

The Plant Family Asteraceae Is a Cache for Novel Fungal Diversity: Novel Species and Genera With Remarkable Ascospores in Leptosphaeriaceae

Mingkwan Doilom^{1,2,3,4}, Kevin D. Hyde^{1,2,3,4}, Wei Dong^{1,5}, Chun-Fang Liao⁴, Nakarin Suwannarach^{2,3} and Saisamorn Lumyong^{2,3,6*}

¹ Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China, ² Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, ³ Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand, ⁴ Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand, ⁵ Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand, ⁶ Academy of Science, The Royal Society of Thailand, Bangkok, Thailand

OPEN ACCESS

Edited by:

Jadson Diogo Pereira Bezerra, Universidade Federal de Goiás, Brazil

Reviewed by:

Ning Jiang, Beijing Forestry University, China Xinlei Fan, Beijing Forestry University, China

> *Correspondence: Saisamorn Lumyong scboi009@gmail.com

Specialty section:

This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology

Received: 29 January 2021 Accepted: 19 March 2021 Published: 13 May 2021

Citation:

Doilom M, Hyde KD, Dong W, Liao C-F, Suwannarach N and Lumyong S (2021) The Plant Family Asteraceae Is a Cache for Novel Fungal Diversity: Novel Species and Genera With Remarkable Ascospores in Leptosphaeriaceae. Front. Microbiol. 12:660261. doi: 10.3389/fmicb.2021.660261 In a cursory survey of fungi on Asteraceae in Yunnan Province, China, we report fungal species belonging to the family Leptosphaeriaceae (Pleosporales, Dothideomycetes). Two novel species have remarkable ascospores that are unusual for sexual ascomycetes. Multilocus phylogeny of large subunit, small subunit, and internal transcribed spacer sequence data showed one to be a novel genus, while the other is a new species. *Praeclarispora artemisiae* gen. et sp. nov. is introduced and is typical of Leptosphaeriaceae, but has unusual fusiform, versicolor ascospores with a brown median cell. *Sphaerellopsis artemisiae* sp. nov. has scolecosporous ascospores with deeply constricted septa that split into two parts, which resembles *S. isthmospora* but differs by ascospore dimension and molecular data. In addition, *Plenodomus artemisiae* is reported as a new collection from dead stems of *Artemisia argyi* in Qujing City. *Plenodomus sinensis* is reported as a new host record from *Ageratina adenophora*. All taxa are illustrated and described based on evidence of taxonomy and phylogeny.

Keywords: Ageratina adenophora, Artemisia argyi, China, new record, phylogeny, Sphaerellopsis artemisiae, taxonomy

INTRODUCTION

The plant family Asteraceae (= Compositae) is the major and widespread family of Angiosperms (flowering plants). The family comprises over 1,900 genera with over 32,000 accepted species (The Plant List, 2013). Most members of Asteraceae are herbaceous plants, but a significant number are shrubs, climbers, and trees. The family has a cosmopolitan distribution ranging from subpolar to tropical regions. The largest proportion of species occurs in arid and semiarid regions of subtropical

1

and lower to middle temperate latitudes (Barkley et al., 2006). Several members of Asteraceae are economically important plants as food crops, including globe artichoke (*Cynara cardunculus* var. *scolymus*), lettuce (*Lactuca* spp.), safflower (*Carthamus tinctorius*), and sunflower (*Helianthus* spp.). Many genera are important in horticulture such as pot marigold (*Calendula officinalis*) and coneflowers (*Echinacea* spp.), and others are of herbal medicinal importance, including gumweed (*Grindelia* spp.), yarrow (*Achillea millefolium*), and silvery wormwood (*Artemisia argyi*). Many species in Asteraceae are also considered as invasive weeds including sticky snakeroot (*Ageratina adenophora*) and Siam weed (*Chromolaena odorata*).

Studying the fungi on Asteraceae will provide important information toward establishing the numbers of fungi (Hyde et al., 2020b), due to the fact that many species are herbaceous in arid and semi-arid areas, where we know little about fungal diversity. Several novel fungal species have been described from the plant family Asteraceae. For example, Hermatomyces chromolaenae from stems of Chromolaena odorata, Torula chromolaenae from a dead branch of C. odorata, and Dendryphion hydei from branch litter of Bidens pilosa were introduced by Li et al. (2017, 2020) and Tibpromma et al. (2017), respectively. A novel genus, Neocochlearomyces isolated from leaves of C. odorata, was described by Crous et al. (2018). Phookamsak et al. (2019) introduced novel fungal species from Cirsium arvense and Artemisia sp. Mapook et al. (2020) introduced 60 new taxa from Siam weed, including one new family Neomassarinaceae, 12 new genera, and 47 new species. Herein, fungal species belonging to the family Leptosphaeriaceae are reported from Ageratina adenophora and Artemisia argyi (Asteraceae).

Leptosphaeriaceae (Pleosporales, Dothideomycetes) was established by Barr (1987) and typified by Leptosphaeria. Leptosphaeriaceae is characterized by immersed, erumpent to superficial ascomata, scleroplectenchymatous peridium, cylindrical asci and hyaline to brown, transversely septate ascospores with coelomycetous or hyphomycetous asexual morphs (Alves et al., 2013; de Gruyter et al., 2013; Hyde et al., 2013; Ariyawansa et al., 2015). Historic reviews of Leptosphaeriaceae were detailedly provided by Hyde et al. (2013) and Ariyawansa et al. (2015). Species of Leptosphaeriaceae are widely distributed on various hosts and different regions (Dayarathne et al., 2015; Tennakoon et al., 2017; Phookamsak et al., 2019). They can be saprobic, hemibiotropic, pathogenic, or parasitic occurring on stems and leaves of herbaceous or woody plants in terrestrial and aquatic habitats (Alves et al., 2013; Hyde et al., 2013; Jones et al., 2015; Wanasinghe et al., 2016; Doilom et al., 2018). The early classification of taxa in Leptosphaeriaceae lacked DNA sequence data from ex-type strains. In addition, most strains in GenBank are named without a link to voucher specimens, which is not practical to verify their morphological characteristics to ensure accurate naming (Ariyawansa et al., 2015). Thus, phylogenetic analyses of taxa in Leptosphaeriaceae formed a paraphyletic clade (Dong et al., 1998; Zhang et al., 2012). Ariyawansa et al. (2015) provided a well-resolved backbone tree for Leptosphaeriaceae to resolve species and genera based on multilocus phylogeny with detailed morphology, and the results supported the monophyletic nature

of 10 genera in Leptosphaeriaceae among the other families in Pleosporales. Currently, 14 genera are accepted in the family, viz., Alloleptosphaeria, Alternariaster, Chaetoplea, Heterosporicola, Leptosphaeria, Neoleptosphaeria, Ochraceocephala, Paraleptosphaeria, Plenodomus, Pseudoleptosphaeria, Querciphoma, Sclerenchymomyces, Sphaerellopsis, and Subplenodomus (Hongsanan et al., 2020a; Wijayawardene et al., 2020).

In this study, we introduce a new genus and two new species from *Artemisia argyi* that have remarkable ascospores. In addition, *Plenodomus sinensis* is reported as a new host record from *Ageratina adenophora*. Combined analyses of large subunit (LSU), small subunit (SSU), and internal transcribed spacer (ITS) sequence data with morphology supported the placement of our taxa in Leptosphaeriaceae.

MATERIALS AND METHODS

Sample Collection, Specimen Examination, and Fungal Isolation

The specimens of *Ageratina adenophora* and *Artemisia argyi* belonging in Asteraceae were collected from Yunnan Province, China. Specimens were placed in zip-lock plastic bags and returned to the laboratory for fungal observation and isolation. Fungal structures on the host substrates were observed using the Motic SMZ 161 stereomicroscope and their ascomata on substrates were captured with a digital camera fitted on to the stereomicroscope. Micro-morphological characteristics were observed and photographed with a Nikon ECLIPSE Ni compound microscope fitted with a Canon EOS 600D digital camera. Indian Ink was used to observe mucilaginous sheaths surrounding the ascospores. Micro-morphological characteristics were measured by the Tarosoft (R) Image Frame Work program. Images used for figures were edited with Adobe Photoshop CS6 software (Adobe Systems, United States).

Fungal isolation was made from single spore as detailed in Chomnunti et al. (2014). Germinating ascospores were observed using the Motic SMZ 161 stereomicroscope and single ascospore was transferred using sterile needle and grown on potato dextrose agar (PDA) at room temperature (25–30°C). Pure cultures were kept for further studies.

