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The filtering of gut microbial datasets to retain high prevalence taxa is often performed
to identify a common core gut microbiome that may be important for host biological
functions. However, prevalence thresholds used to identify a common core are highly
variable, and it remains unclear how they affect diversity estimates and whether insights
stemming from core microbiomes are comparable across studies. We hypothesized
that if macroecological patterns in gut microbiome prevalence and abundance are
similar across host species, then we would expect that increasing prevalence thresholds
would yield similar changes to alpha diversity and beta dissimilarity scores across host
species datasets. We analyzed eight gut microbiome datasets based on 16S rRNA
gene amplicon sequencing and collected from different host species to (1) compare
macroecological patterns across datasets, including amplicon sequence variant (ASV)
detection rate with sequencing depth and sample size, occupancy-abundance curves,
and rank-abundance curves; (2) test whether increasing prevalence thresholds generate
universal or host-species specific effects on alpha and beta diversity scores; and
(3) test whether diversity scores from prevalence-filtered core communities correlate
with unfiltered data. We found that gut microbiomes collected from diverse hosts
demonstrated similar ASV detection rates with sequencing depth, yet required different
sample sizes to sufficiently capture rare ASVs across the host population. This suggests
that sample size rather than sequencing depth tends to limit the ability of studies to
detect rare ASVs across the host population. Despite differences in the distribution
and detection of rare ASVs, microbiomes exhibited similar occupancy-abundance and
rank-abundance curves. Consequently, increasing prevalence thresholds generated
remarkably similar trends in standardized alpha diversity and beta dissimilarity across
species datasets until high thresholds above 70%. At this point, diversity scores tended
to become unpredictable for some diversity measures. Moreover, high prevalence
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thresholds tended to generate diversity scores that correlated poorly with the original
unfiltered data. Overall, we recommend that high prevalence thresholds over 70% are
avoided, and promote the use of diversity measures that account for phylogeny and
abundance (Balance-weighted phylogenetic diversity and Weighted Unifrac for alpha
and beta diversity, respectively), because we show that these measures are insensitive
to prevalence filtering and therefore allow for the consistent comparison of core gut
microbiomes across studies without the need for prevalence filtering.

Keywords: host-microbe communities, gut microbiota, core microbiome, community ecology, methods,
bioinformatics

INTRODUCTION

Host-associated gut microbial communities often comprise
thousands of taxa, most of which are rare, and therefore are
challenging and computationally intensive to analyze (Pollock
et al., 2018; Hornung et al., 2019; Pascoal et al., 2021). One
solution for simplifying analyses and to potentially clarify
biological patterns is to focus on a “common core” gut
microbiome, which is broadly defined as the suite of common
gut microbes that are shared across host individuals that are
assumed to have biological relevance to the host (Turnbaugh
et al., 2009; Shade and Handelsman, 2012; Risely, 2020). The
core microbiome is a concept founded in community ecology to
describe the common bimodal pattern in macrobes where many
species fall into the highest and lowest occupancy classes, and
can be easily distinguished as either “core” or “satellite” species
(Hanski, 1982). This bimodal pattern is generally not found in
microbial communities, however, making the distinction between
core and satellite species more challenging, if not impossible. As
such, common core membership is often inferred by arbitrary
thresholds in taxa prevalence (Shade and Handelsman, 2012;
Risely, 2020), defined as the proportion of host individuals in
which the taxa was detected (sometimes referred to as “occupancy
frequency” or “occurrence” in macroecology), independent of
its abundance within hosts. This approach stems from the
assumption that host-adapted microbes coevolve with the host
in a manner that promotes their colonization and persistence in
most individuals (Round et al., 2011; Lee et al., 2013; Shapira,
2016; Shukla et al., 2018). In contrast, taxa with low prevalence
may represent transient microbes that shift with environmental
variables or early yet stochastic colonizers, and make up the non-
core component of gut microbial communities (Martínez et al.,
2013; Shapira, 2016; Obadia et al., 2017).

Identifying a common core via prevalence filtering is a
common methodological approach that has frequently been
used to investigate the connection between gut microbiota
composition, and host biology and co-evolution (Ainsworth
et al., 2015; e.g., Cheng et al., 2016; Falony et al., 2016; Jeffery et al.,
2016; Stephens et al., 2016; Grieneisen et al., 2017; Sevellec et al.,
2018; Amato et al., 2019; Gibson et al., 2019; Wallace et al., 2019).
Filtering microbiome data to identify a common core differs
conceptually from quality filtering (“denoising”) and statistical
filtering based on statistical reliability, which aim to exclude
sequencing errors and taxa that cannot be reliably analyzed,

