirus GIL2 outbreak characterized by
intensified selective pressure. Thus, the results from the present
study seem to be consistent with earlier reports (Kobayashi et al.,
2016; Parra et al., 2017; Nagasawa et al., 2018) and suggest that the
recent evolution of HuNoV GIL2 has been dominated by genetic
drift. Furthermore, the results also suggested a relationship
between selection strength variation and geographical spread, as
Clusters VI and VIII were the only clusters to contain sequences
outside of Asia after 2010.

Our study has several limitations. First, our analysis was based
on all of the available complete VPI sequences of HuNoV GIIL.2
genotype that included country of origin and year of sampling,
and we did not randomly collected sequences, we may therefore
have underestimated the total number of infections. Second,
the number of sample size is limited, which may provide an
incomplete picture of phylogenetic relationship of the virus,

therefore, which may have underestimated the total number of
phylogenetic clusters. Additional sequences are critically needed
to investigate the phylogenetic cluster changes over time, estimate
its date of emergence, monitor local transmission, and infer past
population dynamics of the virus. Additional sequences will also
help to reveal the presence of additional phylogenetic clusters.
Third, there are probably biases in geographic and temporal
distributions of the VPI sequences presented in the present study,
given that our study relies on data from different countries or
stages that is varied significantly, which may introduce bias our
estimates. Despite the aforementioned limitations, we believe our
findings are reliable and robust.

Taken together, we analyzed 519 complete VPI gene sequences
of the human norovirus GIL2 genotype. Most of the samples
were collected during the outbreak during the 2016-2017 winter
season from the Mainland of China. We explored several
aspects about geographic distribution, demographic analysis
and selective pressure of the GIL.2 norovirus strains. This
information is important for surveillance of viral strains with
pandemic potential. Based on the phylogenetic analysis of these
sequences, we showed an increase in the genetic diversity of
human norovirus GIL.2 for at least eight distinct clusters, and
the geographic and gene divergence varied among clusters.
Our results sufficiently demonstrated an increase in the genetic
diversity of human norovirus GIL2 during the recent Asian
outbreak and a highly fluctuating effective population size.
We also indicated that viral evolutionary adaptation was not
responsible for the volatility of or spread of the virus during
this time. Our results also emphasize the importance of ongoing
genetic and demographic surveillance of the epidemic, especially,
sampled during the epidemic and across all the geographical
range of the virus. These efforts, combined with epidemiological
investigation, clinical recognition, and population movement
data, are required to trace the history of recent epidemic waves
and to assess adaptability and selection in HuNoV GIL.2 strains.
This is increasingly important for surveillance of viral strains with
pandemic potential, and will further guide research on vaccines
and therapeutic targets.
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