Fungal Preservation and Fungal Registration Numbers

The herbaria were deposited at the herbarium of Cryptogams, Kunming Institute of Botany Academia Sinica (HKAS), Kunming, Yunnan Province, China and Key Laboratory of Industrial Microbiology and Fermentation Technology of Yunnan (YMF), Kunming, Yunnan Province, China. Living cultures were deposited at the Kunming Institute of Botany Culture Collection (KMUCC), Kunming, Yunnan Province, China. Facesoffungi (FoF) numbers and Index Fungorum (IF) numbers were registered as described by Jayasiri et al. (2015) and Index Fungorum (2021), respectively.

DNA Extraction, PCR Amplification, and Sequencing

Fungi were grown on PDA for 1 week at room temperature $(25-30^{\circ}C)$. Fungal mycelia were then scraped off and transferred to 1.5 ml sterilized micro-centrifuge tubes. Biospin Fungus Genomic DNA Extraction Kit–BSC14S1 (BioFlux[®], China) was used to extract genomic DNA following the manufacturer's protocol. The LSU 28S rRNA, the SSU 18S rRNA, the ITS, partial translation elongation factor 1-alpha (*tef1-a*) and partial RNA polymerase II second largest subunit (*rpb2*) were amplified and sequenced using primers LR0R/LR5 (Vilgalys and Hester, 1990; Rehner and Samuels, 1994), NS1/NS4, ITS5/ITS4 (White et al., 1990), EF1-983F/EF1-2218R (Rehner and Buckley, 2005), and fRPB2-5f/fRPB2-7cR (Liu et al., 1999), respectively.

The PCR amplification was performed in a total volume of 25 μ l. PCR mixtures contained 12.5 μ l of Easy Taq PCR Super Mix, 1 μ l of dNTPs, 1 μ l of each primer, and 9.5 μ l of ddH₂O. The PCR thermal cycle program for LSU, SSU, and ITS amplification was provided as initially 94°C for 3 min, followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 56°C for 50 s, elongation at 72°C for 90 s, and a final extension at 72°C for 10 min. The annealing was adjusted to 52°C and 55°C for *rpb2* and *tef1*- α , respectively. PCR products were purified and sequenced at Shanghai Sangon Biological Engineering Technology & Services Co., (Shanghai, China). GenBank accession numbers of *tef1*- α of our strains are provided in "Additional GenBank numbers."

Phylogenetic Analysis

Consensus sequences were generated using BioEdit v.7.2.5 (Hall, 1999). Sequences of each strain were blasted using the MegaBLAST search of GenBank's nucleotide database¹ to examine their closest taxa. A total 89 sequences were used in phylogenetic analyses (**Table 1**). *Didymella exigua* (CBS 183.55) was used as the outgroup taxon. Individual dataset of the LSU, SSU, and ITS was aligned online with MAFFT version v.7.471 (Katoh et al., 2019)² and manually edited where necessary using BioEdit v.7.2.5. Phylogenetic trees were inferred with maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI).

Maximum parsimony analysis was performed with PAUP v. 4.0b10, with the parameter setting as the method described in Wanasinghe et al. (2018). Descriptive tree statistics for parsimony [Tree Length (TL), Consistency Index (CI), Retention Index (RI), Relative Consistency Index (RC), and Homoplasy Index (HI)] were calculated for trees generated under different optimality criteria. ML analysis was calculated as the method described in Doilom et al. (2017). All free model parameters will be estimated by RAxML and ML estimate of 25 per site rate categories. The model selected for ML was GTRGAMMA. BI analysis was conducted using the Markov Chain Monte Carlo (MCMC) method with MrBayes v. 3.2.7 (Huelsenbeck and Ronquist, 2001). By using MrModeltest 2.2 (Nylander, 2004), the GTR + I + G was selected as the best-fit nucleotide

¹http://blast.ncbi.nlm.nih.gov/

²http://mafft.cbrc.jp/alignment/server/index.html

substitution models under the Akaike information criterion (AIC) for LSU, SSU, and ITS sequence data. Six chains were run for the individual and combined datasets. The MCMC algorithm was started from a random tree topology. Five million generations were selected with a sampling frequency every 100 generations. The Tracer v.1.6 program (Rambaut et al., 2013) was used to check the effective sampling sizes (ESS) that should be above 200, the stable likelihood plateaus, and burn-in value. The results suggest that the first 5,000 generations should be excluded as burn-in. Phylogenetic trees were visualized using FigTree v.1.4.0 (Rambaut, 2009) and formatted using PowerPoint 2010 (Microsoft Corporation, WA, United States).

RESULTS

Phylogenetic Analysis

The alignment comprised 90 strains including the outgroup taxon, which consisted of 3,286 characters including alignment gaps (1–1331 bp for LSU, 1332–2680 bp for SSU, and 2681–3286 bp for ITS). The MP analysis for the combined dataset had 325 parsimony informative, 2,840 constant, and 121 parsimony uniformative characters and yielded 18 most parsimonious trees (TL = 2158, CI = 0.342, RI = 0.729, HI = 0.658, and RC = 0.249). The RAxML analysis resulted in a best scoring likelihood tree selected with a final combined dataset = -15205.152646. The matrix had 620 distinct alignment patterns, with 36.47% of undetermined characters or gaps.

Phylogenetic analysis of combined LSU, SSU, and ITS sequence data (**Figure 1**) showed that *Praeclarispora artemisiae* (KUMCC 20-0201A and KUMCC 20-0201B) clustered with *Ochraceocephala* (MP/ML/BI = 61%/96%/1.00) in the family Leptosphaeriaceae. Two strains, KUMCC 20-0200A and KUMCC 20-0200B, grouped with the ex-type strain of *Plenodomus artemisiae* (KUMCC 18-0151) with high bootstrap support (MP/ML/BI = 96%/95%/1.00). The collection KUMCC 20-0204 clustered with MFLU 17-0757 (paratype) and other strains of *Plenodomus sinensis* (MP/ML/BI = 70%/85%/1.00). Sphaerellopsis artemisiae (KUMCC 20-0202A and KUMCC 20-0202B) grouped separately from its closest relative *Sphaerellopsis isthmospora* with strong bootstrap support (MP/ML/BI = 100%/100%/1.00) (**Figure 1**).

Taxonomy

Praeclarispora Doilom, W. Dong, K. D. Hyde & C. F. Liao, gen. nov.

Index Fungorum number: IF558142; FoF number: FoF 09225 Etymology: The generic epithet "*Praeclarispora*" refers to remarkable-spored.

Saprobic on dead twigs of Artemisia argyi. Sexual morph: Ascomata black, scattered to gregarious, breaking the epidermis in linear fissures, semi-immersed, becoming erumpent to superficial, subglobose, uni- to multi-loculate, coriaceous, with ostiolate papilla. Peridium unevenly relatively thick, composed of several layers of thick-walled cells of textura angularis, outer layer black, inner layer brown. Hamathecium comprising numerous, TABLE 1 | GenBank accession numbers and culture collection numbers of species included in the present phylogenetic study.

