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The CRISPR-Cas [clustered regularly interspaced short palindromic repeats and the 
CRISPR-associated genes (Cas)] system provides defense mechanisms in bacteria and 
archaea vs. mobile genetic elements (MGEs), such as plasmids and bacteriophages, 
which can either be harmful or add sequences that can provide virulence or antibiotic 
resistance. Staphylococcus aureus is a Gram-positive bacterium that could be  the 
etiological agent of important soft tissue infections that can lead to bacteremia and sepsis. 
The role of the CRISPR-Cas system in S. aureus is not completely understood since there 
is a lack of knowledge about it. We analyzed 716 genomes and 1 genomic island from 
GENOMES-NCBI and ENA-EMBL searching for the CRISPR-Cas systems and their 
spacer sequences (SSs). Our bioinformatic analysis shows that only 0.83% (6/716) of the 
analyzed genomes harbored the CRISPR-Cas system, all of them were subtype III-A, 
which is characterized by the presence of the cas10/csm1 gene. Analysis of SSs showed 
that 91% (40/44) had no match to annotated MGEs and 9% of SSs corresponded to 
plasmids and bacteriophages, indicating that those phages had infected those S. aureus 
strains. Some of those phages have been proposed as an alternative therapy in biofilm-
forming or infection with S. aureus strains, but these findings indicate that such antibiotic 
phage strategy would be  ineffective. More research about the CRISPR/Cas system is 
necessary for a bigger number of S. aureus strains from different sources, so additional 
features can be studied.

Keywords: Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, multidrug resistant, CRISPR-Cas 
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INTRODUCTION

The bacteria and archaea have developed defense mechanisms 
against bacteriophages (Labrie et  al., 2010), in the form of 
restriction and modification system (R-M system; Huff et  al., 
2017) and as the CRISPR-Cas [clustered regularly interspaced 
short palindromic repeats and the CRISPR-associated 
genes (Cas)] system, both of which degrade the foreign 
invader genetic material. The CRISPR-Cas is a natural, memory, 
and hereditary mechanism that protects bacteria against 
bacteriophages (Faruque et  al., 2005; Box et  al., 2015; 
Hille et  al., 2018). It is composed of (1) a group of genes 
cas, (2) a locus or loci, CRISPR formed by spacer sequences 
(SSs) separated into repeated sequences (SRs), and (3) the 
leader sequence placed upstream from locus CRISPR (Westra 
et  al., 2014); the set of cas genes is divided into the module 
of adaptation formed by cas1 and cas2 genes and the 
effector complex where the rest of the cas genes are placed 
(Koonin et  al., 2017).

The system CRISPR-Cas current classification includes 2 
classes, 6 types, and 33 subtypes. Class 1 systems use multi-
unit protein complexes (Koonin and Makarova, 2017; Koonin 
et  al., 2017) and Class 2 systems use only one multidomain 
protein (Shmakov et al., 2017) for the degradation of the genetic 
material. This DNA degradation occurs in three stages (Hsu 
et  al., 2014): (1) adaptation stage during a primo-infection 
(Nuñez et  al., 2014), (2) expression stage during reinfection, 
and (3) interference stage for the digestion mobile genetic 
element (MGE) through endonucleases Cas, which are guided 
by crRNA (chimera of SE and SR; Hille et  al., 2018). In a 
MGE, there are short sequences (approximately 30 nucleotides) 
marked by protospacer adjacent motifs (Jiang and Doudna, 
2015, 2017), known as protospacers, which are inserted like a SS.