respectively. Quality filtering by excluding very low prevalence
taxa (e.g., that occur in just a few samples) reduces effects of
sequencing error (Bokulich et al., 2013; Callahan et al., 2016;
Amir et al., 2017), although it is argued this method also excludes
rare yet real taxa and therefore can bias results in other ways
(Kozich et al., 2013; Jousset et al., 2017; Schloss, 2020). Statistical
filtering, on the other hand, removes rare yet resident taxa (i.e.,
they are not due to sequencing error) and is recommended
for many analyses, such as network and differential abundance
analysis to increase their reliability (Röttjers and Faust, 2018;
Cougoul et al., 2019; Cao et al., 2021). Statistical filters generally
apply higher prevalence thresholds than quality filters, with taxa
below ∼20% prevalence often being limited in their statistical
testability, although this number is dependent on sample size
(Cougoul et al., 2019). It should be noted that extremely high
prevalence also limits testability, and that applying abundance
data instead of prevalence data adds little value to these testability
thresholds (Cougoul et al., 2019). In contrast, filtering for a
common core aims to retain only prevalent taxa that are assumed
to have biological relevance to the host (Shade and Handelsman,
2012), and usually involves higher prevalence thresholds than
is required for statistical reliability, often between 30 and 90%
(Ainsworth et al., 2015; Grieneisen et al., 2017; Mahnic and
Rupnik, 2018; Gibson et al., 2019). Whilst the appropriate
thresholds for quality and statistical filtering are often testable
with, e.g., power analyses, identifying a common core often
applies more arbitrary thresholds that may be dependent on
the aims to the study and dataset characteristics (Shade and
Handelsman, 2012; although see Shade and Stopnisek, 2019).

Because prevalence thresholds for identifying core gut
microbiomes are often based on untestable assumptions of taxa
biological function to the host, prevalence thresholds applied
across studies are highly variable, and it remains unclear whether
results are comparable. If microbial communities demonstrate
predictable macroecological properties in prevalence and
abundance distributions (e.g., Grilli, 2020; Ji et al., 2020), it
is reasonable to assume that increasing prevalence thresholds
may have comparable effects on alpha and beta diversity
metrics across microbial datasets. If so, studies that utilize the
common core concept are likely to be comparable, and guidelines
that improve cross-study comparison and interpretation are
possible. Currently, such guidelines are hindered by our limited
understanding of the extent to which alpha diversity and beta
dissimilarity decrease with increasing prevalence values, and
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whether such affects are consistent across datasets and diversity
indices. Understanding these patterns has implications for the
choice of prevalence threshold and community metrics used in
community-level analyses across different host species, as well
as cross-study standardization. However, prevalence estimates
require numerous host individuals sampled per population, and
gut microbial datasets consisting of such sample sizes for wild
populations are relatively rare, therefore this question has not
been formally tested across datasets.

To examine the effect of increasing prevalence thresholds on
alpha diversity and beta dissimilarity across gut microbial
datasets, we analyzed 16S rRNA gene amplicon-based
microbiome data of 1,970 individuals from humans and seven
species of wild mammals and birds. These datasets vary in their
sampling protocol and host species ecology, yet are characterized
by reasonably high frequency sampling of individuals (between
98 and 552), therefore allowing us to estimate reasonably
precise prevalence and abundance distributions. Our study
has three aims: (1) to compare macroecological patterns of
gut microbiomes collected from diverse host species, including
examining differences in amplicon sequence variant (ASV)
detection rate with sequencing depth and sample size, and
differences in occupancy-abundance and rank-abundance
curves; (2) to test whether increasing prevalence thresholds to
identify a core microbiome generates universal or host-species
specific effects on eight measures of alpha and beta diversity
that vary in how they weight ASV abundance and phylogeny
(Table 1); and (3) to test whether diversity scores from filtered
core communities correlate with the original unfiltered data.
Together, these results facilitate the analysis of common core
gut microbiomes by providing baseline information on ASV
distributions and the downstream effects of prevalence filtering
across a broad range of host species.

MATERIALS AND METHODS

Datasets
Gut microbiota 16S rRNA gene amplicon data from humans
and seven wildlife species were analyzed from raw sequence
data and metadata per species dataset are outlined in Table 2.
These datasets include publicly available human gut microbiome
samples from the American Gut Project study (n = 500) and data
collected by authors as part of various ecological studies, such
as meerkats Suricata suricatta from South Africa (n = 137), red
deer from Germany Cervus elaphus (n = 136), Seba’s short-tailed
bat Carollia perspicillata from Panama (n = 169), Tome’s spiny
rat Proechimys semispinosus from Panama (n = 196), gray-brown
mouse lemur Microcebus grisorufus from Madagascar (n = 182),
greater flamingo Phoenicopterus roseus juveniles (2–4 months
old) from three breeding sites in France and Spain (n = 552),
and red-necked stint Calidris ruficollis from Australia (n = 98).
Samples collected from meerkats, red deer, Carollia bats, and
spiny rats were collected from sites within small geographic areas
spanning approximately 20 km or under. Flamingo juveniles
were sampled at three separate breeding areas in southern
France and Spain. Stint were sampled over a large geographic

range on the northern-western and southern coasts of Australia.
Temporally, red deer samples were collected within 1 week,
but meerkats, Carollia bats, spiny rats, mouse lemurs and stint
samples were collected over approximately 2 years or more.
Details on each dataset, including site of collection, sample
type and preservation, 16S rRNA gene hypervariable regions
amplified, read counts, associated publications, and data storage
on public repositories from where sequences can be downloaded
are outlined in Table 2.