Species	Culture collection/voucher no.	GenBank accession numbers		
		LSU	SSU	ITS
Alloleptosphaeria italica	MFLUCC 14-0934 ^T	KT454714	N/A	KT454722
Alternariaster bidentis	CBS 134021 ^T	KC609341	N/A	KC609333
Alternariaster centaureae-diffusae	MFLUCC 14-0992 ^T	KT454715	KT454730	KT454723
	MFLUCC 15-0009	KT454716	KT454731	KT454724
Alternariaster helianthi	CBS 327.69	KC584369	KC584627	KC609335
Didymella exigua	CBS 183.55 ^{NT}	EU754155	EU754056	GU237794
Heterosporicola chenopodii	CBS 115.96	EU754188	EU754089	JF740227
	CBS 448.68 ^{ET}	EU754187	EU754088	FJ427023
Heterosporicola dimorphospora	CBS 165.78	JF740281	JF740098	JF740204
	CBS 345.78 ^{ET}	GU238069	GU238213	NR111618
Leptosphaeria cichorii	MFLUCC 14-1063 ^T	KT454712	KT454728	KT454720
Leptosphaeria conoidea	CBS 616.75	MH872726	JF740099	MH860957
Leptosphaeria doliolum	MFLU 15-1875	KT454719	KT454734	KT454727
	CBS 155.94	JF740282	N/A	JF740207
	CBS 505.75 ^{IT}	GQ387576	GQ387515	JF740205
	CBS 541.66	JF740284	N/A	JF740206
Leptosphaeria slovacica	CBS 125975	JF740316	N/A	JF740248
	CBS 389.80	JF740315	JF740101	JF740247
Neoleptosphaeria rubefaciens	CBS 223.77	JF740312	N/A	JF740243
	CBS 387.80	JF740311	N/A	JF740242
Ochraceocephala foeniculi	CBS 145654 ^T	MN516774	MN516743	MN516753
Paraleptosphaeria dryadis	CBS 643.86	GU301828	KC584632	JF740213
Paraleptosphaeria macrospora	CBS 114198	MH874520	N/A	MH862957
Paraleptosphaeria nitschkei	CBS 306.51 ^{ET}	JF740308	N/A	JF740239
	MFLU 13-0688	KR025864	N/A	KR025860
Paraleptosphaeria orobanches	CBS 101638 ^T	JF740299	N/A	JF740230
Paraleptosphaeria praetermissa	CBS 114591	JF740310	N/A	JF740241
Paraleptosphaeria rubi	MFLUCC 14-0211 ^T	KT454718	KT454733	KT454726
Paraphoma radicina	CBS 111.79 ^{ET}	EU754191	EU754092	FJ427058
Phaeosphaeria oryzae	CBS 110110 ^{ET}	GQ387591	GQ387530	KF251186
Plenodomus agnitus	CBS 121.89	JF740271	N/A	JF740194
	CBS 126584	JF740272	N/A	JF740195
Plenodomus artemisiae	KUMCC 18-0151 ^T	MK387958	MK387928	MK387920
	KUMCC 20-0200A	MT957055	MT957048	MT957062
	KUMCC 20-0200B	MT957056	MT957049	MT957063
Plenodomus biglobosus	CBS 119951	JF740274	JF740102	JF740198
	CBS 127249	JF740275	N/A	JF740199
Plenodomus chrysanthemi	CBS 539.63 ^T	GU238151	GU238230	NR111622
Plenodomus collinsoniae	CBS 120227	JF740276	N/A	JF740200
Plenodomus confertus	CBS 375.64	JF740277	N/A	AF439459
Plenodomus congestus	CBS 244.64 ^T	JF740278	N/A	AF439460
Plenodomus deginensis	CGMCC 3.18221 ^T	KY064031	N/A	KY064027
Plenodomus enteroleucus	CBS 142.84 ^{ET}	JF740287	N/A	JF740214
	CBS 831.84	JF740288	N/A	JF740215
Plenodomus fallaciosus	CBS 414.62	JF740292	N/A	JF740222
Plenodomus guttulatus	MFLU 15-1876 ^T *	KT454713	KT454729	KT454721
- Plenodomus hendersoniae	CBS 113702	MH874506	N/A	MH862939
Plenodomus influorescens	CBS 143.84	JF740297	N/A	JF740228
Plenodomus libanotidis	CBS 113795	MH874508	N/A	MH862943
Plenodomus lijiangensis	KUMCC 18-0186 ^T	MK387959	MK387929	MK387921
Plenodomus lindquistii	CBS 386.80	JF740301	N/A	JF740232

Continued.