The CRISPR-Cas system has been detected in Gram-positive 
bacteria, such as Lactobacillus spp. (Wang et  al., 2020; Yang 
et  al., 2020) and pathogenic bacteria, such as Enterococcus 
spp. (Sanderson et al., 2020). However, in Staphylococcus aureus, 
it has only been detected in few strains. S. aureus is a Gram-
positive bacterium that colonizes 30% of the population in an 
asymptomatic way, and also it is the etiological agent of several 
important infections (Craft et al., 2019). In 1960, the methicillin-
resistant S. aureus (MRSA) strains were detected (Chambers 
and Deleo, 2009), and those are still a current cause of soft 
tissue infections. New effective antibiotic therapies are a current 
demand (Yang et al., 2018; Labruère et al., 2019). The application 
of bacteriophages as a therapy to treat S. aureus infections 
(Kaźmierczak et  al., 2014) is a promising alternative. The 
memory capacity of the CRISPR-Cas system allows us to 
understand the dynamic between an MGE and its hosts (bacteria 
and archaea). The sequenced bacterial genomes are the current 
data source for searching CRISPR-Cas system in important 
medical bacteria such as S. aureus. Despite studies searching 
CRISPR-Cas system in S. aureus (Cao et  al., 2016; Zhao et  al., 
2018; Rossi et  al., 2019), further research is needed to study 
this system in more S. aureus strains to understand the effects 
and its association to pathogenicity. Thus, the aim of this study 
was to search CRISPR-Cas in S. aureus genomes and its 

characterization via bioinformatic tools, as well as the association 
of the SS with MGEs.

MATERIALS AND METHODS

Genomes Collection
The complete S. aureus genomes were downloaded from 
GENOME-NCBI [n = 864 (484 chromosomes and 380 plasmids)] 
and ENA-EMBL [n  =  521 (232 chromosomes, 288 plasmids, 
and 1 pathogenicity island)]. In total, there were 716 strains used.

CRISPR-Cas System Determination
The genomes were analyzed using CRISPRCasFinder 4.2.2 
(Grissa et  al., 2007; Abby et  al., 2014; Couvin et  al., 2018). 
The server was used with default parameters: minimal repeat 
length 23  bp, maximal repeat length 55  bp, repeat mismatch, 
minimal spacer size in function of repeat size 0.6, maximal 
spacer size in function of repeat size 2.5, maximally allowed 
percentage of similarity between spacers 60, percentage 
mismatches allowed between repeats 20, percentage mismatches 
allowed for truncated repeat 33. Also, a default 100  bp size 
of flanking regions in all potential CRISPR arrays was included. 
A CRISPR-Cas system that presents a group of genes cas and 
the locus CRISPR with a score of 3 and 4 were considered 
for the next analysis.

Cas1, Cas2, Cas6, and Cas10 Phylogenetic 
Analysis Proteins
The files containing the coding sequences of each CRISPR-Cas 
system-bearing genome were downloaded from GENOME-NCBI. 
The cas genes were obtained from those files and translated 
into MEGA-X by using the standard genetic code. Later, the 
Cas proteins were aligned to the program Clustal O of Unipro 
UGENE. The scores “pair sum” were calculated in GeneDoc. 
The best alignments showed lower scores. Subsequently, the 
phylogenetic trees were built by the UPGMA method using 
default parameters with 1,000 bootstrap in the program MEGA-X 
(Kumar et  al., 2018).

Cas Protein Analysis
The Cas sequences annotated images were generated in the 
program EasyFig  2.2.5 (Sullivan et  al., 2011).

Phylogenetic Analysis of the Repeated 
Sequences
The analysis was the same process as the Cas proteins, except 
that we used the neighbor-joining method with default parameters 
to build the phylogenetic tree, using MEGAX (Rose et al., 2019).

Secondary Structures of Repeat Sequence 
Consensus
The secondary structures of repeat sequence consensus (SRc) 
and the minimum free energy (MFE) were obtained from 
the RNAfold web server (http://rna.tbi.univie.ac.at//cgi-bin/
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RNAWebSuite/RNAfold.cgi; Lorenz et  al., 2011). The logo of 
SRc was obtained from WebLogo (Schneider and Stephens, 1990; 
Crooks et  al., 2004).

Spacer Sequence Analysis
The FASTA files were downloaded from CRISPR-CasFinder. Spacer 
sequence (SE) were submitted to BLAST, and the results associated 
with the MGE were the ones considered with expected values 
(e-values) minor or equal to 0.0001 and scores above 40 (Ostria-
Hernández et  al., 2015). Next, a 0 and 1 matrix was developed, 
1 being the cell where the MGE and S. aureus strain intercept. 
That matrix was analyzed in the ClustVis server using default 
parameters. Then, a heat map was elaborated with the webserver 
ClustVis (Metsalu and Vilo, 2015), where the MGE known as 
the aforementioned infected strain of S. aureus was appreciated.

