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Metabolically engineered cyanobacteria have the potential to mitigate anthropogenic
CO2 emissions by converting CO2 into renewable fuels and chemicals. Yet, better
understanding of metabolic regulation in cyanobacteria is required to develop more
productive strains that can make industrial scale-up economically feasible. The aim
of this study was to find the cause for the previously reported inconsistency between
oscillating transcription and constant protein levels under day-night growth conditions.
To determine whether translational regulation counteracts transcriptional changes,
Synechocystis sp. PCC 6803 was cultivated in an artificial day-night setting and the level
of transcription, translation and protein was measured across the genome at different
time points using mRNA sequencing, ribosome profiling and quantitative proteomics.
Furthermore, the effect of protein turnover on the amplitude of protein oscillations
was investigated through in silico simulations using a protein mass balance model.
Our experimental analysis revealed that protein oscillations were not dampened by
translational regulation, as evidenced by high correlation between translational and
transcriptional oscillations (r = 0.88) and unchanged protein levels. Instead, model
simulations showed that these observations can be attributed to a slow protein turnover,
which reduces the effect of protein synthesis oscillations on the protein level. In
conclusion, these results suggest that cyanobacteria have evolved to govern diurnal
metabolic shifts through allosteric regulatory mechanisms in order to avoid the energy
burden of replacing the proteome on a daily basis. Identification and manipulation of
such mechanisms could be part of a metabolic engineering strategy for overproduction
of chemicals.

Keywords: cyanobacteria, diurnal gene expression, protein turnover, post-transcriptional regulation, metabolic
regulation, RNA sequencing, ribosome profiling, proteomics

INTRODUCTION

Knowledge of cyanobacterial metabolism and its regulation can guide metabolic engineering efforts
to create more efficient strains for renewable fuel and chemical production. As their energy source
is limited to the light hours of the day, cyanobacteria have evolved to shift between photosynthetic
and respiratory metabolism between day and night, respectively. During the day, CO2 is fixed in the
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Calvin cycle and converted into biomass, including storage
compounds such as glycogen. During the night, CO2 fixation
and most biosynthetic pathways are inactive while glycogen
is degraded to support cellular maintenance and a small
subset of pathways that prepare the cell for the next light
period (Saha et al., 2016; Reimers et al., 2017; Welkie et al.,
2019; Werner et al., 2019). Metabolic shifts that occur at
specific time points over the day-night cycle are governed by
regulating the flux through key enzymes and pathways. The
flux through an enzyme is regulated by changing its abundance,
product/substrate concentration, or through post-translational
effects that alter its apparent kinetic parameters. Several studies
have investigated abundance-controlled regulation by tracking
changes in the cyanobacterial transcriptome and proteome across
the day-night cycle. Transcriptomic data collected from a range
of cyanobacteria showed that a large fraction of cyanobacterial
transcripts oscillates diurnally (30–87%), with peak expression
mostly during the transitions between day and night (Stöckel
et al., 2008; Ito et al., 2009; Waldbauer et al., 2012; Saha et al.,
2016). Additionally, many transcripts tend to peak just before
the time when the gene product’s function is expected to be
needed by the cell. For example, transcripts of Calvin cycle
and pentose phosphate pathway genes peaked in the beginning
of the light and dark period, respectively (Waldbauer et al.,
2012). Yet surprisingly, a few proteomics studies have shown
that abundance of most proteins remains nearly constant (Stöckel
et al., 2011; Waldbauer et al., 2012; Guerreiro et al., 2014;
Angermayr et al., 2016). This makes the regulatory purpose of
time-dependent transcription seem insignificant for regulating
enzyme activity and diurnal metabolic shifts.

The underlying cause for a broad discrepancy between
transcript and protein dynamics is still not clear, but it could
be attributed to post-transcriptional regulation or low daily de
novo protein synthesis relative to the protein abundance. One
possibility is that translational regulation counteracts changes
in mRNA abundance, resulting in reduced variation in protein
synthesis rate of genes despite their altered transcript levels.
Protein synthesis rates can be measured genome-wide through
ribosome profiling (Ribo-Seq), which quantifies the total number
of ribosomes translating a gene’s transcripts (Brar and Weissman,
2015; Liu et al., 2017). A translationally-regulated gene would
show a change in ribosome abundance that is not equal to
the change in transcript abundance, or vice versa. Translational
regulation was shown to occur in 7% of the genome of
Synechocystis sp. PCC 6803 (Synechocystis) in response to CO2
starvation (Karlsen et al., 2018). A second possibility is that
protein levels are held relatively constant by active protein
degradation. However, rapid degradation of newly synthesized
proteins would waste energy and cellular resources and reduce
fitness. Lastly, relatively low variation in protein levels could also
occur without any post-transcriptional regulation, if the daily
variation in protein synthesis rate is low compared to the protein
abundance, i.e., if the turnover rate of the proteome is low.

Here, we apply a systems biology approach to take a closer
look at the discrepancies between transcription and protein
abundances during day-night cycles in cyanobacteria. The
model cyanobacterium Synechocystis was grown in controlled

turbidostat cultures under artificial day-night cycles. To assess
the impact of translational regulation on the protein level,
the transcriptome, translatome, and proteome was measured
at different time points using mRNA sequencing, ribosome
profiling, and quantitative proteomics. We found that protein
synthesis rates tracked with transcriptional oscillations, while
protein abundances remained relatively constant, indicating
that translational regulation does not significantly impact the
protein-level behavior. We further investigated the effect of
protein turnover on protein dynamics in silico. Simulation
of protein oscillations using biologically relevant parameter
settings, resulted in a protein amplitude similar to experimental
observations. The data and model simulations demonstrate that
post-translational regulation is not necessary for the proteome to
remain stable, even under significant transcriptional oscillations.