DNA Extraction, PCR Amplification, and
16S rRNA Sequencing
DNA was extracted from fecal samples for all species except
for flamingos and red-necked stint, for which cloacal swabs
were used. Detailed DNA extraction and PCR protocols for
humans, flamingos, red deer, mouse lemur, and red-necked
stint can be found in their associated publications (McDonald
et al., 2018; Risely et al., 2018; Gillingham et al., 2019;
Menke et al., 2019; Wasimuddin et al., 2019). Samples from
meerkats, red deer, spiny rats, mouse lemur, and flamingos
were processed at University of Ulm using the following
protocol: DNA was extracted from fecal samples using either
the Qiagen Cador Pathogen extraction kit (Qiagen, Hilden,
Germany; flamingo samples), or the NucleoSpin Soil Kit
(Macherey-Nagel, Germany; samples from all other species)
following the manufacturer’s instructions. This protocol includes
a bead-beating step to mechanically lyse bacterial cells using
ceramic beads that was carried out using the SpeedMill PLUS
(Analytik Jena, Germany) following manufacturer’s instructions.
Polymerase chain reaction (PCR) amplification and barcoding
were conducted in two steps (two-step PCR). In the first
step, the 291 bp fragment of the hypervariable V4 region
located in the 16S rRNA gene was targeted using the universal
bacterial primers 515F (5’-GTGCCAGCMGCCGCGGTAA-3’)
and 806R (5’-GGACTACHVGGGTWTCTAAT-3’), appended
with forward-primer CS1 adapters (CS1-515F) and reverse-
primer CS2 adapters (CS2-806R) in order to use Fluidigm
chemistry (Access Array System for Illumina Sequencing
Systems, Fluidigm Corporation). PCR reactions of 10 µL
consisted of 200 nM primers (pooled forward and reverse
primers), 5 µL AmpliTaq Gold 360 Master Mix, 1 µL extracted
DNA sample, 1 µL DNA template (5–10 ng), and dH20. PCR
conditions were as follows: initial denaturation at 95◦C for
10 min, 30 cycles at 95◦C for 30 s for denaturation, 60◦C
for 30 s for annealing, and 72◦C for 45 s for elongation,
followed by a final elongation at 72◦C for 10 min. In the
second PCR step, the CS adapters were attached to sample-
specific primer pairs that contained 10 bp barcodes and
adapter sequences used for Illumina sequencing. PCR reactions
of 20 µL consisted of 4 µL (400 nM) barcode primers
(pooled forward and reverse primers), 10 µL AmpliTaq Gold
360 Master Mix, 3 µL amplified DNA from PCR step one,
and dH20. PCR conditions were as above, but included 10
cycles instead of 30. For red-necked stint samples, DNA was
extracted from swabs using the phenol-chloroform method
(Risely et al., 2018), and the V1-V3 region was amplified with

Frontiers in Microbiology | www.frontiersin.org 3 May 2021 | Volume 12 | Article 659918

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-659918 May 5, 2021 Time: 18:17 # 4

Risely et al. Filtering Effects on Core Microbiome

TABLE 1 | Definitions and descriptions for alpha and beta diversity measures applied in this study.

Diversity measure Index Weighting Description References

Alpha Observed richness Not weighted Number of ASVs detected per sample NA

Faith’s PD Phylogeny-weighted Sum of the branch lengths of the phylogenetic tree connecting all
microbial taxa present within a sample

Daniel, 1992; Chao et al.,
2015

Shannon Abundance-weighted A diversity index based on the number of ASVs present and their
abundance distribution (evenness)

Shannon, 1948

BWPD Phylogeny- and
abundance-weighted

Abundance-weighted extension of phylogenetic diversity McCoy and Matsen, 2013

Beta Jaccard Not weighted Variability in microbial composition among sampled communities, with
composition measured by which ASVs are present or absent

Jaccard, 1912

Unweighted Unifrac Phylogeny-weighted Variability in microbial composition among sampled communities based
on the lineages they contain

Lozupone and Knight, 2005

Morisita Abundance-weighted Variability in microbial composition among sampled communities based
on ASV presence and abundance. Sensitive to the most abundant
species

Morisita, 1959; Chao et al.,
2006

Weighted Unifrac Phylogeny- and
abundance-weighted

Abundance-weighted extension of Unweighted Unifrac Lozupone et al., 2007

TABLE 2 | Metadata associated with each dataset.