RESULTS

The CRISPR-Cas system was searched in 1,385 sequences of S. 
aureus, including chromosomes, plasmids, and 1 pathogenicity 
island, collected from 2 databases (Supplementary Table A). 
The search showed that 0.83% (6/716) of S. aureus strains 
harbored the CRISPR-Cas system. The strains harboring the 
CRISPR-Cas system were S. aureus 08BA02176 (NC_018608), 
S. aureus KUH140087 (NZ_AP020315), S. aureus JS395 (NZ_
CP012756), S. aureus AR_0470 (NZ_CP029653), S. aureus 
AR_0472 (NZ_CP029649), and S. aureus AR_0473 (NZ_
CP029681). All these strains have different geographical origin: 
S. aureus 08BA02176 was isolated from a surgery infection in 
2008 from a Canadian patient (Golding et  al., 2012); S. aureus 
KUH140087 was isolated in 2014 from a septicemia patient in 
Kyoto, Japan (Hikichi et  al., 2019); S. aureus JS395 was isolated 
in 2008 from a patient in Switzerland (Larsen et  al., 2017), 
and the S. aureus strains AR_0472, AR_0470, and AR_0473 
were sent by the Center for Disease Control and Prevention. 
While the source of S. aureus AR_0472, AR_0470, and AR_0473 
is uncertain, the rest of the strains come from clinic sources. 
All the detected CRISPR-Cas systems were found in chromosome 
structures, and none were detected in the pathogenicity island; 
nevertheless, other islands had it (Chakraborty et  al., 2009; 
Carpenter et  al., 2017). The detected systems found belong to 
the III-A subtype, which is characterized by the gen cas10/csm1 
and cas genes ordered as shown in Figure  1 (Koonin et  al., 
2017). The detected CRISPR-Cas system structure was as follows: 
(1) cas genes nearby the locus CRISPR and (2) scores of 3 and 
4  in the CRISRPRCasFinder scale (Pourcel et  al., 2020; 
Supplementary Table B). The strain contains a group of cas 
genes (Figure  1) near the locus CRISPR-Cas; the CRISPR locus 

and the cluster cas are separated by 73  nt (strains JS395 and 
AR_0470), 74  nt (strains 08BA02176, AR_0472, and AR_0473), 
and 133  nt (strain KUH140087). Each strain with CRISPR-Cas 
has a unique locus CRISPR with a different number of SS.

The SRc was the same in two strains (i.e., AR_0472 and 
AR_0473) and different in four strains. The SRc length was 
36 and 37  nt; the SRc formed by 37  nt is shown in the strains 
JS395 and AR_0479. The SRc remains nucleotide motifs 
(Figure  2) that stand out among the conservative nucleotides: 
four consecutive nucleotides of cysteine (-CCCC-) and four 
consecutive nucleotides of guanine (-GGGG-). Among the 
conserved motifs, there is a constant region of eight nucleotides.

The Cas proteins and SR keep a function–structure relationship 
(stem-loop structure); the coevolution of both structures is 
necessary for the correct function of the system CRISPR-Cas. 
Figures 3A,B show the phylogenetic relations of the Cas proteins 
and SRc, respectively. The Cas proteins and SRc present in 
S. aureus KUH140087 are phylogenetically away from the ones 
present in the phylogroup formed by the rest of the strains.

The SR keeps the nucleotides that form the stem-loop structure, 
which gives the signals of the location where the cuts must 
be  done on pre-crRNA. Figure  4 shows the SRc secondary 
structures of the CRISPR-Cas systems found; the stem formed 
by interactions G:C (guanine:cysteine) can be  seen, and the 
loop also indicates the MFE of each structure.

The memory and adaptation characteristics of the CRISPR-Cas 
system allow the bacteria to identify which MGE infected it. 
The subtraction of the protospacer from the MGE and its 
incorporation as SS in the locus CRISPR during the adaptation 
phase (McGinn and Marraffini, 2019) becomes an advantage 
in the genomic analysis. The total of SS [6 SS (strain JS395), 
12  SS (strain AR_0470, AR_0472, and AR_0473), and 15 SS 
(strain 08BA02176)] is 62, where 26 (41.93%) are unique SS 
and 18 are SS duplicated and built 58.07%. Interestingly, the 
duplicated SSs are in the loci of strains AR_0472, AR_0473, 
JS395, and AR_0470. The SSs are preserved between the loci 
CRISPR: the repeated SSs of the strain AR_0472 (n  =  12) 
match in order and sequence with the SS of the strain AR_0473 
(n  =  12), and the loci CRISPR of the strain JS395 (n  =  6) 
also matches in order and sequence with a final 50% of loci 
CRISPR of strain AR_0470 (n  =  12). Hence, only 44 SSs were 
considered for BLAST analysis.