MATERIALS AND METHODS

Cultivation and Sampling
Synechocystis sp. PCC 6803 was cultivated in 1.6 L BG-11
(pH = 7.8) at 30◦C in a cylindrical photobioreactor (D = 10 cm,
V = 2 L, baffled). The culture was illuminated with an LED light
jacket covering the sides of the cylinder (90% red light, 10% blue
light). CO2-enriched air was sparged into the culture (7% CO2,
330 mL min−1) and the impeller stirring rate was set to 150 rpm.
Cells were grown in turbidostat mode (OD730 set point: 0.65–
0.80) under an artificial day-night light regime (Day: sinusoidal,
max 500 µmol photons m−2 s−1; Night: dark) for seven days, at
which point the diurnal pattern of dissolved oxygen (growth rate
proxy) became stable over subsequent days. Five time points (1 h
before/after sunrise, midday, 1 h before/after sunset) were then
sampled at -1, 1, 6, 11, 13, 30, 35, 37, 47, and 49 h relative to the
first subjected sunrise. Two replicate cultivations were conducted.
In the first cultivation, two replicate samples were collected at
all five diurnal time points for mRNA sequencing and ribosome
profiling. In the second cultivation, one and two replicate
samples were collected for ribosome profiling and quantitative
proteomics, respectively. Eleven out of fifteen collected ribosome
profiling samples were analyzed, which resulted in two replicate
measurements at all time points, except 1 h after subjected
sunrise which had three. The correlation between ribosome
profiling replicates within the same cultivation was similar to
the correlation between replicates of different cultivations (r ≈
0.99 and r ≈ 0.97, respectively), which indicated that results
were reproducible across cultivations (Supplementary Figure 1).
Cultivation data is shown in Supplementary Figure 2.

Determination of Diurnal Growth Rate
Analysis was performed using R v.3.6 scripts1. Specific growth
rates (µ) were determined over the time course of the first
cultivation at 30-second intervals according to a mass balance-
derived equation of biomass in the culture:

µ =

(
dOD730

dt
+ D · OD730

)
/OD730.

1https://github.com/J-Karlsen/diurnal-gene-expression
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Where D is the dilution rate (h−1) and OD730 is the optical
density (cell mass concentration proxy) of the culture. Dilution
rates were calculated by dividing time-specific medium feed
rates (L h−1, automatically regulated) with the volume of the
culture (1.6 L). To remove noise, each time point was assigned
with the 40% truncated average of the closest 480 time points
(40% most extreme values removed in each window). The
noise filtering step was repeated once. The optical density was
measured automatically at 880 nm and converted to OD730 using
a conversion factor based on offline OD730 measurements during
the time course. Noise was removed from OD730 values in two
subsequent filtration steps. In the first step, each time point was
assigned with the 40% truncated average of the 960 closest time
points. In the second step, each time point was assigned with the
average of the closest 360 time points. The change in OD730 over
time ( dOD730

dt ) was calculated at each time point as the slope in
noise-removed OD730 (1 h centered time intervals). Noise was
finally removed from calculated growth rates by assigning each
time point with the 40% truncated average of the 720 closest time
points, and negative values were replaced by zero. The average
diurnal growth rate was based on growth rates determined across
the two days of sampling (0–48 h). Growth rates determined
in the second cultivation experiment were prone to error and
therefore not reported (higher noise levels and longer data
acquisition intervals). Data is shown in Supplementary Figure 2.

Sample Preparation for mRNA
Sequencing
Culture medium was removed by centrifugation and cell pellets
snap-frozen in liquid nitrogen (stored at –80◦C). Cell lysis was
performed using lysozyme treatment and vortexing with glass
beads. Total RNA was extracted from the cleared lysate with hot
phenol/chloroform and isopropanol precipitation and remaining
DNA was removed using DNase I. The amount of rRNA
was subsequently reduced using the RiboMinus Kit, Bacteria
(ThermoFisher, K155004) according to the manufacturer’s
instructions. Sequencing libraries were prepared using the
NEBNext Ultra Directional RNA Library Prep Kit (New England
Biolabs, E7420). Libraries were sequenced on an Illumina
NextSeq500 platform (75 bp read length, single end). For
details, see Karlsen et al. (2018). Raw sequencing data are
available at the European Nucleotide Archive under accession
number PRJEB42778.

Sample Preparation for Ribosome
Profiling
Cells were rapidly harvested by vacuum filtration and snap-
frozen in liquid nitrogen (stored at –80◦C). Frozen cells were
lysed using cryogenic grinding. The frozen lysate was thawed
and cell debris was removed by centrifugation. Polysomes in
the lysate were immediately digested with micrococcal nuclease,
and generated monosomes were extracted by sucrose gradient
ultracentrifugation and fractionation. Total RNA was extracted
from monosomes with hot phenol/chloroform and isopropanol
precipitation. Ribosome protected mRNA fragments were then
extracted by size selection on a denaturing polyacrylamide

gel (20–40 nt) and subsequently converted into a sequencing
library using the NEBNext small RNA library prep set (New
England Biolabs; E7300). Libraries were sequenced on an Illumina
NextSeq500 platform (75 bp read length, single end). For
details, see Karlsen et al. (2018). Raw sequencing data are
available at the European Nucleotide Archive under accession
number PRJEB42778.