TABLE 1 | Continued

LSU SSU ITS Plenodomus lingeri Plenodomus kipini CBS 280.94 JF740307 N/A JF740235 Plenodomus kipini CBS 248.92 JF740303 N/A JF740230 Plenodomus subine CBS 101837 ^T MH874352 N/A JF740230 Plenodomus subine MELUCC 13-0219 ^T K1454717 KT454732 K1454732 Plenodomus subine MELUCC 13-0153 MK387960 MK387923 MK387923 KUMCC 18-0153 MK387965 MT957050 MT957050 MT957050 MT957050 KUMCC 18-0153 MK387962 MK387922 MK387922 MK387922 MK387922 KUMC 20-0201 MF027218 MF072710 MF072719 MF072721 MF072721 Plenodomus trachelphilus CBS 127837 EUF5406 EUF54066 NH119957 Plenodomus visol CBS 122119 JF740231 N/A JF740251 Plenodomus visol CBS 125801 JF74038 MT957046 MT957051 Plenodomus visol CBS 1251219 JF740251 N/A	Species	Culture collection/ voucher no.	GenBank accession numbers		
Pienodomus kupini CBS 280.94 JF740307 N/A JF740235 Pienodomus kupini CBS 284.92 JF740203 N/A JF740236 Pienodomus kupini CBS 1016371 MH874652 N/A JF740236 Pienodomus isainanisis MKLUCC 13-02197 KT454717 KT454732 KT454725 Pienodomus sinanisis KUMCC 18-0153 MK387660 MK387930 MK387923 KUMCC 18-0153 MK387960 MK387930 MK387924 KUMCC 18-0153 MK387962 MK387932 MK387924 MEU 17-0767 ¹⁺ MF072717 MF072719 MF072720 Pienodomus trachelphilus CBS 127850 JF740318 N/A JF740236 Pienodomus visici CBS 127857 JF740318 N/A JF740236 Pienodomus visici CBS 127861 EU754796 NR119957 Pienodomus visici CBS 127861 EU754066 NR119957 Pienodomus visici CBS 1258601 JF740233 N/A JF740237 Pienodomus visici CBS 1258601 JF740253 MT35			LSU	SSU	ITS
Piendomus kpini CBS 248.82 JF40003 NA IF740296 Pienadomus pinpinaliae CBS 101637 ^T MH874352 N/A JF740240 Pienadomus sinensis KLUNCC 18-0219 ^T K14847171 K1454723 K1454712 Pienadomus sinensis KLUNCC 18-0152 MK387961 MK387930 MK387930 KUMCC 20-0204 MT957657 MT957050 MT957054 KUMC 18-0152 MK387962 MK387930 MK387930 KUMC 18-0152 MK387952 MK387952 MK387932 MK387924 KUMC 18-0152 MK397651 MK387953 MK927217 MF072719 MF072721 Piendomus trachelphilus CBS 127250 JF740318 N/A JF740251 Piendomus visci CBS 127197 JF740323 N/A JF740251 Piendomus visci CBS 1251919 JF740323 N/A JF740251 Piendomus visci CBS 101633 G0337593 G0387533 K725120 Cuerciphora artemistice KUMCC 20-02014 ^T MT9570561 MT957051 MT957051	Plenodomus lingam	CBS 260.94	JF740307	N/A	JF740235
Piencodomus pimpinellee CBS 101637 ^T MH874352 N/A JF740240 Piencodomus salvae MFLUCC 13-0219 ^T KK1454717 KK1454732 KK1454725 Piencodomus salvae MK100C 18-0152 MK387980 MK387930 MK387930 Piencodomus sinensis KUMCC 20-0204 MT957057 MK387932 MK387932 KUMC 20-0204 MT957057 MK387930 MK387932 MK38733 MK387932 MK387934 MK387934 MK387934 MK387934 MK387934 MK387934 MK387934 MK57051 MK48451 MK18	Plenodomus lupini	CBS 248.92	JF740303	N/A	JF740236
Plenodomus salviae MFLUCC 13-0219 ^T KT45477 KT454732 KT454725 Plenodomus sinensis KUMCC 18-0152 MK387961 MK387930 MK387921 KUMCC 20-0204 MT957057 MT957050 MK387922 KUMC 20-0204 MT957057 MT957050 MK387922 MEUL 17-0757 ^{T*} MF072718 MF072720 MF027212 Plenodomus trachelphilus GES 122760 JF40318 N/A JF740251 Plenodomus viscl GES 122763 ^T EU754195 EU754096 NR119957061 Plenodomus viscl GES 122763 ^T EU754195 MF02721 MF072721 Plenodomus viscl GES 122763 ^T EU754195 MT957064 MT957061 Praeclarispora artenisiae KUMCC 20-02018 ^T MT957054 MT957061 MT957061 Paeudoleptosphaeria attenisigei GES 105.91 GG387532 GK722 KF251201 Cuerolphoma carteri GES 105.91 GG38753 GK28753 KF251209 Schearol-Tymomyces jonesii MFLUCC 1-14215 ^T KF214555 MK3 KF1710555	Plenodomus pimpinellae	CBS 101637 ^T	MH874352	N/A	JF740240
Planodomus sinansis KUMCC 18-0152 MK387961 MK387931 MK387923 RUMCC 18-0153 MK387960 MK387930 MK387924 KUMCC 20-0204 MT957057 MT597050 MT597050 MELU 17-0757 ^{F7+} MF072718 MF072720 MF072721 Planodomus trachelphilus CBS 127250 JF740318 N/A JF740250 Planodomus triseptatus MFLU 17-0757 ^{F7+} MF072717 MF072721 MF072722 Planodomus triseptatus MFLU 17-17457 MF048451 MF048452 MF140257 Planodomus visci CBS 127250 JF740318 N/A JF740250 Planodomus visci CBS 120191 J7740323 N/A JF740257 Pracelarispora artemisiae KUMCC 20-0201A ^T MT957053 MT957054 MT957050 Pracelarispora artemisiae KUMCC 20-0201A ^T MT957053 MT957051 MT957051 Scierenchymonyces clematidis MFLUCC 17-2180 ^T MT214558 MT226675 MT310055 Scierenchymonyces clematidis MFLUCC 16-1442 ^T KY211871 KY211871 <td< td=""><td>Plenodomus salviae</td><td>MFLUCC 13-0219^T</td><td>KT454717</td><td>KT454732</td><td>KT454725</td></td<>	Plenodomus salviae	MFLUCC 13-0219 ^T	KT454717	KT454732	KT454725
KUMCC 18-0153 MK387960 MK387930 MK387921 KUMCC 20-0204 MT957057 MT957050 MT957050 KUMCC 20-0204 MT957057 MT957050 MT857050 MEUL 17-0757 ^{PT+} MF072718 MF072720 MF072721 Plenodomus trachelphilus OBS 127250 JF740318 N/A JF740250 Plenodomus triseptatus MFLUC 17-1345 ^T MN648451 MN484453 MN49452 Plenodomus vici CBS 122780 ^T EU754195 EU754096 MT957056 Plenodomus vici CBS 120783 ^T EU754195 MT957047 MT957061 Praeclarispora artemisaiae KUMCC 20-02018 ^T MT957053 MT957054 MT957051 Paucolamus visia GCBS 125980 ^T JF74021 KV21170 KY211870 KY211870 CBS 125980 ^T JF74021 KV211870 KY211870 KY211870 KY211870 CBS 125980 ^T JF74021 KY211870 KY211870 KY211870 KY211870 CBS 105.91 GC387593 GC387593 GC387593 KF251209	Plenodomus sinensis	KUMCC 18-0152	MK387961	MK387931	MK387923
KUMCC 20-0204 MT957057 MT957050 MT957050 KUM-HKAS 102227 MK387924 MK387924 MKUD 7-0757 ¹⁷⁺ MF072710 MF072720 MEUL 17-0767 ¹⁻⁴ MF072717 MF072720 Plenodomus trachelphilus CBS 127250 JF740318 N/A JF740250 Plenodomus trachelphilus CBS 127283 ⁷ EUT 6115 EUT54036 NR119957 Plenodomus vasablee CBS 122783 ⁷ EUT 6115 MT957063 MT957064 MT957067 Praeclarispora artemisiae KUMCC 20-02018 ¹ MT957063 MT957064 MT957067 Pseudoleptosphaeria etheridgei CBS 125980 ¹⁷ JF740291 N/A JF740221 Quereinposs artemisiae MELUCC 17-2180 ⁷ MT957063 MT957064 MT957065 Sclerenchymomyces clematidis MELUCC 16-1442 ¹⁷ KY211870 KY211871 KY211870 Sclerenchymomyces clematidis MELUCC 17-2180 ⁷ MT957068 MT957068 MT957068 Sphaerellopsis artemisiae KUMCC 20-02024 ¹ MT957058 MT957061 MT957065 Sphaer		KUMCC 18-0153	MK387960	MK387930	MK387922
KUN-HKAS 102227 MK387962 MK387932 MK387924 MFLU 17-0757 ^{PT+} MF072718 MF072720 MF072721 Plenodomus trachelphilus CBS 12780 ^T MF072718 MF072718 MF072719 Plenodomus triseptatus MFLUCC 17-1345 ^T MN648451 MN648453 MN848452 Plenodomus visci CBS 12783 ^T EU754195 EU754096 NR119957 Plenodomus visci CBS 12783 ^T EU754032 N/A JF740257 Praeclarispora artemisiae KUMCC 20-02018 ^T MT957053 MT957046 MT957061 Praeclarispora artemisiae KUMCC 20-02018 ^T MT957053 MT957046 MT957061 Pseudoleptosphaeria etheridgel CBS 105.91 GQ387593 GQ387532 KF251209 Clearenchymomyces idenatifies MFLUCC 17-2180 ^T MT957058 MT957051 MT957056 Sphaerellopsis artemisiae KUMCC 20-0202A ^T MT957058 MT957051 MT957056 Sphaerellopsis is artemisiae KUMCC 20-0202A ^T MT957058 MT957051 MT957056 Sphaerellopsis is artemisiae KU		KUMCC 20-0204	MT957057	MT957050	MT957064