The BLAST analysis showed that 9% (4/44) of SSs match 
with known MGE (Supplementary Table C). In Figure  5, 
MGEs that infected the S. aureus 08BA02176 (SS6) and S. aureus 
KUH140087 (SS1, SS2, and SS3) are presented. However, if a 
SS is associated with more than one MGE, it means that the 
protospacers are conserved between MGEs. Besides, according 
to our analysis, a specific protospacer can be found in plasmids 

FIGURE 1 | The cluster of genes cas of the CRISPR-Cas subtype III-A of S. aureus system. The annotation genes cas was done in EasyFig 2.2.5.
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or bacteriophages, but a plasmid protospacer is not found in 
a bacteriophage and vice versa. The SS1 of S. aureus KUH140087 
is the only one that interferes with the two plasmids named 
in Figure 5, and the rest of SS interferes with the bacteriophage.

DISCUSSION

The CRISPR-Cas system is a heritable mechanism of immunity 
in bacteria and archaea, which protects them from foreign 
plasmids and bacteriophages; it is an endonuclease mechanism 
guided by crRNA (Makarova et  al., 2013). Few studies have 

searched for the CRISPR-Cas system in Staphylococcus spp., 
where the CRISPR-Cas system was found in 0.94% (6/616) of 
isolated clinics (Cao et  al., 2016) and in 7.89% (3/39) of the 
S. aureus strains analyzed for Zhao et  al. (2018); moreover, 
the CRISPR-Cas system was searched in 129 isolated from 
Staphylococcus spp. (S. aureus n  =  53, Staphylococcus 
pseudintermedius n  =  74, Staphylococcus haemolyticus n  =  1, 
and Staphylococcus cohnii n  =  1) from 9 countries, and the 
8% (10/129) are CRISPR-Cas system-bearing strains, but it 
was detected only in S. pseudintermedius strains (Rossi et  al., 
2019). Few studies have searched the CRISPR-Cas system in 
MGE, such as plasmids (Kamruzzaman and Iredell, 2020) or 

A

B

FIGURE 3 | SRc alignment of the CRISPR-Cas system present in S. aureus. Visualization (A) and alignment of nucleotides (B). The motive nucleotides are under 
the alignment (capital letters). The alignment was done with MUSCLE (UGENE), and the image was obtained from WebLogo (A) and GeneDoc (B).

A

B

FIGURE 2 | Protein Cas phylogenetic relation (A) and SRc (B). The alignment of the amino acid sequences of the proteins Cas and SRc was done with 
ClustalO, and the phylogenetic trees of SRc and the Cas proteins were built with the neighbor-joining and UPGMA method. There is a tree for the protein Cas 
(Cas1, Cas2, Cas10/Csm1, and Cas6) because they presented the same phylogenetic relation. The trees are the consensus of 1,000 bootstrap, and they were 
done with MEGA X.
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bacteriophages (Naser et  al., 2017). The existence of the 
CRISPR-Cas system in a minimalist form, inactive, partially 
active, or active in MGE is the result of the constant coevolution 

between microorganisms and MGE (Faure et  al., 2019), or 
due to competency between plasmids as a plasmid incompatibility 
mechanism (Kamruzzaman and Iredell, 2020).

FIGURE 4 | Secondary structures of repeated sequences. Each secondary structure is the result of the interactions of the nucleotides; these structures and the 
minimum free energy were obtained in the RNAfold server. It shows the scale of occurrence for each nucleotide interaction.