Sample Preparation for LC-MS-MS
Culture medium was removed by centrifugation and cell pellets
snap-frozen in liquid nitrogen (stored at –80◦C). Thawed cell
pellets were suspended in 125 µL solubilization buffer (200 mM
TEAB, 8 M Urea, protease inhibitor). 100 µL glass beads (100 µm
diameter) were added to the cell suspension and cells were lysed
by bead beating in a Qiagen TissueLyzer II (5 min, f = 30/s,
precooled cassettes). Cell debris was removed by centrifugation at
14,000× g, 30 min, 4◦C, and supernatant was transferred to a new
tube. Protein concentration was determined using the Bradford
assay (Bio-Rad). For reduction and alkylation of proteins, 2.5 µL
200 mM DTT (5 mM final) and 5 µL 200 mM CAA (10 mM
final) were added, respectively, and samples incubated for 60 min
at RT in the dark. Samples were diluted 8-fold with 700 µL
200 µM TEAB. For digestion, Lys-C was added in a ratio of
1:75 w/w to protein concentration, and samples were incubated
at 37◦C and 600 RPM for 12 h. Trypsin was added (1:75 w/w)
and samples incubated for 24 h at the same conditions. Samples
were acidified with 100 µL 10% formic acid (FA) and insoluble
compounds were removed by centrifugation (14,000× g, 15 min,
RT). Peptide samples were then cleaned up using a solid phase
extraction protocol (Sep-Pak 1cc 50 mg A C18 cartridges, Waters)
according to the manufacturer’s recommendations. Briefly, Sep-
Pak columns were equilibrated with 1 mL acetonitrile (ACN) and
2 × 1 mL 0.6% acetic acid. Samples were loaded on columns and
washed twice with 1 mL 0.6% acetic acid. Peptides were eluted
from the column in 500 µL elution buffer (0.6% acetic acid, 80%
ACN) and dried in a speedvac for 2 h, 37◦C. Dried peptides were
frozen at –80◦C and dissolved in 10% FA to a final concentration
of 1 µg/µL before MS measurement.

LC-MS-MS Analysis of Lysates
Lysates were analyzed using a Thermo Fisher Q Exactive HF
mass spectrometer (MS) coupled to a Dionex UltiMate 3000
UHPLC system (Thermo Fisher). The UHPLC was equipped
with a trap column (Acclaim PepMap 100, 75 µm × 2 cm, C18,
P/N 164535, Thermo Fisher Scientific) and a 50 cm analytical
column (Acclaim PepMap 100, 75 µm× 50 cm, C18, P/N ES803,
Thermo Fisher Scientific). The injection volume was 2 µL out of
18 µL in which the samples were dissolved in the autosampler.
Chromatography was performed using solvent A (3% ACN, 0.1%
FA) and solvent B (95% ACN, 0.1% FA) as the mobile phases.
The peptides were eluted from the UHPLC system over a 90 min
gradient at a flow rate of 250 nL/min with the following mobile
phase gradient: 2% solvent B for 4 min, 2–4% solvent B for 1 min,
4–45% solvent B for 90 min, 45–99% solvent B for 3 min, 99%
solvent B for 10 min and 99–2% solvent B for 1 min following
re-equilibration of the column at 2% solvent B for 6 min. The
MS was operated in a data-dependent acquisition mode with a
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Top 8 method. The MS was configured to perform a survey scan
from 300 to 2,000 m/z with resolution of 120,000, AGC target of
1× 106, maximum IT of 250 ms and 8 subsequent MS/MS scans
at 30,000 resolution with isolation window of 2.0 m/z, AGC target
of 2 × 105, maximum IT 150 ms and dynamic exclusion set to
20 s. LC-MS shotgun proteomics data are available at the PRIDE
Archive2 under accession number PXD023812.

Relative Quantification of Cellular
Protein Content
The protein content was quantified in the cell extracts used
for LC-MS-MS (Bradford assay). Measured concentrations were
normalized to the sample’s cell mass concentration (based on
external OD730 measurements).

Sequencing Data Processing and
Quantification of mRNA and Ribosomes
Analysis of sequencing data was conducted using python v.2.7
scripts adapted from Becker et al. (2013), R v.3.4 scripts, and bash
commands parallelized using GNU Parallel v.20161222 (Tange,
2011)3. FastQC was used to assess the quality and general features
of sequencing datasets (Andrews, 2010). Adapter sequences were
trimmed off using Cutadapt v1.18 (Martin, 2011). Base calls
with a Sanger quality score lower than 20 were trimmed off the
ends of mRNA sequencing reads using Sickle (Joshi and Fass,
2011). Ribosome profiling reads with an average Sanger quality
score lower than 25 were removed using Seqmagick v0.6.24.
Reads shorter than 6 nt were discarded. Reads that mapped to
tRNA and rRNA genome sequences were subsequently removed
using Bowtie v.1.2.2 (Langmead et al., 2009). Bowtie was used
to map remaining reads to the genome, including plasmids
(NC_000911.1+NC_005229.1+NC_005230.1+NC_005231.1
+NC_005232.1+NC_020289.1+NC_020290.1+NC_020298.1).
A maximum of two alignment mismatches were allowed. If a
read mapped to several locations, only the one best alignment
was kept. The read was discarded if it could not be mapped
to a unique location in this way. The total number of mapped
non-tRNA/rRNA reads was ∼2 million and 34–78 million in
mRNA sequencing and ribosome profiling samples, respectively.
For each mapped mRNA sequencing read, a read count equal to
1 was distributed evenly over all its aligned genome positions.
In contrast, the read count of each mapped ribosome profiling
read was assigned to a single genome position, 12 nt upstream
of the aligned 3’ end. This assigns the read count to the genome
position covered by the A-site of the ribosome (Karlsen et al.,
2018). As only ribosome profiling reads longer than 24 nt were
counted, the total number of counted mapped reads per sample
was between 17 and 68 million. The mRNA/ribosome abundance
of a gene (RPKM) was quantified by dividing the read count on
the gene’s coding sequence with the length of the coding sequence
(in 1,000 base pairs) and the total number of counted reads on
all coding sequences (in million). Coding sequences were defined

2http://www.ebi.ac.uk/pride
3https://github.com/Asplund-Samuelsson/ribopipe
4https://github.com/fhcrc/seqmagick

according to GenBank files for the NCBI reference sequences
NC_000911.1, NC_005229.1, NC_005230.1, NC_005231.1,
NC_005232.1, NC_020289.1, NC_020290.1, and NC_020298.1.