MFLU 17-0757 ^{PT+} MF072718 MF072719 MF072712 Plenodomus tracheiphilus CBS 127250 JF740318 N/A JF740250 Plenodomus triseptatus MFLU CC 17-1345 ^T MN648451 MN648453 MN848452 Plenodomus visoi CBS 122783 ^T EU754195 EU754096 NR1195704 Plenodomus visoi CBS 122183 ^T EU754195 EU754096 NR195704 Praeslarispora artemisiae KUMCC 20-02014 ^T MT957053 MT957046 MT957061 Praeslarispora artemisiae KUMCC 20-02014 ^T MT957054 MT957047 MT957061 Paeudoleptosphaeria etheridgel CBS 125907 JF740221 N/A JF740221 Querciphoma carteri CBS 105.91 GQ387593 GQ387533 KF251209 Sclerenchymomyces ionesil MFLUCC 17-2180 ^T MT957058 MT957051 MT957055 Sphaerellopsis artemisiae KUMCC 20-0202A ^T MT957058 MT957051 MT957055 Sphaerellopsis intervisia CBS 235.1 KP170724 N/A KP170656 Sphaerellopsis intarroconicitalis		KUN-HKAS 102227	MK387962	MK387932	MK387924
MELU 17-0767 ^{T+} ME072717 ME072719 ME072719 Pienodomus tracheiphilus CES 127250 JF740318 N/A J7740250 Pienodomus tracheiphilus CES 127250 JF740318 N/A J7740250 Pienodomus tracheiphilus CES 122783 ^T EU754195 EU754096 NP119970 Pienodomus wasabiae CES 120119 JF740323 N/A JF740251 Praeciarispora artemisiae KUMCC 20-02018 ^T MT957054 MT957046 MT957061 Pseudoleptosphaeria etheridgei CES 10533 GG387593 GG387532 KF251201 Cuerciphoma carteri CES 105.91 GG387593 GG3875651 MT9570561 Sclerenchymomyces jonesii MFLUCC 16-1442 ^T KY211870 KY211871 KY211860 Sphaerellopsis artemisiae KUMCC 20-02028 ^T MT957058 MT957051 MT957051 Sphaerellopsis filum CES 235.51 KP170723 N/A KP17055 Sphaerellopsis filum CES 23.51 KP170725 N/A KP17056 Sphaerellopsis intmospora HK4S 102225A ^{T+}		MFLU 17-0757 ^{PT} *	MF072718	MF072720	MF072722
Plenodomus trachelphilus CBS 127250 JF740318 N/A JF740250 Plenodomus triseptatus MFLUCC 17-1345 ^T MN648451 MN848453 MN848452 Plenodomus visci CBS 122783 ^T EU754195 EU754096 NR119957 Precolamis visci CBS 120119 JF740323 N/A JF74027 Pracelarispora artemisiae KUMCC 20-0201A ^T MT957053 MT957046 MT957047 Pseudoleptosphaeria etheridgei CBS 125980 ^T JF740291 N/A JF740221 Querciphoma carteri CBS 101633 GQ387593 GQ387533 KF25120 Scherenchymomyces jonesii MFLUCC 17-2180 ^T MT214558 MT226675 MT310605 Scherenchymomyces jonesii MFLUCC 17-2180 ^T MT957058 MT957051 MT957056 Sphaerellopsis artemisiae KUMCC 20-0202A ^T MT957058 MT957051 MT957056 Sphaerellopsis filum CBS 235.51 KP170724 N/A KP170652 Sphaerellopsis filum CBS 233.51 KP170725 N/A KP170665 Sphaerellopsis isthmospora		MFLU 17-0767 ^T *	MF072717	MF072719	MF072721
Plenodomus triseptatus MFLUCC 17-1345 ^T MN848451 MN648453 MN848451 Plenodomus visci CBS 122783 ^T EU754195 EU754096 NR119957 Plenodomus visci CBS 120119 JF740233 N/A JF740271 Pracelarispora artemisiae KUMCC 20-0201B ^T MT957053 MT957046 MT957061 Pracelarispora artemisiae KUMCC 20-0201B ^T MT957054 MT957047 MT957061 Pracelarispora artemisiae CBS 125980 ^T JF740291 N/A JF740221 Queroiphoma carteri CBS 105.91 GC0387593 GC0387533 KF251209 Sclerenchymomyces jonesii MFLUCC 17-2180 ^T MT214558 MT226675 MT310605 Sclerenchymomyces jonesii MFLUCC 16-1442 ^T KY211870 KY211871 KY211870 Sphaerellopsis artemisiae KUMCC 20-02028 ^T MT957058 MT957052 MT957056 Sphaerellopsis filum CBS 235.51 KP170724 N/A KP170657 Sphaerellopsis is thmospora HKAS 102225A ^{T+} MK387963 MK387933 MK387925	Plenodomus tracheiphilus	CBS 127250	JF740318	N/A	JF740250
Plenodomus visci CBS 122783 ^T EU754195 EU754096 NR119957 Plenodomus wasabiae CBS 120119 JF740223 N/A JF740257 Pracelarispora artemisiae KUMCC 20-0201A ^T MT957053 MT957046 MT957061 Pracedoleptosphaeria etheridgei CBS 125980 ^T JF740291 N/A JF740221 Querciphoma carteri CBS 105.91 GC387593 GC387533 KF251200 CBC etheracitymomyces iomesii MFLUCC 16-1442 ^T KY211870 KY211871 KY211869 Scherenchymomyces iomesii MFLUCC 16-1442 ^T KY211870 KY211871 KY211869 Sphaerellopsis artemisiae KUMCC 20-0202A ^T MT957058 MT957052 MT957056 Sphaerellopsis filum CBS 235.51 KP170723 N/A KP170656 CBS 317.68 ^{MT} KP170725 N/A KP170658 Sphaerellopsis istimospora HKAS 102225B ^{T+} MK387963 MK387933 MK387925 Sphaerellopsis macroconidialis CBS 23.51 KP170727 N/A KP170658 Sphaerellopsis macroconidialis	Plenodomus triseptatus	MFLUCC 17-1345 ^T	MN648451	MN648453	MN648452
Plenodomus wasabiae CBS 120119 JF740323 N/A JF740257 Pracclarispora artemisiae KUMCC 20-0201A ^T MT957053 MT957046 MT957060 Pseudoleptosphaeria etheridgei CBS 125980 ^T JF740291 N/A JF740221 Querciphoma carteri CBS 101633 GQ387593 GQ387533 KF251210 CBS 105.91 GQ387594 GQ387533 KF251209 Sclerenchymonyces lonesii MFLUCC 17-2180 ^T MT957058 MT926075 MT310605 Sphaerellopsis artemisiae KUMCC 20-0202A ^T MT957058 MT957051 MT957059 Sphaerellopsis filum CBS 234.51 KP170723 N/A KP170657 Sphaerellopsis filum CBS 234.51 KP170725 N/A KP170657 Sphaerellopsis is filum CBS 235.51 KP170725 N/A KP170657 Sphaerellopsis is artemisiae CPC 29566 ^T KV173555 N/A KP170657 Sphaerellopsis is artemisiae CPC 21841 ^T KP170727 N/A KP170657 Sphaerellopsis is artemisiae CPC 21841 ^T	Plenodomus visci	CBS 122783 ^T	EU754195	EU754096	NR119957
Praeclarispora artemisiae KUMCC 20-0201A ^T MT957053 MT957046 MT957064 Pseudoleptosphaeria etheridgei CBS 125980 ^T JF740291 N/A JF740221 Querciphoma carteri CBS 105091 GG387593 GG387533 KF251200 CBS 105.91 GG387594 GG387533 KF251200 Sclerenchymomyces clematidis MFLUCC 17-2180 ^T MT214558 MT226675 MT310605 Sclerenchymomyces jonesi MFLUCC 16-1442 ^T KY211870 KY211871 KY211869 Sphaerellopsis artemisiae KUMCC 20-0202A ^T MT957058 MT957051 MT957066 Sphaerellopsis filum CBS 234.51 KP170723 N/A KP170657 Sphaerellopsis filum CBS 2317.66 ^{NT} KP170725 N/A KP170657 Sphaerellopsis is thmospora HKAS 102225A ^{T+} MK387963 MK387933 MK387925 Sphaerellopsis is thmospora CBS 233.51 KP170725 N/A KP170657 Sphaerellopsis macroconidialis CBS 233.51 KP170727 N/A KP170659 Sphaerellopsis paraphysata	Plenodomus wasabiae	CBS 120119	JF740323	N/A	JF740257
KUMCC 20-0201B ^T MT957054 MT957054 MT957064 MT957061 Pseudoleptosphaeria etheridgei CBS 125980 ^T JF740291 N/A JF740221 Querciphoma carteri CBS 101633 GQ387593 GQ387532 KF251209 CBS 105.91 GQ387593 GQ387533 KF251209 Sclerenchymomyces ignesii MFLUCC 17-2180 ^T MT214558 MT926675 MT310605 Sclerenchymomyces ignesii MFLUCC 16-1442 ^T KY211870 KY211871 KY211871 Sphaerellopsis artemisiae KUMCC 20-0202A ^T MT957058 MT957052 MT957066 Sphaerellopsis filum CBS 234.51 KP170723 N/A KP170657 Sphaerellopsis filum CBS 235.51 KP170725 N/A KP170657 Sphaerellopsis hakeae CPC 29566 ^T KV17355 N/A KP170657 Sphaerellopsis macroconidialis CBS 23.51 KP170726 N/A KP170657 Sphaerellopsis macroconidialis CBS 23.51 KP170726 N/A KP170659 Sphaerellopsis macroconidialis CBS 23.51 <	Praeclarispora artemisiae	KUMCC 20-0201A [⊤]	MT957053	MT957046	MT957060