FIGURE 5 | CRISPR-Cas ported strains that exhibited information of known mobile genetic elements (MGE). The annotations of the heat map were appended. The 
strains shown are unique, in which some of the spacer sequences were associated with an MGE through BLAST. The map was obtained in ClusVis.
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In this study, the CRISPR-Cas system was found in six 
S. aureus strains. Interestingly, the strains were isolated from 
different countries: S. aureus 08BA02176 in Canada (Golding 
et  al., 2012), S. aureus KUH140087  in Kyoto, Japan (Hikichi 
et  al., 2019), S. aureus JS395  in Switzerland (Larsen et  al., 
2017), and the S. aureus AR_0472, AR_0470, and AR_0473 
strains, whose geographical origin is unknown. The few 
CRISPR-Cas-bearing strains and their different geographical 
origin led us to think that the CRISPR-Cas system in S. aureus 
might be a spontaneous biological phenomenon, which means 
that the CRISPR-Cas system found in this study might 
be  part of a bacterium that lives together with S. aureus. 
It has been demonstrated that in S. aureus 08BA02176, 
S. schleiferi TSCC54, and S. capitis CR01, the CRISPR-Cas 
system is inside the staphylococcal chromosomic cassette 
(SSC) SSCmec. The SSCmec is flanked by insertion sequences 
(IS), in S. aureus 08BA02176 by IS6 and ISL3, in S. schleiferi 
TSCC54 by IS6 and IS1182, and in S. capitis CR01 by an 
IS6, and the presence of the MGE mentioned indicates that 
the CRISPR-Cas system has been transferred horizontally 
to other strains and species of Staphylococcus (Rossi et  al., 
2017). The results of this study support the proposal of 
Rossi et  al. (2017) and allow us to postulate that the 
CRISPR-Cas in S. aureus might be  a spontaneous event 
consequence of a horizontal transfer of the SCCmec because 
of the low number of strains harboring the CRISPR-Cas 
system and their different geographical regions. Further 
evidence of horizontal transfer of the CRISPR-Cas system 
through SCCmec requires additional bioinformatic analysis 
and its in vitro demonstration.

The CRISPR-Cas systems in the S. aureus strains analyzed 
in this study are classified as subtype III-A, since the gen 
cas10/csm1 is found (Koonin et  al., 2017). Studies have been 
demonstrated that the HD dominion of the protein Cas10/
Csm1 is responsible for the activity ssDNasa and the protein 
Csm3 of the activity endoribonucleases (Tamulaitis et al., 2017). 
The crRNA is essential for the operation of the CRISPR-Cas 
system (Behler and Hess, 2020). Figures  3A,B show that the 
Cas protein and the SRc coevolution comply with the correct 
functioning of the CRISPR-Cas system and that the stem-loop 
structure is conserved; in the alignment (Figure  2B) of the 
SRc, it has been demonstrated that the presence of conserved 
motifs is formed by four cysteines and four guanines that 
flanked an inner region of eight nucleotides. Motifs rich C 
and G can interact to form a pair of C:G, which has also 
been observed in Proteus spp. (Qu et al., 2019). The alignments 
of SRc evidence the conserved motifs (Yang et  al., 2020) that 
interact to generate secondary structures (Figure  4), which 
are characterized by the stem-loop structure (Bhaya et al., 2011) 
that serves as a point to process the pre-crRNA through the 
endonuclease Cas6 (Wakefield et  al., 2015). The secondary 
structure stability is bigger as far as there are more G:C 
interactions and less MFE (Trotta, 2014); nevertheless, the 
nucleotides bound in different forms to G:C, so there are also 
stable structures (Yang et al., 2015; Negahdaripour et al., 2017).

Multidrug-resistant (MDR) strains arise because exposition 
to antimicrobial compound (AMC) in the environment selects 