Protein Identification and Quantification
Thermo raw spectra files were converted to the mzML standard
using Proteowizard’s MSConvert tool (Adusumilli and Mallick,
2017). Peptide identification and label-free quantification
were performed using OpenMS 2.4.0 in KNIME (Röst et al.,
2016). The KNIME pipeline for MS data processing was
deposited on https://github.com/m-jahn/openMS-workflows
(labelfree_MSGFplus_Percolator_FFI.knwf). MS/MS spectra
were subjected to sequence database searching using the
OpenMS implementation of MS-GF+ (Granholm et al., 2014)
with the Synechocystis sp. PCC 6803 reference proteome
as database (as of 04 April 2019). Carbamidomethylation
was considered as a fixed modification on cysteine and
oxidation as a variable modification on methionine. The
precursor ion mass window tolerance was set to 10 ppm. The
PeptideIndexer module was used to annotate peptide hits with
their corresponding target or decoy status, PSMFeatureExtractor
was used to annotate additional characteristics to features,
PercolatorAdapter was used to estimate the false discovery
rate (FDR), and IDFilter was used to keep only peptides
with q-values lower than 0.01 (1% FDR). The quantification
pipeline is based on the FeatureFinderIdentification workflow
allowing feature propagation between different runs (Weisser
and Choudhary, 2017). MzML files were retention time
corrected using MapRTTransformer, and identifications
(idXML files) were combined using the IDMerger module.
FeatureFinderIdentification was then used to generate
featureXML files based on all identifications combined from
different runs. Individual feature maps were combined to a
consensus feature map using FeatureLinkerUnlabelledKD, and
global intensity was normalized using ConsensusMapNormalizer
(by median). Protein quantity was determined by summing
up the intensities of all unique peptides per protein using
ProteinQuantifier.

Integrated Analysis of Diurnal mRNA,
Ribosome and Protein Oscillations
Analysis was performed using R v.3.6 scripts1. Genes with less
than 30 and 60 reads were initially removed from the mRNA
sequencing dataset and ribosome profiling dataset, respectively.
In the proteomics dataset, inaccurately measured proteins were
removed by discarding those with a log2 intensity standard
deviation greater than 1 at any time point. Only genes with
at least two replicate measurements across all time points and
across all three datasets were analyzed. The total number of
genes (n = 1,126) was mainly limited by the proteomics dataset.
Abundance values for each gene were log2 transformed and
then centered around the gene’s daily average log2 abundance
to reflect relative fold changes. To identify genes with diurnal
changes in mRNA abundance (considered “cyclic”), differential
abundance between time points was analyzed with one-way
ANOVA. A gene’s mRNA abundance was considered to change
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significantly over the day-night cycle if (1) the Benjamini-
Hochberg adjusted q-value was less than 0.1, and if (2) the
absolute log2 fold change was greater than 1, between any two
time points. Cyclic genes were then clustered into four groups
(G1–G4) according to their diurnal mRNA abundance pattern
using hierarchical clustering (R function: hcluster; distance
measure: Pearson correlation; linkage method: Ward). Maximum
cluster separation was obtained when choosing a cluster number
of 2 and 4 (average silhouette width of 0.63 and 0.49, respectively).
Four clusters were chosen as relatively unique diurnal patterns
were visible in each, despite lower average silhouette width. Non-
cyclic genes were assigned to a fifth group (G0). The peak-to-peak
relative amplitude in mRNA, ribosome and protein abundance
was calculated as the maximum log2 fold change between
sample mean values across the day-night cycle. The median
relative amplitude of cyclic genes in each dataset was used to
summarize and compare the overall relative amplitude observed
at transcriptional, translational and protein level. Differential log2
protein abundance across time points was assessed for cyclic and
non-cyclic genes using one-way ANOVA. A Benjamini-Hochberg
adjusted q-value less than 0.1 was considered significant.

Modeling of Protein Oscillations
The change over time of an arbitrary gene’s (J) protein
concentration (PJ) was expressed according to the cellular mass
balance of that protein:

dPJ

dt
= FS, J ·STOT − FP, J · PTOT · µ− FP, J · PTOT · kD, J (1)

Where FS,J is the fraction of total bulk protein synthesis
(STOT) dedicated to protein J, FP,J is the fraction of the total
cellular protein concentration (PTOT) made up by protein J, µ

is the growth rate, and kD,J is the gene-specific degradation
rate of protein J.

In a similar manner, the rate change of PTOT was expressed
according to the cellular mass balance of total protein:

dPTOT

dt
= STOT − PTOT · µ− PTOT · kD, MEAN (2)

Where kD,MEAN is the bulk protein degradation rate.
Under the assumption of a constant PTOT , the term STOT is

constrained to be proportional to the sum of µ and kD,MEAN :

STOT = PTOT ·
(
µ+ kD, MEAN

)
(3)

Substitution of Eq. 3 into Eq. 1 yields:

dPJ

dt
= PTOT ·

(
FS, J ·

(
µ+ kD, MEAN

)
− FP, J ·

(
µ+ kD, J

))
(4)

For the model to better reflect the abundance fraction of protein
J measured by protein mass spectrometry, the expression PJ =

FP,J · PTOT as substituted into Eq. 4:

dFP, J

dt
= FS, J ·

(
µ+ kD, MEAN

)
− FP, J ·

(
µ+ kD, J

)
(5)

Considering an “average” protein J for which kD,J = kD,MEAN ,
Eq. 5 can be further simplified to:

dFP, J

dt
=

(
µ+ kD, MEAN

)
·
(
FP, J − FS, J

)
(6)

Simulations of diurnal protein abundance oscillations were
performed using R v.3.6 scripts1. The model equation (Eq. 5)
was solved numerically using an ordinary differential equation
solver (R function: ode). FS,J was set as a function of time with
an amplitude fold change corresponding to the experimentally
observed median value:

FS, J = (3.05− 1) / (3.05+ 1) · sin (2·π/24 · t + 0.5π)+ 1.