Species Latin name Country No. of
samples

Sample
type

Sample
buffer

16S Primers Mean read
count per

sample

Associated
publication

Data availability

Humans Homo sapiens United States 500 Feces None 515F/806R
(V4)

33,454 American Gut
Project

NCBI BioProject
PRJEB11419

Meerkat Suricata
suricatta

South Africa 137 Feces None/
RNAlater

515F/806R
(V4)

129,011 NA NCBI BioProject
PRJNA715730

Red deer Cervus elaphus Germany 136 Feces RNAlater 515F/806R
(V4)

48,667 Menke et al.,
2019

https:
//doi.org/10.5061/

dryad.7r22vb1

Seba’s short-tailed
bat

Carollia
perspicillata

Panama 169 Feces RNAlater 515F/806R
(V4)

36,549 NA NCBI BioProject
PRJNA715730

Tome’s spiny rat Proechimys
semispinosus

Panama 196 Feces RNAlater 515F/806R
(V4)

25,045 Fackelmann
et al., 2021

NCBI BioProject
PRJNA715350

Gray-brown mouse
lemur

Microcebus
grisorufus

Madagascar 182 Feces RNAlater 515F/806R
(V4)

49,910 Wasimuddin
et al., 2019

NCBI BioProject
PRJNA715730

Greater flamingo Phoenicopterus
roseus

France 552 Cloacal
swab

RNAlater 515RF/806R
(V4)

27,970 Gillingham
et al., 2019

NCBI BioProject
PRJNA485732

Red-necked stint Calidris ruficollis Australia 98 Cloacal
swab

None 27F/519R
(V1-3)

42,573 Risely et al.,
2018

NCBI BioProject
PRJNA385545

the primer pair 27F (5′-AGAGTTTGATCMTGGCTCAG-3′)
and 519R (5′-GWATTACCGCGGCKGCTG-3′; Table 2). DNA
was amplified and sequenced at the Ramaciotti Centre for
Genomics, Sydney, following Earth Microbiome Project 16S
protocol (Thompson et al., 2017). Samples for humans were
collected and processes as part of the American Gut Project, and
DNA extraction and PCR amplification of the V4 region followed
standard EMP protocols (McDonald et al., 2018). For all datasets,
amplicons were sequenced with Illumina MiSeq technology over
2× 250 cycles.

Bioinformatics
All sequence reads were processed using QIIME2 (Bolyen et al.,
2019). For all datasets except for humans, sequences were merged,
quality filtered, and chimera filtered using the DADA2 pipeline
(Callahan et al., 2016) to generate ASVs (amplicon sequence

variants that differ by one nucleotide; Callahan et al., 2017).
For the human dataset, merged sequences were downloaded.
Human sequences were therefore treated as single end reads
and processed with DADA2 for quality and chimera filtering,
for consistency with paired-end reads. ASVs were assigned a
taxonomy using SILVA (release 132). A tree was built using
FastTree 2.1.8 (Price et al., 2010) for phylogenetic analyses. An
archaeal sequence (accession number: KU656649) was used to
root the tree and was removed prior to analysis. ASVs were
filtered if they were not bacteria, not assigned to a phylum (as
these are assumed to be spurious), or if they were classified
as mitochondria or chloroplasts at the family and class level,
respectively. DADA2 automatically discards singletons, but no
other ASVs were excluded. Only samples that had over 10,000
reads post filtering were retained and presented here, in order to
minimize the effect of low read counts on results.
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Data Analysis
We first aimed to test whether the species datasets demonstrated
similar macroecological patterns, including ASV detection rates
with sequencing depth and sample size. Measuring ASV
detection rates allows us to assess how reliable ASV prevalence
and abundance distributions are. To this end, we generated
ASV accumulation curves with sequencing depth per sample
and accumulation curves with sample size per dataset to assess
how well rare (both in terms of prevalence and abundance)
ASVs were represented. We used the vegan:specaccum function
(Jari Oksanen et al., 2018) with 999 permutations and the
ranacapa:ggrare function to generate accumulation curves on
unnormalized data. We next wanted to predict the total number
of ASVs harbored by the sampled individuals of a species,
in order to estimate the proportion of ASVs that remained
undetected. To do this we used the vegan:specpool function,
applying the “Jackknife 1” method. Because accumulation curves
of percent ASVs detected (out of predicted total number of ASVs)
seemed to differ markedly between datasets, we investigated this
further by testing how sample size affects estimates of the overall
ASV pool of a species, using the vegan:poolaccum function, and
linked this to the proportion of ASVs that only occur in one
individual. Lastly, we compared occupancy-abundance curves
and rank abundance curves between species datasets.