Pseudoleptosphaeria etheridgel CBS 125980 ^T JF740291 N/A JF740221 Querciphoma carteri CBS 101633 GQ387533 GQ387532 KF25120 CBS 105.91 GQ387594 GQ387533 KF251209 Sclerenchymomyces clematidis MFLUCC 17-2180 ^T MT214558 MT226675 MT310605 Sclerenchymomyces jonesii MFLUCC 16-1442 ^T KY211870 KY211871 KY211869 Sphaerellopsis artemisiae KUMCC 20-0202A ^T MT957058 MT957052 MT957056 Sphaerellopsis sitemisiae CBS 235.51 KP170723 N/A KP170656 Sphaerellopsis hakeae CPC 295667 KV173555 N/A KP170656 Sphaerellopsis hakeae CPC 295667 KV173555 N/A KP170656 Sphaerellopsis hakeae CPC 295667 KV173555 N/A KV173668 Sphaerellopsis nacroconcidalis CBS 235.51 KP170726 N/A KP170659 Sphaerellopsis paraphysata CPC 211817 KP170727 N/A KP170659 Sphaerellopsis paraphysata CPC 21113		KUMCC 20-0201B [⊤]	MT957054	MT957047	MT957061
Querciphoma carteri CBS 101633 GQ387593 GQ387593 KF251210 CBS 105.91 GQ387594 GQ387533 KF251209 Sclerenchymomyces olematidis MFLUCC 17-2180 ^T MT214558 MT226675 MT310605 Sclerenchymomyces jonesii MFLUCC 16-1442 ^T KY211870 KY211871 KY211890 Sphaerellopsis artemisiae KUMCC 20-0202A ^T MT957059 MT957052 MT957052 Sphaerellopsis filum CBS 234.51 KP170723 N/A KP170656 Sphaerellopsis filum CBS 235.51 KP170725 N/A KP170657 Sphaerellopsis hakeae CPC 29566 ^T KY173555 N/A KP170657 Sphaerellopsis isthmospora HKAS 102225B ^{T*} MK387963 MK387933 MK387963 Sphaerellopsis macroconidialis CBS 235.51 KP170727 N/A KP170659 Sphaerellopsis macroconidialis CBS 233.51 KP170727 N/A KP170659 Sphaerellopsis macroconidialis CBS 235.51 KP170727 N/A KP170659 Sphaerellopsis macroconidialis CBS	Pseudoleptosphaeria etheridgei	CBS 125980 ^T	JF740291	N/A	JF740221
CBS 105.91 GQ387594 GQ387533 KF251209 Sclerenchymomyces clematidis MFLUCC 17-2180 ^T MT214558 MT226675 MT310605 Sclerenchymomyces jonesii MFLUCC 16-1442 ^T KY211870 KY211871 KY211890 Sphaerellopsis artemisiae KUMCC 20-0202A ^T MT957058 MT957051 MT957066 Sphaerellopsis filum CBS 234.51 KP170723 N/A KP170656 Sphaerellopsis filum CBS 235.51 KP170725 N/A KP170657 Sphaerellopsis hakeae CPC 29566 ^T KY173555 N/A KP170657 Sphaerellopsis isthmospora HKAS 102225A ^{T+} MK387963 MK387933 MK3879263 Sphaerellopsis macroconidialis CBS 233.51 KP170727 N/A KP170658 Sphaerellopsis macroconidialis CBS 233.51 KP170726 N/A KP170659 Sphaerellopsis macroconidialis CBS 288.72 MK387965 MK387935 MK387926 Sphaerellopsis paraphysata CPC 21841 ^T KP170728 N/A KP170659 KUMCC 18-0195 MK387965 <td>Querciphoma carteri</td> <td>CBS 101633</td> <td>GQ387593</td> <td>GQ387532</td> <td>KF251210</td>	Querciphoma carteri	CBS 101633	GQ387593	GQ387532	KF251210
Sclerenchymomyces clematidis MFLUCC 17-2180 ^T MT214558 MT226675 MT310605 Sclerenchymomyces jonesii MFLUCC 16-1442 ^T KY211870 KY211871 KY211869 Sphaerellopsis artemisiae KUMCC 20-0202A ^T MT957058 MT957051 MT957065 Sphaerellopsis artemisiae KUMCC 20-0202B ^T MT957059 MT957052 MT957066 Sphaerellopsis filum CBS 234.51 KP170723 N/A KP170657 Sphaerellopsis hakeae CPC 29566 ^T KP170725 N/A KP170657 Sphaerellopsis isthmospora HKAS 102225B ^{T+} MK387963 MK387933 MK387925 Sphaerellopsis macroconidialis CBS 233.51 KP170726 N/A KP170658 Sphaerellopsis macroconidialis CBS 233.51 KP170727 N/A KP170659 Sphaerellopsis macroconidialis CBS 235.71 KP170727 N/A KP170659 Sphaerellopsis macroconidialis CBS 265.72 GU238040 GU338211 SP170659 Sphaerellopsis paraphysata CPC 21841 ^T KP170729 N/A KP170662		CBS 105.91	GQ387594	GQ387533	KF251209
Sclerenchymonyces jonesii MFLUCC 16-1442 ^T KY211870 KY211871 KY211869 Sphaerellopsis artemisiae KUMCC 20-0202A ^T MT957058 MT957051 MT957065 Sphaerellopsis filum CBS 234.51 KP170723 N/A KP170656 Sphaerellopsis filum CBS 235.51 KP170723 N/A KP170656 Sphaerellopsis hakeae CPC 295667 KV173555 N/A KP170657 Sphaerellopsis isthmospora HKAS 102225A ^T MK387963 MK387933 MK387926 Sphaerellopsis macroconidialis CBS 233.51 KP170727 N/A KP170658 Sphaerellopsis macroconidialis CBS 233.51 KP170727 N/A KP170659 Sphaerellopsis paraphysata CPC 21113 KP170727 N/A KP170669 Subplenodomus aplicola CBS 285.72 GU238240 GU238211 JF740196 Subplenodomus valerianae CBS 270.92 JF740286 N/A JF740251 Subplenodomus valerianae CBS 285.72 GU238240 GU238211 JF740212 Subplenodomus valerianae	Sclerenchymomyces clematidis	MFLUCC 17-2180 ^T	MT214558	MT226675	MT310605
Sphaerellopsis artemisiae KUMCC 20-0202A ^T MT957058 MT957051 MT957052 Sphaerellopsis filum CBS 234.51 KP170723 N/A KP170655 Sphaerellopsis filum CBS 235.51 KP170724 N/A KP170656 CBS 317.68 ^{NT} KP170725 N/A KP170657 Sphaerellopsis hakeae CPC 29566 ^T KY173555 N/A KY173466 Sphaerellopsis sisthmospora HKAS 10225A ^{T*} MK387963 MK387933 MK387926 Sphaerellopsis macroconidialis CBS 233.51 KP170726 N/A KP170658 Sphaerellopsis paraphysata CPC 21841 ^T KP170727 N/A KP170659 Sphaerellopsis paraphysata CPC 21841 ^T KP170727 N/A KP170669 Subplenodomus aplicola CBS 28.72 GU238040 GU238211 JF740196 Subplenodomus valerianae CBS 270.92 JF740286 N/A JF740212 Subplenodomus valerianae CBS 499.91 JF740286 N/A JF740212 Subplenodomus valerianae CBS 306.68 GU238150	Sclerenchymomyces jonesii	MFLUCC 16-1442 ^T	KY211870	KY211871	KY211869
KUMCC 20-0202B ^T MT957059 MT957052 MT957066 Sphaerellopsis filum CBS 234.51 KP170723 N/A KP170655 CBS 235.51 KP170724 N/A KP170656 CBS 317.68 ^{NT} KP170725 N/A KP170657 Sphaerellopsis hakeae CPC 29566 ^T KY173555 N/A KY173466 Sphaerellopsis is thmospora HKAS 102225A ^T * MK387963 MK387933 MK387925 Sphaerellopsis macroconidialis CBS 233.51 KP170726 N/A KP170658 Sphaerellopsis paraphysata CPC 21113 KP170727 N/A KP170669 Sphaerellopsis paraphysata CPC 21131 KP170727 N/A KP170669 Subplenodomus apiicola CBS 285.72 GU238040 GU238211 JF740196 Subplenodomus valerianae CBS 499.91 JF740286 N/A JF740212 Subplenodomus valerianae CBS 499.91 JF740319 N/A JF740252 Subplenodomus volicola CBS 306.68 GU238150 GU238231 JF7402763	Sphaerellopsis artemisiae	KUMCC 20-0202A [⊤]	MT957058	MT957051	MT957065
Sphaerellopsis filum CBS 234.51 KP170723 N/A KP170655 CBS 235.51 KP170724 N/A KP170656 CBS 317.68 ^{NT} KP170725 N/A KP170657 Sphaerellopsis hakeae CPC 29566 ^T KY173555 N/A KY173466 Sphaerellopsis shmospora HKAS 102225A ^{T*} MK387963 MK387933 MK387925 Sphaerellopsis macroconidialis CBS 233.51 KP170726 N/A KP170658 Sphaerellopsis paraphysata CBS 265.78 ^T KP170727 N/A KP170659 CPC 21113 KP170727 N/A KP170669 Sphaerellopsis paraphysata CPC 21841 ^T KP170729 N/A KP170669 Subplenodomus apiicola CBS 285.72 GU238040 GU238211 JF740196 Subplenodomus valerianae CBS 499.91 JF740319 N/A JF740252 Subplenodomus violicola CBS 306.68 GU238150 GU238231 JF7402763	- •	KUMCC 20-0202B [⊺]	MT957059	MT957052	MT957066