The behavior of FP,J over time in response to different protein
turnover scenarios was analyzed by altering the settings of the
remaining input parameters µ, kD,MEAN and kD,J . To simulate
anticorrelated degradation vs. synthesis, kD,J was expressed as a
sine function with a 12 h phase shift relative to FS,J :

kD, J = 0.1 · sin (2 · π/24 · t + 1.5π)+ 0.1.

A time depended growth rate was modeled by expressing µ as
a sine function during day time:

µ = 0.05 · sin (2 · π/24 · t)

and as zero during night time.

RESULTS

Diurnal Transcriptional Oscillations Are
Not Dampened by Translation but
Protein Levels Are Largely Constant
To investigate whether translational regulation causes
protein levels to remain constant during day-night cycles
in cyanobacteria, we performed genome-wide measurements of
the transcriptome, translatome, and proteome in Synechocystis
using mRNA sequencing, ribosome profiling, and quantitative
shotgun proteomics, respectively. Cells were adapted to an
artificial day-night regime for seven days in a controlled
turbidostat culture and samples were collected over separate days
at five time points: 1 h before and after artificial sunrise, midday,
and 1 h before and after sunset. The maximum and average
growth rate was 0.05 and 0.018 h−1, respectively, and correlated
with the light intensity curve (Supplementary Figure 2).

A total of 1126 genes were analyzed, which had at least
two replicate measurements across all time points in all three
datasets. Of these, 43% showed cyclic diurnal mRNA expression
(|log2FC| > 1, FDR < 0.1, Supplementary Table 1) which is in
agreement with microarray-based transcriptomics studies from
Synechocystis and Synechococcus elongatus PCC 7942 grown in
diurnal light conditions (Guerreiro et al., 2014; Saha et al.,
2016). These genes were designated “cyclic genes” and clustered
according to their diurnal mRNA abundance pattern into four
groups: “G1-G4.” Non-cyclic genes were assigned to a fifth group:
“G0” (Figure 1A). Protein synthesis rates, inferred from the
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FIGURE 1 | Protein amplitudes over a diurnal cycle are small relative to amplitudes in transcription and translation. (A) Comparison of diurnal expression patterns at
the level of transcription, translation and protein. The log2-transformed fold change (FC) vs. the daily average gene-specific abundance of mRNA, ribosome and
protein was plotted for each gene detected across all three levels (top). Time point 1 was plotted twice to visualize changes at sunrise. Genes were grouped
according to their daily mRNA abundance pattern: No significant change (G0), Cyclic (G1–G4). The number of genes in each group is shown in parentheses. Scatter
plots show the correlation of diurnal abundance patterns between levels among cyclic genes (bottom). Insets show the Pearson correlation coefficient. Duplicate
measurements were performed at all time points, except 1 h after sunrise where ribosome abundance was measured in triplicates. (B) Comparison of the median
peak-to-peak relative amplitude among cyclic genes. (C) Correlation of relative protein amplitude vs. protein synthesis to protein abundance ratio (inferred
gene-specific protein turnover) among cyclic genes. The protein synthesis to protein abundance ratio was based on the daily average abundance of ribosomes and
protein. Insets show the Pearson correlation coefficient (r) and the statistical significance of the trend (p-value).

number of translating ribosomes, correlated well with cyclic
transcription patterns (r = 0.88, Figure 1A). This implies a
low degree of translational regulation and confirms that protein
synthesis rates oscillate significantly over the day night cycle, in
concert with transcript levels. In contrast, oscillation patterns
could not be distinguished at the protein level which remained
relatively constant. Since the variance between time points was
low relative to the variance between replicates, no significant
change in protein abundance was found across any time point
(ANOVA, FDR < 0.1, Supplementary Table 1). This further

explains the low correlation (r = 0.06) between protein synthesis
and protein abundance patterns in this dataset (Figure 1A).

To analyze the peak-to-peak oscillation amplitude at the
level of transcription, translation and protein, the log2 fold
change between the minimum and maximum time point mean
abundance of mRNA, translating ribosome, and protein was
calculated for each cyclic gene (termed “relative amplitude”).
The median relative amplitude across genes was compared to
quantify the overall amplitude reduction from protein synthesis
to protein abundance (Figure 1B). The median amplitude was
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two times lower at level of protein (1.5-fold) compared to the
level of transcription and translation (3.0-fold), which is similar
to the 2.3-fold median ratio between transcript and protein
oscillations reported by Waldbauer et al. (2012). However, the
median protein amplitude was probably overestimated here since
the error of time point means was high relative to the variation
between time point means. For example, if the error of time
point means are large and the true protein amplitude is small
for a gene, the measured variation across time points will be
mostly noise. Consequently, the calculated relative amplitude
is likely to be mostly noise, as it will be determined from
the maximum fold change across five error-prone time point
means. The variance between replicates was larger than the
variance between time points for 41% of cyclic genes (ANOVA,
SSB/SSW > 1). Thus, the determined median relative protein
amplitude is likely to provide a certain over-estimated relative
amplitude. Even though gene-specific protein amplitudes could
not be determined with precision, there was a trend that proteins
with high turnover rate (daily mean protein synthesis rate/daily
mean protein abundance) had stronger oscillations (Figure 1C).

In conclusion, our multi-omics analysis shows that the
decrease in oscillation amplitude between the mRNA level
and the protein level is not caused by translational regulation
of protein synthesis. The ratio between the median mRNA
oscillation amplitude and the median protein oscillation
amplitude was estimated to be more than twofold.