Our second aim was to examine the effect of increasing
prevalence thresholds on within-individual alpha diversity and
beta dissimilarity scores. We first rarefied each dataset to 10,000
to control for differences in sequencing depth between datasets,
and rarefying is proposed to be an appropriate normalization
method for alpha and beta diversity analyses (Weiss et al.,
2017; McKnight et al., 2019). We repeated analyses without
normalizing, which generated similar results. In addition,
core microbiomes are usually identified from rarefied datasets
(Grieneisen et al., 2017; Russell et al., 2019), and therefore this
method reflects common practice. We next subsetted the rarefied
dataset by prevalence at 10% intervals (all ASVs, 10, 20, 90%). We
calculated four alpha diversity metrics (Table 1) that accounted
for observed diversity (number of ASVs), phylogenetic-weighted
diversity (Faith’s phylogenetic diversity), abundance-weighted
diversity (Shannon index), and abundance- and phylogenetic-
weighted diversity (balance-weighted phylogenetic diversity
(BWPD); McCoy and Matsen, 2013). Alpha diversity scores were
mean centered and scaled per species, using the scale function,
in order to account for natural differences in alpha diversity
between species, because our aim is to understand relative
effects of prevalence thresholds on gut microbiomes rather than
absolute effects.

We next calculated mean beta-diversity dissimilarity scores for
each individual applying four different measures of beta diversity
(Table 1; Anderson et al., 2011). As with our choice of alpha
diversity indices, we applied a metric that does not account for
either abundance or phylogeny (i.e., only presence/absence of
taxa, Jaccard), one that just account for abundance (Morisita),
one that just accounts for phylogeny (Unweighted Unifrac),
and one that accounts for both abundance and phylogeny
(Weighted Unifrac). We chose the Morisita index over the more

commonly applied Bray-Curtis index because Bray-Curtis was
almost perfectly correlated with Jaccard, and Morisita is more
sensitive to abundant species (Barwell et al., 2015) and therefore
is more appropriate for detecting the effects of abundant taxa
on community structure within large, diverse communities. Beta
dissimilarity scores vary between zero (highly similar) and one
(highly dissimilar). We tested whether increasing prevalence
thresholds affected variation in alpha and beta diversity across
samples with Bartlett’s test, which tests whether measures
across groups have equal variation. We also tested whether the
number of reads remaining after prevalence filtering correlated
with diversity measures using Spearman’s correlation, because
variation in read depth post prevalence filtering may bias
weighted diversity scores.

Our third aim was to test whether diversity scores of gut
core microbiomes correlated with the original unfiltered datasets.
We correlated alpha and beta diversity scores at each prevalence
threshold with scores from the original, unfiltered dataset using
Spearmans correlation. We extracted Spearman’s rho (effect size)
and p-values and plotted effect sizes by species dataset.

All diversity analyses were carried out using the packages
phyloseq (McMurdie and Holmes, 2013) vegan (Jari Oksanen
et al., 2018), metagMisc1, btools2, picante (Kembel et al., 2010),
and microbiome (Lahti et al., 2017). All analyses were carried
out in R version 3.5.3. R code and processed data are available to
download at https://github.com/Riselya/Prevalence-Thresholds-
Metaanalysis, and an R markdown document outlining the
analysis is available as Supplementary Data Table 1.

RESULTS

ASV Detection Rate and
Macroecological Curves
We first compared species datasets to test whether sequencing
depth per sample and sampling depth per dataset adequately
captured within-sample and population-level ASV pools,
respectively. For all datasets, ASV accumulation curves showed
that ASV detection leveled off at a sequencing depth of 10,000,
indicating that sequence depth is not a limiting factor for ASV
detection beyond 10,000 reads (Figure 1A). Comparisons of
ASV accumulation curves according to sample size revealed
a large divergence between datasets, with some showing very
shallow curves (e.g., mouse lemurs and spiny rats) and others
showing very steep curves with no indication of leveling off (e.g.,
Carollia bats and red-necked stint; Figure 1B). We estimated the
total ASV pool for each dataset (dashed lined and final point in
Figure 1B) which suggested that approximately 50–60% of ASVs
predicted to be present in the sampled population were detected
across datasets (Figure 1C). However, these predictions assume
a closed system where no new ASVs are introduced, therefore
are likely to be an underestimate. Further investigation revealed
that estimates of total ASV diversity at the host population level

1https://github.com/vmikk/metagMisc
2https://github.com/twbattaglia/btools

Frontiers in Microbiology | www.frontiersin.org 5 May 2021 | Volume 12 | Article 659918

https://github.com/Riselya/Prevalence-Thresholds-Metaanalysis
https://github.com/Riselya/Prevalence-Thresholds-Metaanalysis
https://github.com/vmikk/metagMisc
https://github.com/twbattaglia/btools
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-659918 May 5, 2021 Time: 18:17 # 6