CBS 235.51 KP170724 N/A KP170656 CBS 317.68 ^{NT} KP170725 N/A KP170657 Sphaerellopsis hakeae CPC 29566 ^T KY173555 N/A KY173466 Sphaerellopsis isthmospora HKAS 102225A ^{T*} MK387963 MK387933 MK387925 Sphaerellopsis macroconidialis CBS 233.51 MK387964 MK387934 MK387926 Sphaerellopsis macroconidialis CBS 233.51 KP170726 N/A KP170659 CPC 21113 KP170727 N/A KP170660 Sphaerellopsis paraphysata CPC 21841 ^T KP170729 N/A KP170662 Subplenodomus aplicola CBS 285.72 GU238040 GU238211 JF740196 Subplenodomus valerianae CBS 499.91 JF740286 N/A JF740212 Subplenodomus valerianae CBS 499.91 JF740319 N/A JF740252 Subplenodomus violicola CBS 306.68 GU238156 GU238231 FJ427083	Sphaerellopsis filum	CBS 234.51	KP170723	N/A	KP170655
CBS 317.68KP170725N/AKP170657Sphaerellopsis hakeaeCPC 29566TKY173555N/AKY173466Sphaerellopsis isthmosporaHKAS 102225AT*MK387963MK387933MK387925HKAS 102225BT*MK387964MK387934MK387926Sphaerellopsis macroconidialisCBS 233.51KP170726N/AKP170658CBS 658.78TKP170727N/AKP170669CPC 21113KP170728N/AKP170660Sphaerellopsis paraphysataCPC 21841TKP170729N/AKP170662Subplenodomus apiicolaCBS 285.72GU238040GU238211JF740196Subplenodomus valerianaeCBS 499.91JF740319N/AJF740252Subplenodomus violicolaCBS 306.68GU238156GU238231FJ427083		CBS 235.51	KP170724	N/A	KP170656
Sphaerellopsis hakeae CPC 29566 ^T KY173555 N/A KY173466 Sphaerellopsis isthmospora HKAS 102225A ^T * MK387963 MK387933 MK387926 HKAS 102225B ^T * MK387964 MK387934 MK387926 Sphaerellopsis macroconidialis CBS 233.51 KP170726 N/A KP17059 Sphaerellopsis macroconidialis CBS 658.78 ^T KP170727 N/A KP17059 Sphaerellopsis paraphysata CPC 21113 KP170728 N/A KP170660 Sphaerellopsis paraphysata CPC 21841 ^T KP170729 N/A KP170662 Subplenodomus aplicola CBS 285.72 GU238040 GU238211 JF740196 Subplenodomus valerianae CBS 499.91 JF740286 N/A JF740212 Subplenodomus valerianae CBS 306.68 GU238150 GU238231 JF740251		CBS 317.68 ^{NT}	KP170725	N/A	KP170657
Sphaerellopsis isthmospora HKAS 102225A ^{T*} MK387963 MK387933 MK387925 HKAS 102225B ^{T*} MK387964 MK387934 MK387926 Sphaerellopsis macroconidialis CBS 233.51 KP170726 N/A KP170658 CBS 658.78 ^T KP170727 N/A KP170660 Sphaerellopsis paraphysata CPC 21113 KP170729 N/A KP170662 Sphaerellopsis paraphysata CPC 21841 ^T KP170729 N/A KP170662 Subplenodomus apiicola CBS 285.72 GU238040 GU238211 JF740196 Subplenodomus valerianae CBS 499.91 JF740286 N/A JF740252 CBS 630.68 GU238150 GU238231 JF740251	Sphaerellopsis hakeae	CPC 29566 ^T	KY173555	N/A	KY173466
HKAS 102225B ^T * MK387964 MK387934 MK387926 Sphaerellopsis macroconidialis CBS 233.51 KP170726 N/A KP170658 CBS 658.78 ^T KP170727 N/A KP170659 CPC 21113 KP170728 N/A KP170660 Sphaerellopsis paraphysata CPC 21841 ^T KP170729 N/A KP170662 Sphaerellopsis paraphysata CPC 21841 ^T KP170729 N/A KP170662 Subplenodomus aplicola CBS 285.72 GU238040 GU238211 JF740196 Subplenodomus drobnjacensis CBS 270.92 JF740286 N/A JF740212 Subplenodomus valerianae CBS 499.91 JF740319 N/A JF740252 CBS 630.68 GU238150 GU238231 JF740251 Subplenodomus violicola CBS 306.68 GU238156 GU238231 FJ427083	Sphaerellopsis isthmospora	HKAS 102225A ^T *	MK387963	MK387933	MK387925
Sphaerellopsis macroconidialis CBS 233.51 KP170726 N/A KP170658 CBS 658.78 ^T KP170727 N/A KP170659 CPC 21113 KP170728 N/A KP170660 Sphaerellopsis paraphysata CPC 21841 ^T KP170729 N/A KP170620 Subplenodomus apiicola CBS 285.72 GU238040 GU238211 JF740196 Subplenodomus drobnjacensis CBS 270.92 JF740286 N/A JF740212 Subplenodomus valerianae CBS 499.91 JF740319 N/A JF740252 Subplenodomus violicola CBS 306.68 GU238150 GU238231 FJ427083		HKAS 102225B ^T *	MK387964	MK387934	MK387926
CBS 658.78 ^T KP170727 N/A KP170659 CPC 21113 KP170728 N/A KP170600 Sphaerellopsis paraphysata CPC 21841 ^T KP170729 N/A KP170602 Sphaerellopsis paraphysata CPC 21841 ^T KP170729 N/A KP170602 Subplenodomus aplicola CBS 285.72 GU238040 GU238211 JF740196 Subplenodomus drobnjacensis CBS 270.92 JF740286 N/A JF740212 Subplenodomus valerianae CBS 499.91 JF740319 N/A JF740252 CBS 630.68 GU238150 GU238229 JF740251 Subplenodomus violicola CBS 306.68 GU238156 GU238231 FJ427083	Sphaerellopsis macroconidialis	CBS 233.51	KP170726	N/A	KP170658
CPC 21113 KP170728 N/A KP17060 Sphaerellopsis paraphysata CPC 21841 ^T KP170729 N/A KP170622 KUMCC 18-0195 MK387965 MK387935 MK387927 Subplenodomus apiicola CBS 285.72 GU238040 GU238211 JF740196 Subplenodomus drobnjacensis CBS 270.92 JF740286 N/A JF740212 Subplenodomus valerianae CBS 499.91 JF740319 N/A JF740252 CBS 630.68 GU238150 GU238229 JF740251 Subplenodomus violicola CBS 306.68 GU238156 GU238231 FJ427083		CBS 658.78 ^T	KP170727	N/A	KP170659
Sphaerellopsis paraphysata CPC 21841 ^T KP170729 N/A KP170662 KUMCC 18-0195 MK387965 MK387935 MK387927 Subplenodomus apiicola CBS 285.72 GU238040 GU238211 JF740196 Subplenodomus drobnjacensis CBS 270.92 JF740286 N/A JF740212 Subplenodomus valerianae CBS 499.91 JF740319 N/A JF740252 CBS 630.68 GU238150 GU238229 JF740251 Subplenodomus violicola CBS 306.68 GU238156 GU238231 FJ427083		CPC 21113	KP170728	N/A	KP170660
KUMCC 18-0195 MK387965 MK387935 MK387927 Subplenodomus apiicola CBS 285.72 GU238040 GU238211 JF740196 Subplenodomus drobnjacensis CBS 270.92 JF740286 N/A JF740212 Subplenodomus valerianae CBS 499.91 JF740319 N/A JF740252 CBS 630.68 GU238150 GU238229 JF740251 Subplenodomus violicola CBS 306.68 GU238156 GU238231 FJ427083	Sphaerellopsis paraphysata	CPC 21841 ^T	KP170729	N/A	KP170662
Subplenodomus apiicola CBS 285.72 GU238040 GU238211 JF740196 Subplenodomus drobnjacensis CBS 270.92 JF740286 N/A JF740212 Subplenodomus valerianae CBS 499.91 JF740319 N/A JF740252 CBS 630.68 GU238150 GU238229 JF740251 Subplenodomus violicola CBS 306.68 GU238156 GU238231 FJ427083		KUMCC 18-0195	MK387965	MK387935	MK387927
Subplenodomus drobnjacensis CBS 270.92 JF740286 N/A JF740212 Subplenodomus valerianae CBS 499.91 JF740319 N/A JF740252 CBS 630.68 GU238150 GU238229 JF740251 Subplenodomus violicola CBS 306.68 GU238156 GU238231 FJ427083	Subplenodomus apiicola	CBS 285.72	GU238040	GU238211	JF740196
Subplenodomus valerianae CBS 499.91 JF740319 N/A JF740252 CBS 630.68 GU238150 GU238229 JF740251 Subplenodomus violicola CBS 306.68 GU238156 GU238231 FJ427083	Subplenodomus drobnjacensis	CBS 270.92	JF740286	N/A	JF740212
CBS 630.68 GU238150 GU238229 JF740251 Subplenodomus violicola CBS 306.68 GU238156 GU238231 FJ427083	Subplenodomus valerianae	CBS 499.91	JF740319	N/A	JF740252
Subplenodomus violicola CBS 306.68 GU238156 GU238231 FJ427083		CBS 630.68	GU238150	GU238229	JF740251
	Subplenodomus violicola	CBS 306.68	GU238156	GU238231	FJ427083