A Slow Protein Turnover Reduces the
Amplitude of Protein Abundance
Oscillations
Protein concentrations in cyanobacteria remain largely
constant over diurnal cycles, despite significant fluctuations
in transcription and protein synthesis. A possible and intuitive
explanation is that diurnal peaks in synthesis are counteracted
by increased protein degradation. At the same time, this seems
unlikely in an evolutionary context, as it implies an ineffective
use of cellular resources which would result in decreased fitness.
Therefore, we sought to determine whether this observation
could solely be the result of a slow protein turnover. For
this purpose, we applied a mass balance-based model that
describes the change in an arbitrary protein’s concentration in
response to diurnal synthesis oscillations (see section “Materials
and Methods”). The model takes into account the synthesis,
degradation, and growth dilution of the modeled protein
(protein J) as well as the synthesis, degradation, and growth
dilution of the bulk proteome. The model assumes that the total
cellular protein concentration is constant, which has been shown
experimentally in cyanobacteria over a range of growth rates
and genetic perturbations (Touloupakis et al., 2015; Zheng and
O’Shea, 2017). This assumption constrains bulk protein synthesis
to be proportional to protein depletion, which is the sum of two
processes, bulk protein degradation (described by kD,MEAN) and
dilution by cell growth (described by µ). Bulk protein turnover,
defined as bulk protein synthesis rate divided by bulk protein
abundance, is thus also proportional to protein depletion (see
section “Materials and Methods,” Eq. 3). We measured the total

protein concentration in cell extracts and found it to be constant
across time points (p ≥ 0.4, Supplementary Figure 3). In any
case, deviations from this assumption do not have a significant
impact on the amplitude of protein oscillations as long as the
change is restored within the time span of the day-night cycle
(see section “Discussion”).

The effect of protein turnover rate on diurnal protein
oscillations was explored using the mathematical model
described above. Model parameters were selected to simulate
biologically relevant cellular scenarios. The synthesis rate of
protein J was set to oscillate with an amplitude equal to the
median amplitude determined by ribosome profiling (Figure 1B)
and µ was set to the observed daily average (Supplementary
Figure 2). The bulk protein degradation rate was set to the
median degradation rate reported for microalgae and plants
(0.01 h−1), as it has not been determined experimentally
in cyanobacteria (Table 1). In a first simulation, the gene-
specific degradation rate of protein J (kD,J) was set equal
to the bulk degradation rate so as to mimic the response
of an “average gene.” This resulted in a relative protein
amplitude of 1.11-fold, which is similar to the relative protein
amplitude determined from the experimental data (Figure 2A).
Increasing the bulk turnover rate (µ + kD,MEAN) from 0.028
to 0.118 h−1 (by increasing kD,MEAN from 0.01 to 0.1 h−1)
resulted in increased relative amplitude (1.11–1.53-fold) and
decreased lag time of a protein J’s oscillations. The change
in relative amplitude was in this case caused by changes in
the absolute protein abundance difference between peak and
trough (termed “absolute amplitude,” see legend Figure 2).
A positive correlation between protein amplitude and bulk
protein turnover was also predicted implicitly in model Eq. 6,
where a higher bulk turnover increases the protein response
dP/dt, which leads to a faster change and increased amplitude
(see section “Materials and Methods”). Equation 6 further
shows that the direction of the protein change is determined
by the difference in protein synthesis fraction and protein
abundance fraction (FS,J–FP,J). The abundance fraction will
therefore become equal to the synthesis fraction over time, if
the synthesis rate of a gene J is constant (e.g., at steady state
growth) and kD,J = kD,MEAN . More importantly, this implies
that a change in synthesis rate from one steady state to a
new one, will result in an abundance change that is at most
equal to the synthesis change, if given enough time to reach
the new steady state (∼5 protein half-lives). Thus, under a
diurnally changing synthesis rate, the protein amplitude is
bound to be less than (or at most equal to) the protein synthesis
amplitude, unless the protein half-life is much shorter than
the time period of the day-night cycle (i.e., relatively high
protein turnover).

A positive effect on protein J’s relative amplitude was also
observed when its gene-specific protein turnover rate was
high relative to the bulk protein turnover rate (by setting
kD,J > kD,MEAN , Figure 2B). In this case, the increased relative
amplitude was a result of reduced daily mean abundance
of the modeled protein (and unchanged absolute amplitude),
instead of increased absolute amplitude as in Figure 2A.
Similarly, a gene-specific turnover rate lower than the bulk
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TABLE 1 | Reported median protein degradation rates and growth rates in different organisms.

Organism Median protein deg.
rate (kD,MEAN, h−1)

Growth rate (µ, h−1)

Chlamydomonas reinhardtii (Algae) 0.015a 0.011a

Arabidopsis thaliana (Plant) 0.010b

0.0092c
0.0097b

0.0013–0.0063c

Lactococcus lactis (Heterotrophic bacteria) 0.12–0.91d 0.1–0.5d

Saccharomyces Cerevisiae (Budding yeast) 0.97e 0.46e

Human (HeLa cells) 0.02f*
0.034g*

0.03h*

aMastrobuoni et al. (2012); bLi et al. (2012); cLi et al. (2017); dLahtvee et al. (2014); eBelle et al. (2006); f Cambridge et al. (2011); gDoherty et al. (2009); hKono et al.
(2015); *Similar growth conditions (Culture medium: DMEM + 10% FPS).