Risely et al. Filtering Effects on Core Microbiome

FIGURE 1 | Comparison of ASV detection rates and macroecological patterns across species datasets. (A) Rarefaction curves per species dataset, showing ASV
detection with increasing sequencing depth per sample. To facilitate comparison, the 200 ASV mark is represented by a dashed line, and 10,000 reads is indicated
with a solid line. X-axis ticks mark every 10,000. (B) ASV accumulation curves with sample size, showing the extent to which each additional sample increases total
number of ASVs detected per species dataset. Dashed lines represent extrapolations to the total number of ASVs predicted to be within the overall ASV pool,
represented by end points. (C) Percent of total (predicted) ASVs detected with increasing sample size per species dataset. The dashed horizonal line marks 50% of
ASVs detected, whilst the vertical dashed lines represent the sample size required to detect 50% of predicted ASVs. (D) The relationship between sample size and
predictions of the overall ASV pool. Dashed lines represent the final ASV pool prediction per dataset, which match those shown in Figure 1A. (E) ASV prevalence
distribution per dataset, showing the proportion of ASVs found in just one sample (dark blue) to the proportion found in over eight samples (yellow). (F) ASV
prevalence distribution per sample, showing mean proportion of ASVs per sample found in just that sample (dark blue) to proportion found in at least eight other
samples (yellow). (G) Abundance-occupancy curves per dataset. (H) Rank-abundance curves per species dataset.

are strongly dependent on sample size (Figure 1D), suggesting
that each new sample adds a unique suite of ASVs and affects
predictions of total ASV diversity. This bias was most severe
for Carollia bats and red-necked stint datasets, with sample
size having very large effects on predictions. We examined the
source of this variation and found that whilst most datasets
were characterized by a high proportion of ASVs occurring in
just one individual (mean 60% of ASVs; Figure 1E), samples
from Carollia and red-necked stint tended to be much more
individualized that those from other species. On average, 39
and 26% of ASVs per sample were unique to each sample
for Carollia and red-necked stint, respectively, compared to
approximately 8% in other datasets (Figure 1F). Therefore,
species datasets diverged in their distribution and detection of
rare taxa. Despite this divergence, we found that occupancy-
abundance (Figure 1G) and rank-abundance (Figure 1H) curves
tended to follow similar patterns across species datasets, with

the most abundant ASVs making up between 4 and 10% relative
abundance, and being detected in 50–90% of samples.

Effect of Prevalence Threshold on Alpha
Diversity and Beta Dissimilarity Scores
Given similar occupancy-abundance and rank-abundance curves
across species datasets, we predicted that increasing prevalence
thresholds when filtering for a common core would have similar
effects on standardized alpha diversity and beta dissimilarity
estimates. We first looked at the effect of increasing prevalence
thresholds on variation in alpha and beta diversity across
samples (Figure 2), since maintaining variation may be
a priority for subsequent analyses. Variation across samples
decreased with increasing prevalence thresholds for observed
and phylogenetic alpha diversity (Figures 2A,B), and to a lesser
extent Shannon diversity and BWPD (Figures 2C,D; Barlett’s
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FIGURE 2 | Effects of increasing prevalence threshold on standardized alpha diversity and beta dissimilarity measures, colored by species dataset: (A) observed
ASV richness; (B) faiths phylogenetic diversity; (C) shannon index; (D) balance-weighted phylogenetic diversity (BWPD); (E) jaccard index; (F) unweighted Unifrac;
(G) morisita; (H) weighted Unifrac.

K-squared: Observed = 23,583; Faiths = 14,616; Shannon = 1,240;
BWPD = 2,031, p < 2.2e-16). In contrast, variation in beta
dissimilarity tended to increase with increasing prevalence
thresholds for most measures of beta diversity, with the
smallest and largest changes in variance across thresholds
observed in Morisita and Unweighted Unifrac, respectively
(Figures 2E–H; Barlett’s K-squared: Jaccard = 1,827; Unweighted
Unifrac = 2,405; Morisita = 352; Weighted Unifrac = 874,
p < 2.2e-16). This increase in variance was because a subset
of samples became increasingly dissimilar to the mean with
increasing prevalence thresholds. To test whether variation
in read depth post-prevalence filtering had a consistent bias
on abundance-weighted diversity scores, we correlated alpha
and beta diversity scores with sample read depth and found
no consistent pattern across species datasets (Supplementary
Figure 1). Higher read depth per sample after filtering was
associated with higher weighted alpha diversity scores in some
host species (e.g., mouse lemurs), and lower weighted alpha
diversity scores in others (e.g., meerkats), and this was also the
case for weighted beta diversity measures (Morisita and Weighted
Unifrac). For presence/absence diversity measures, higher read
depth was associated with higher alpha diversity scores, but
lower beta diversity scores (i.e., higher read samples tended to

lie close to the group centroid whilst low-read samples tended
to be outliers).