them (Vuotto et  al., 2018; Sanderson et  al., 2020), as well as 
horizontal AMC gene transfer (Zarei-Baygi et al., 2019) through 
MGE (Baker et  al., 2018). This relation between ARG and 
MGE is difficult for the therapy of MDR bacterial infections 
(Vuotto et  al., 2018). S. aureus strains that contain the 
CRISPR-Cas system are detected in this study, three are from 
a clinical origin (08BA02176, JS395, and KUH140087), and 
the origin of the rest (AR_0470, AR_0472, and AR_0473) is 
unknown. The presence of antimicrobial resistance (AMR) in 
the environment may be  the result of its incorrect use, for 
instance, the livestock industry and the pig industry, where 
they are used for animal breeding (Zhu et  al., 2013) as well 
as their indiscriminate use to treat infection diseases (Saha 
et  al., 2019) or their long-lasting use in severe or chronic 
treatments (Karaiskos et  al., 2019). The cross pollution favors 
the outcome of MDR to different places far from its origin 
(Uhlemann et  al., 2017; Aeksiri et  al., 2019; Cohen et  al., 
2019). The effort and the economic consumption to the 
development of antimicrobial products (Chung and Khanum, 
2017; Hashemi et  al., 2018), mainly those are effective against 
MDR strains with metal in the form of a nanoparticle (Alavi 
and Rai, 2019; Heidary et  al., 2019; Kumar et  al., 2019), have 
promoted the search of new treatments, particularly the 
treatment of bacteriophages (Wernicki et  al., 2017). The 
bacteriophages are being considered as an alternative to therapy 
in S. aureus MDR strains (MRSA), S. haemolyticus (MRSH), 
and Staphylococcus epidermidis (MRSE) infections (Oduor et al., 
2020). However, in this study, we  found that the CRISPR-Cas 
system may be  a factor that could compromise the efficacy 
of bacteriophage therapy. The BLAST analysis of SE6 has 
shown that S. aureus 08BA02176 is capable of counteracting 
the Stab20 bacteriophages infection. Oduor et al. (2019) isolated 
the Stab20, Stab21, Stab22, and Stab23 bacteriophages, and 
later it was determined that Stab20 and Stab21 infected 41 
and 40, among them, 100 Staphylococcus spp. (MRSA, MSSA, 
Staphylococcus intermedius, S. epidermidis, Staphylococcus 
saprophyticus, and S. haemolyticus) strains; moreover, it was 
found that Stab20 and Stab21 are better spread in some S. 
aureus strains. The Stab21 bacteriophage is capable to infect 
an isolated S. aureus from a patient with chronic sinusitis 
(Oduor et  al., 2020). The presence of one SE that matches 
with Stab20  in the loci CRISPR of the 08BA02176 strain 
implies that infection with this strain would be  difficult, or 
impossible to treat with a Stab20 bacteriophage therapy. Likewise, 
S. aureus 08BA02176 strain demonstrated its capability to 
destroy the ɸIPLA-RODI phage; this phage, when used against 
S. aureus forming a biofilm, caused a reduction of the population 
of S. aureus after 18  h (González et  al., 2017); nevertheless, 
the presence of S. aureus 08BA02176 as part of the biofilm 
makes the use of the ɸIPLA-RODI phage difficult as a treatment. 
In contrast, it was demonstrated that the ɸMR003 phage 
infected 97% of the MRSA strains in the study of Peng et  al. 
(2019); however, the CRISPR-Cas system of S. aureus 
KUH140087 prevents attack by the ɸMR003 phage.

Despite the ongoing protocols using the bacteriophages 
to treat infections caused by S. aureus (Kaźmierczak et al., 2014; 
Cui et  al., 2017) in an animal model and human studies, 
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it is necessary to generate more knowledge about the 
CRISPR-Cas system in more S. aureus strains to develop 
reliable bacteriophage therapies. Nowadays, only 12 S. aureus 
strains contain the reliable CRISPR-Cas system: AH1, AH2, 
AH3, SH1, SH2, and SH3 strains from isolated clinics (Cao 
et al., 2016), and the 08BA02176, KUH140087, JS395, AR_0470, 
AR_0472, and AR_0473 strains found in this investigation, 
as well as the ones previously found in the study by Cao 
et al. (2016) are 08BA02176 and JS395 strains as the CRISPR-Cas 
system carrier.

In conclusion, we  determined that the CRISPR-Cas system 
found has an origin from other bacteria before getting into 
the different S. aureus strains detected in this study, due to 
its rare presence in clinical infections and its wide geographical 
countries where the CRISPR-Cas system was detected; moreover, 
the CRISPR-Cas system-bearing bacteria can destroy the 
bacteriophages becoming the limiting factor that could avoid 
the therapeutic use of the bacteriophages. Our results can 
be  complemented with the CRISPR-Cas system detection in 
more S. aureus strains; thus, the enrichment of the database 
is to associate the memory of the CRISPR-Cas system with 
the bacteriophages and to discriminate among the best candidates 
for the curative therapies.
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