FIGURE 2 | Low protein turnover reduces the relative amplitude of diurnal protein oscillations. Y-axes display the fraction of bulk protein synthesis (dashed lines) and
the fraction of bulk protein abundance (solid lines) taken up by a modeled gene J. Bar plots show the selected growth rate (µ), bulk protein degradation rate
(kD,MEAN ) and gene-specific protein degradation rate (kD,J ). (A) Higher bulk protein turnover (µ + kD,MEAN ) increased the relative amplitude (RA) of diurnal protein
oscillations, by increasing the absolute amplitude. kD,J was set equal to kD,MEAN to simulate the behavior of an “average” gene. (B) Increasing the gene-specific
turnover, by setting the gene-specific protein degradation rate greater than bulk protein degradation rate (kD,J > kD,MEAN; gene-specific turnover > bulk turnover),
increased the relative protein amplitude by decreasing the daily average protein abundance. However, the absolute protein amplitude was not affected (compare A,
left panel). (C) A high and fluctuating gene-specific protein degradation that is anticorrelated to the protein synthesis rate increased the relative protein amplitude by
increased absolute protein amplitude, and by reduced daily average protein abundance. (D) A diurnally fluctuating growth rate had no significant effect on the protein
amplitude, although the diurnal pattern was altered. The daily average growth rate was equal to the set value in Figure 1A. The growth rate curve was based on the
experimentally determined pattern.
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degradation rate (kD,J < kD,MEAN) results in increased daily mean
abundance and reduced relative amplitude (data not shown).
A positive correlation between the daily mean protein synthesis
to abundance ratio and the gene-specific protein turnover,
as determined by kD,J in the model, is consistent with the
general definition of protein turnover (turnover rate = synthesis
rate/protein abundance, at constant protein abundance). Thus,
the model predicts a positive trend between the relative protein
amplitude and the gene-specific protein turnover rate, which
possibly explains the experimentally observed positive trend
between relative protein amplitude and gene-specific turnover
(Figure 1C). The model further suggests that high-amplitude
proteins are likely to possess a high gene-specific degradation rate
relative to the bulk protein degradation rate. Increased absolute
amplitude was also observed when the gene-specific degradation
rate was actively regulated (time-dependent) and anticorrelated
to the synthesis rate (Figure 2C). Thus, particularly high relative
amplitudes are possible for a subset of genes even at slow bulk
protein turnover, if regulated degradation is fast enough to also
reduce the daily mean abundance. Allowing the growth rate to
fluctuate according to our experimental data altered the pattern
of protein oscillations but did not have a significant effect on the
protein amplitude (Figure 2D).

These results demonstrate that the relative amplitude of
a protein depends on the bulk protein turnover and the
protein’s specific turnover. The bulk protein turnover acts on
the protein’s absolute amplitude (and all other proteins), while
the latter acts on the daily mean abundance of the protein. The
model further shows that the observed reduction in oscillation
amplitude of a given protein can be attributed solely to a
low bulk protein turnover, corresponding to the experimentally
determined growth rate of 0.018 h−1 and a bulk protein
degradation rate of 0.01–0.05 h−1.

DISCUSSION

Post-transcriptional regulation is an intuitive explanation
for the discrepancy between cyclic diurnal transcription
and relatively constant protein levels in cyanobacteria. Our
transcriptomic, translatomic and proteomic data confirmed this
discrepancy and showed that it is not caused by translational
regulation. In addition, modeling of the protein response
to transcriptional oscillations under biologically relevant
parameter settings demonstrated that the experimentally
observed decrease in protein oscillation amplitude can
be attributed to a slow bulk protein turnover, without the
requirement of regulated protein degradation that counteracts
transcriptional oscillations. Modeling results further suggested
that the bulk protein degradation rate was similar to the daily
average growth rate.

The strong correlation between ribosome and mRNA
abundance fold changes indicates that protein synthesis oscillates
significantly over the day-night cycle and that translation is
not regulated between time points (Figure 1A). Synthesis
rates were solely based on the ribosome abundance and did

not account for within-gene changes in ribosome elongation
rate. However, elongation rates were not expected to change
significantly on global level between time points, since elongation
rates primarily depend on gene-specific properties of the
mRNA structure (Riba et al., 2019). Furthermore, variation in
elongation rate would more likely result in reduced correlation
with mRNA abundance.

In contrast, diurnal protein abundance patterns generally
did not show a clear cyclic behavior and did not correlate
with protein synthesis oscillations (Figure 1A). Small cyclic
patterns were most likely present, but concealed by technical
variation and therefore not detectable. As measurement errors
were high relative to diurnal changes in protein abundance,
the determined median relative protein amplitude of 1.5 was
probably overestimated (Figure 1B). The proteome-wide 2.0-
fold reduction in amplitude from synthesis to abundance, was
comparable to the 2.3-fold reduction determined previously
with higher statistical power (Waldbauer et al., 2012). With
this approximate ratio taken into account, our model suggests
that the bulk degradation rate was in the range of 0.01–
0.05 h−1, i.e., similar to the daily average growth rate,
and in line with degradation rates measured in microalgae
and plants (Figure 2A). This was further supported by
bulk degradation rates measured in other organisms which
are typically in the same magnitude as the growth rate
(Table 1). The positive correlation between growth rate and
bulk protein degradation has been attributed to a high
energy burden of protein turnover when nutrients are limited
(Lahtvee et al., 2014).

Our modeling analysis showed that the bulk protein turnover
rate (proportional to µ + kD,MEAN) determines the proteome-
wide reduction in amplitude between the synthesis level and
the abundance level (mean synthesis:protein amplitude ratio).
The model further suggested that gene-specific deviations from
the mean synthesis:protein amplitude ratio are determined
by deviations in individual protein degradation rates relative
to the bulk degradation rate (Figure 2B). Waldbauer et al.
(2012) reported variation in the synthesis:protein amplitude ratio
(synthesis = mRNA level) across the genome of Prochlorococcus
MED4 during diurnal growth. While the vast majority of genes
in this study also exhibited low amplitude or no oscillations at
the protein level, approximately 30 of the 548 analyzed proteins
showed an amplitude fold change greater than 2. However,
the relatively high amplitude of these proteins was not caused
by particularly strong oscillations in protein synthesis relative
to other genes. Instead, protein synthesis oscillations of these
genes appeared to be less dampened at the level of protein
relative to other genes, as indicated by a lower synthesis:protein
amplitude ratio. Our model suggests that such outlier proteins
are subjected to a high gene-specific degradation rate (i.e.,
gene-specific protein turnover), which increases the relative
amplitude of oscillations by reducing the protein’s daily mean
abundance without affecting the absolute amplitude. This was
further indicated in our experimental data (Figure 1C), where a
positive trend between the relative protein amplitude and gene-
specific protein turnover (daily mean synthesis rate/daily mean
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abundance) was detected. A degradation rate for a given protein
that is 10-fold higher than the bulk degradation rate is not
unrealistic, as gene-specific degradation rates were shown to span
two to three orders of magnitude in Lactococcus lactis (Lahtvee
et al., 2014). Furthermore, artificially increasing degradation rate,
by fusing a ssrA degradation peptide, increased the relative
amplitude and decreased the phase shift of a diurnally expressed
yellow fluorescent protein in Synechococcus elongatus PCC 7942
(Chabot et al., 2007).