Across species datasets, patterns in standardized alpha
diversity and beta dissimilarity in response to increasing
prevalence thresholds were remarkably similar (Figure 3).
Overall, most alpha diversity metrics were highly sensitive to
increasing prevalence thresholds, with the exception of BWPD,
which was the least sensitive to increasing prevalence thresholds.
BWPD responses to prevalence thresholds tended to diverge at
approximately 70% (Figure 3D). Species datasets demonstrated
variation in their mean beta diversity (i.e., how similar
sampled individuals are to each other), but followed similar
patterns in their response to increasing prevalence thresholds
(Figures 3E–H). Unweighted Unifrac and Morisita values were
the most sensitive to increasing prevalence thresholds, with
samples becoming more similar to one another (Figures 3F,G),
whilst Weighted Unifrac was the least sensitive, with samples
remaining relatively similar to one another irrelevant of
prevalence threshold (Figure 3D).

Lastly, we examined the extent to which diversity scores from
gut core microbiomes correlated with original, unfiltered scores.
Spearman’s correlation between core and original diversity scores
decreased with prevalence thresholds, declining from an overall
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FIGURE 3 | Mean standardized alpha diversity and beta dissimilarity measures with increasing prevalence thresholds, colored by species dataset: (A) observed ASV
richness; (B) faiths phylogenetic diversity; (C) shannon index; (D) balance-weighted phylogenetic diversity (BWPD); (E) jaccard index; (F) unweighted Unifrac; (G)
morisita; (H) weighted Unifrac.

mean of 0.83 (±0.16 SD) at 10% prevalence thresholds, to
0.6 (±0.26 SD) and then 0.46 ± 0.29 (SD) at 50 and 70%
thresholds, respectively (Figure 4). Rates of decline varied
considerably across datasets, with gut microbiomes from red
deer maintaining high correlations with original scores, whilst
those from Carollia having consistently low correlations. Overall,
Shannon diversity (mean correlation = 0.58) and Jaccard (mean
correlation = 0.85) maintained the highest correlations with
the original diversity scores for the alpha and beta diversity
measures, respectively.

DISCUSSION

The gut core microbiome is often identified through arbitrary
prevalence thresholds, and we aimed to understand how
shifting prevalence thresholds altered alpha and beta diversity
scores across gut microbiome datasets sourced from diverse
host species We found that increasing prevalence thresholds
had highly comparable effects on standardized alpha and
beta dissimilarity scores across host species, and that this
was underpinned by similar occupancy-abundance and rank-
abundance macroecological patterns. Across datasets, the most
abundant ASVs made up between 4 and 10% relative abundance,
and were detected in 50–90% of samples. However, despite

overall similarities in macroecological patterns, numbers of
high prevalence taxa varied substantially across species datasets,
and therefore alpha diversity and beta dissimilarity tended
to become more divergent above 70% prevalence thresholds,
or were not even measurable. Moreover, we found that
correlations with the original diversity scores were often
low when prevalence thresholds were high, indicating that
prevalence thresholds alter sample rankings in terms of diversity
scores. Together, these results suggest that high prevalence
thresholds (e.g., >70%) generate results that are less likely to be
comparable across studies.

Our results confirm that across datasets, high prevalence
thresholds dramatically reduce observed and phylogenetic
diversity within samples, and increase sample similarity in terms
of composition. Moreover, we show that prevalence filtering can
have additional disadvantages such as altering sample diversity
rankings in a manner that may not be consistent across studies.
Therefore, whilst filtering rare taxa can reduce technical bias
(Cao et al., 2021), heavier filtering parameters may not always
generate ecologically meaningful results that are comparable
across the literature (although see Ainsworth et al., 2015;
Grieneisen et al., 2017; Russell et al., 2019), and variation in
sequencing depth after filtering may also bias weighted alpha and
beta diversity scores unless further normalization methods are
applied (e.g., Silverman et al., 2017; Beule and Karlovsky, 2020).
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FIGURE 4 | Spearman’s correlation (rho) between diversity scores from core microbiomes and scores from original unfiltered data, colored by species dataset: (A)
observed ASV richness; (B) faiths phylogenetic diversity; (C) shannon index; (D) balance-weighted phylogenetic diversity (BWPD); (E) jaccard index; (F) unweighted
Unifrac; (G) morisita; (H) weighted Unifrac. Negative values represent negative correlations, and for ease of interpretation a dashed line represents a correlation of
0.6. Circles represent significant correlations (p < 0.05), whilst squares represent non-significant correlations.