The protein oscillation model assumes a constant cellular
protein concentration. This assumption was largely satisfied
over the day-night cycle, according to measurements of
total protein content in cell extracts. The assumption of a
constant cellular protein concentration constrains bulk protein
synthesis to be proportional to the sum of bulk protein
degradation and growth dilution. Consequently, a decreasing
protein concentration during night time will lead to an
overestimated bulk protein synthesis rate by the model. This
will in turn result in an overestimated rate change of each
protein’s (J) concentration during night time. However, as
the cellular protein concentration increases to its original
level during sunrise, the opposite effect will occur. That
means bulk protein synthesis will be underestimated and
the rate change of each protein’s concentration will be
underestimated, which compensates for the overestimated rate
change during the night. Thus, small changes in cellular
protein concentration will not change the simulated protein
amplitude significantly, but rather alter the diurnal pattern
of protein abundance. This is analogous to the effect of
setting a constant growth rate vs. setting a fluctuating growth
rate (Figure 2D).

Cyclic transcription has been shown to peak near time points
of the day-night cycle when the corresponding function is
expected to be needed by the cell (Waldbauer et al., 2012; Beck
et al., 2014; Saha et al., 2016; Strenkert et al., 2019). However,
the regulatory purpose of a diurnally shifting transcriptome
appears less meaningful, since the impact on the functional
protein level is significantly diminished. It is nonetheless possible
that well-timed, yet small, changes in protein abundance results
in a growth benefit that increases survival fitness in a natural
environment. Furthermore, our model shows that these changes
would become increasingly relevant in a condition that permits
higher growth rates, such as an eutrophicated lake exposed to
intense sunlight (Figure 2A, right). Indeed, Synechocystis can
grow with a growth rate as high as 0.16 h−1 (van Alphen
et al., 2018). This growth rate would correspond to a daily
average protein turnover (µ + kD,MEAN) of approximately
0.12 h−1, considering a diurnal growth pattern and that the
bulk degradation rate is typically similar and dependent on the
growth rate (Table 1). Protein levels in cyanobacteria do change
significantly in response to changes in light intensity, if allowed
to adjust to a steady state (Jahn et al., 2018). Yet, during diurnal
growth, the co-occurrence of a largely constant proteome and
considerable metabolic shifts suggests that allosteric interactions
play an important regulatory role. For example, CO2 fixation is
inactivated during the night through an allosteric mechanism
where the regulatory protein CP-12 binds and inactivates the

Calvin cycle enzymes phosphoribulokinase and glyceraldehyde-
3-phosphate dehydrogenase (Tamoi et al., 2005). Glycogen
degradation is another potential target of allosteric regulation
since it mostly occurs during the night, even though the
abundance of glycogen phosphorylase does not change over the
day-night cycle (Supplementary Table 1).

Our results also have implications for synthetic biology in
cyanobacteria. There have been many efforts to control the
abundance of heterologous proteins in Synechocystis, at both
the level of translation, through alteration of RBS sequence
(Thiel et al., 2018), and at the level of degradation, through
a synthetic ssrA peptide with a calculated homology to the
native sequence (Landry et al., 2013). The perceived ribosome
binding site affinity is not an accurate predictor of protein
levels, even when comparing ribosome binding sites with the
same heterologous protein (Thiel et al., 2018). It is possible
that ribosome profiling, which provides a measure of ribosome
occupancy across the entire transcript, could provide insight
as to how genetic context affects translation of heterologous
proteins. The findings in this study suggest that faster changes in
a heterologously expressed protein’s abundance can be achieved,
if its synthesis rate and degradation rate is high, i.e., if its
gene-specific protein turnover is high. In case transcription
of the heterologous gene is from a promoter that has an
inherent oscillation, then an increased degradation rate, through
e.g., a strong degradation tag, could increase oscillations in
the protein level. At the same time, a slow bulk protein
turnover will extend the time needed for that protein to reach
its steady-state abundance, since the cellular protein space is
limited. This appears to be the case in cyanobacteria cultures
grown at constant light. In a study on the induction kinetics
of YFP from various promoters in Synechocystis, the protein
accumulated for five days after induction with rhamnose before
reaching a steady state (Behle et al., 2020). In day/night
cultivations, the change in the target’s protein abundance
will be slower still, as total transcription and/or translation
is globally downregulated at night, by inactivation of RNA
polymerases and/or ribosomes (Hood et al., 2016). Therefore,
comparisons of gene expression constructs, such as promoters
or ribosome binding sites, should occur only after steady-state
has been reached.

In conclusion, we show that the relatively constant proteome
during diurnal growth can be explained by low protein turnover.
A relatively high bulk protein turnover is required to obtain
significant diurnal changes at the global proteome level. To
minimize protein turnover energy costs and improve fitness
under growth limited conditions, cyanobacteria may instead
have evolved allosteric mechanisms to regulate metabolic shifts.
Such adaptation may be particularly relevant for photosynthetic
organisms as their energy supply is limited to times of the day
with sunlight exposure. Identifying potential allosteric regulation
of key enzymes in cyanobacteria could assist future metabolic
engineering attempts to accelerate carbon fixation or divert
metabolic flux, as these enzymes could become targets for
protein engineering. Incorporating allosteric regulation into
metabolic models would also improve their prediction capability
when simulating genetic knockouts that result in altered
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metabolic flux patterns. Furthermore, our results suggest that
changes in transcription or translation are not necessarily a
good predictor of diurnal changes in enzyme concentration,
or metabolic flux.
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