Our results indicate that diversity measures that account for
both abundance and phylogeny (BWPD and Weighted Unifrac,
for alpha and beta diversity, respectively) are insensitive to
prevalence thresholds, and therefore represent the common
core microbiome without the need for filtering. As such, we
recommend that where possible these metrics are applied in lieu
of prevalence filtering. Alternatively, a core microbiome could
be identified by using occupancy-abundance curves (Shade and
Stopnisek, 2019), or by using temporal persistence or ecological
interactions as a basis for determining taxa importance (Björk
et al., 2017; Toju et al., 2018; Risely, 2020).

Applying prevalence thresholds assumes that measures of ASV
prevalence distributions are relatively accurate and that rare
ASVs are detectable. We tested limitations of ASV detection
rates, and found that ASV detection was more likely to be
limited by sample size than sequencing depth. For all datasets
included here, rarefaction curves with sequencing depth leveled
off rapidly, with sequencing depths of over 10,000 reads per
sample (after mitochondria and chloroplast filtering) in most
cases not improving ASV detection rates, which is line with
other studies of 16S rRNA gut data (Zaheer et al., 2018; Gweon
et al., 2019). Nevertheless, it should be noted that rare taxa will
continue to be discovered at lower detection rates with increasing
sequencing depth, and may even then remain undetected to due
technical reasons such as extraction and primer bias (Brooks
et al., 2015). In contrast, we found that ASV accumulation
rates with sample size differed substantially between species
datasets, with ASV detection rates with sample size remaining

high in most cases (i.e., many ASVs were still being detected
with every sample added, even at the point when the final
sample was added). Sampled populations characterized by highly
individualized microbiomes (i.e., a high proportion of ASVs
that only occurred in one sample; in this study Carollia bats
and migratory red-necked stint), demonstrated particularly steep
accumulation curves that did not level off, suggesting further
sampling is required to more fully capture the population-
level ASV pool of these populations. The extent to which these
differences in ASV detection rates reflect sampling protocol or
host ecology is unclear, yet individualized microbiomes in some
bird and bat species may be underpinned by a lack of strong
evolutionary symbioses with gut microbes in these lineages (Song
et al., 2020), and therefore may require higher sampling effort to
measure population-level ASV diversity.

Whilst ASV accumulation rates with sample size differed
among species datasets, our predictions of the total ASV pool
hosted by the host population suggested that all datasets detected
approximately 50–60% of ASV diversity. The interpretation of
this figure is subject to debate, since predicting species diversity
in highly diverse microbial communities is extremely challenging,
and generally underestimated (Hong et al., 2006). Since we found
that predictions for the total ASV pool hosted by the wider
population are highly sensitive to sample size (Figure 1D), and
that predictions assume a closed system (i.e., no new ASVs
are introduced to the microbial community), we interpret this
figure as the number of ASVs likely to be harbored in the gut
microbiomes of the sampled animals, and also likely represent
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the majority of non-unique ASVs harbored by the wider host
population. Under the assumption that each host harbors at
least some unique strains in their gut microbiome as a result of
stochastic colonization (Obadia et al., 2017), the total ASV pool
of the host population—including strains unique to individuals—
is impossible to estimate with any degree of certainty. For
example, our knowledge of human gut microbiome diversity
is continually increasing: previous research on the human gut
microbiome using shotgun sequencing has identified over 60,000
prokaryotic genomes (bacterial and archaeal) from 3,810 samples
sourced from people across the globe (Nayfach et al., 2019),
whilst another comprehensive global study identified almost
160,000 unique genomes from 9,428 samples (Pasolli et al.,
2019), indicating that increasing sampling frequency is still
revealing considerable increases in global human gut diversity.
For comparison, our analysis of a subsample of 500 samples
downloaded from the American Gut Project dataset detected over
10,000 ASVs, with on average 10% of ASVs detected in each
sample occurring uniquely. Therefore, our results suggest that
whilst increasing sample sizes will increase the accuracy of ASV
prevalence distributions, even very large sample sizes can often
not sufficiently represent the large suite of rare, low prevalence
taxa harbored by the host population, and that the proportion of
taxa that only occur in one sample can differ markedly between
host populations.

CONCLUSION

Our results show that macroecological patterns in occupancy-
abundance and rank-abundance curves, and their downstream
effects on standardized alpha diversity and beta dissimilarity,
are similar across gut microbiome datasets, and therefore
studies that apply similar thresholds are likely to be comparable
assuming sufficient sampling frequency. However, trends in
alpha and beta diversity scores tended to diverge above 70%
prevalence thresholds, and diversity scores at high prevalence
thresholds tended to correlate poorly with original data.
Therefore, setting high prevalence thresholds when filtering
microbiome datasets may hinder cross-study comparisons. To
reduce downstream effects of prevalence filtering, we recommend
the use of diversity metrics that account for both phylogeny
and abundance (such as BWPD and Weighted UniFrac), which
we show represent the common core microbiome without the
need for filtering.
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