CBS, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; CGMCC, China General Microbiological Culture Collection Center, Beijing, China; CPC, Collection of Pedro Crous housed at CBS; HKAS, Herbarium of Cryptogams, Kunming Institute of Botany Academia Sinica, Yunnan, China; KUMCC, Kunming Institute of Botany Culture Collection, Chinese Science Academy, Kunming, China; MFLU, Mae Fah Luang University, Chiang Rai, Thailand.; MFLUCC, Mae Fah Luang University Culture Collection, Chiang Rai, Thailand.

^{ET}, ex-epitype; ^{IT}, ex-isotype; ^{NT}, ex-neotype; ^{PT}*, paratype; ^T, ex-type; ^T*, holotype.

The newly generated sequences are shown in bold.

filiform, septate, of cellular pseudoparaphyses embedded in a gelatinous matrix. *Asci* eight-spored, bitunicate, fissitunicate, narrowly obovoid, short pedicellate, apically rounded, with ocular chamber. *Ascospores* tri- to tetra-seriate, fusiform, curved, tapered toward the acute ends, versicolor, 0–1-septate when immature, becoming brown in median cell and hyaline to pale brown in other cells, middle cell larger than other cells, septate

when mature, slightly constricted at the septa, thin- and smoothwalled. **Asexual morph:** Undetermined.

Type species: *P. artemisiae* Doilom, W. Dong, K. D. Hyde and C. F. Liao

Notes: Based on a blastn search of NCBIs GenBank, the closest hits using LSU sequence of *Praeclarispora artemisiae* matches with several genera in Leptosphaeriaceae and has highest

FIGURE 1 Phylogenetic tree generated from maximum likelihood analysis (RAxML) based on a combined LSU, SSU, and ITS sequence data. The tree is rooted to *Didymella exigua* (CBS 183.55). Maximum parsimony and maximum likelihood bootstrap values \geq 60% and Bayesian posterior probabilities \geq 0.95 (MPBS/MLBS/BYPP) are indicated at the nodes. Ex-epitype, ex-isotype, ex-neotype, ex-type, holotype, and paratype are bolded black, and the new isolates are in red.

similarity to *Sphaerellopsis filum* (CBS 234.51, identities = 99.18%) and *S. paraphysata* (CPC 21841, identities = 99.05%), followed by *Ochraceocephala foeniculi* (CBS 145654, identities =

98.83%). The closest hits using SSU sequence are *Plenodomus lingam* (CBS 260.94, identities = 99.81%), *Pl. artemisiae* (KUMCC 20-0200A, identities = 99.81%), *Pl. biglobosus* (CBS

 μ m, (d) = 50 μ m, (e) = 30 μ m, (f,k-m) = 10 μ m, (g-j,n,o) = 20 μ m.

119951, identities = 99.81%), and O. foeniculi (CBS 145654, identities = 99.71%). ITS sequence matches with published species *Pl. hendersoniae* (CBS 113702, identities = 92.14%), *Pl. biglobosus* (CBS 119951, identities = 89.66%), and O. foeniculi (CBS 145654, identities = 87.93%). However, in our multilocus analysis (**Figure 1**), *P. artemisiae* forms a sister branch with O. foeniculi with 96% ML and 1.00 BYPP but low MP bootstrap support, and separates from *Leptosphaeria*, *Plenodomus*, and *Sphaerellopsis*. The ITS phylogeny has similar results with

the multilocus phylogeny (**Supplementary Figure 1**); LSU phylogenetic analysis clearly shows *Praeclarispora* separates from *O. foeniculi* as a distinct genus (**Supplementary Figure 2**). A single gene comparison between *P. artemisiae* and *O. foeniculi* shows that there are 1.17% (10/854), 0.29% (3/1029), and 13.81% (76/550) nucleotide difference in LSU, SSU, and ITS sequence data, respectively.

Ochraceocephala foeniculi is only known from its hyphomycetous asexual morph, which is characterized by

hyaline, loosely or densely branched conidiophores, phialidic conidiogenous cells, and hyaline to yellowish, globose to subglobose conidia, and isolated as plant pathogen from living Foeniculum vulgare (Aiello et al., 2020). Praeclarispora artemisiae is reported herein from only its ascomycetous sexual morph, characterized by black ascomata, narrowly obovoid asci, and fusiform ascospores with a larger, brown, median cell, and isolated as saprobe from decaying twigs of Artemisia argyi. Unfortunately, we could not obtain the asexual morph from the culture for further morphological assessments. Even though we observed them under different conditions as described in Phookamsak et al. (2015) and Senanayake et al. (2020), neither conidia nor conidiomatal structures were produced. Therefore, we believe that it is wise to keep Ochraceocephala and Praeclarispora as separate genera in Leptosphaeriaceae for now. A different scenario may occur with the discovery of similar fungi from both of their asexual and sexual morphs with more fresh sampling.

Praeclarispora artemisiae Doilom, W. Dong, K. D. Hyde & C. F. Liao, *sp. nov.*, Figure 2.

Index Fungorum number: IF558143; FoF number: FoF 09226 Etymology: The specific epithet "*artemisiae*" refers to the host genus *Artemisia*.

Holotype: HKAS 112654

Saprobic on dead twigs of Artemisia argyi. Sexual morph: Ascomata 170-245 µm high, 185-285 µm diam., black, scattered to gregarious, breaking the epidermis in linear fissures, semiimmersed, becoming erumpent to superficial, subglobose, unito multi-loculate, coriaceous, with ostiolate papilla. Ostioles 50-70 μ m diam., central, brown, ostiolar canal filled with periphyses. Peridium 30-60 µm wide at the sides, unevenly thick, composed of scleroplectenchymatous cells, arrange in textura angularis, outer layer black, inner layer brown. Hamathecium 2-4.5 µm diam., numerous, filiform, septate, of cellular pseudoparaphyses embedded in a gelatinous matrix. Asci 100- $140 \times 19-27 \ \mu m \ (\bar{x} = 120 \times 23 \ \mu m, n = 15), \text{ eight-spored},$ bitunicate, fissitunicate, narrowly obovoid, short pedicellate, apically rounded, with ocular chamber. Ascospores $55-70 \times 6-11$ μm ($\bar{x} = 61 \times 8.5 \mu m$, n = 20), overlapping tri- to tetraseriate, fusiform, curved, tapered to acute ends, versicolor, 0-1-septate when immature, becoming brown in median cell or occasionally two median cells, and hyaline to pale brown in other cells (Figure 2g), middle cell longer and slightly wider than the other cells, 8-10(-12)-euseptate when mature, slightly constricted at the septa, guttulate, thin- and smooth-walled. Asexual morph: Undetermined.

Culture characteristics: On PDA, colony circular, reaching 45 mm diam. in 15 days at room temperature $(25-30^{\circ}C)$, surface rough, with sparse mycelia on the surface, dry, umbonate from the side view, edge entire; from above, yellowish to cream at the margin, gray at the middle, white at the center; from below, yellowish at the margin, gray at the middle, yellowish brown at the center; producing yellowish pigmentation in culture.

Material examined: CHINA, Yunnan Province, Qujing City, dead twigs of *Artemisia argyi* (Asteraceae), October 1, 2019, C. F. Liao, (HKAS 112654, **holotype**); ex-type living culture KUMCC 20-0201; *ibid.*, YMF 107390, **isotype**.

Additional GenBank numbers: $tef1-\alpha = MW396658$ (KUMCC 20-0201A); MW396659 (KUMCC 20-0201B).

Plenodomus artemisiae A. Karunarathna, Phookamsak and K. D. Hyde, in Phookamsak et al., Fungal Diversity 95: 23 (2019), **Figures 3**, **4a**

Saprobic on dead stems of Artemisia argyi. Sexual morph: Ascomata 140-230 µm high, 210-260 µm diam., black, scattered, superficial with base seated in the substrate, compressed globose, uniloculate, glabrous, coriaceous, ostiolate, obscurely papillate. Peridium unevenly thick, 20-60 µm wide at the sides, with a poorly developed base, 10-15 µm wide, thinner toward the papilla, 12-15 µm wide, composed of several layers of thickwalled cells of textura angularis, outer layer black, inner layer brown. Hamathecium 2-2.5 µm diam., numerous, filiform, hyaline, septate, of cellular pseudoparaphyses embedded in a gelatinous matrix. Asci 60–80 × 9.5–11 μ m ($\bar{x} = 68 \times 10 \mu$ m, n = 15), eight-spored, bitunicate, fissitunicate, cylindric-clavate, short pedicellate, apically rounded. Ascospores 29-36 \times 4.5-5.5 μ m ($\bar{x} = 33 \times 4.8 \mu$ m, n = 15), overlapping 2–3-seriate, narrowly fusiform, with tapering and rounded ends, hyaline, 1septate, occasionally 5-7-septate when old, constricted at the median septum, guttulate, thin- and smooth-walled, without sheath or appendages. Asexual morph: Undetermined.

Culture characteristics: On PDA, colony irregular, reaching 40 mm diam. in 14 days at room temperature (25–30°C), surface rough, with dense mycelia, velvety and fluffy, dry, raised from the side view, edge undulate; from above, yellowish at the margin, cream to white at the center; from below, yellowish at the margin, orange brown at the middle, black at the center; producing yellowish pigmentation in culture.

Material examined: CHINA, Yunnan Province, Qujing City, dead stems of *Artemisia argyi* (Asteraceae), October 1, 2019, C. F. Liao, (HKAS 112653, **new collection**); living culture KUMCC 20-0200; *ibid.*, YMF 112653, **new collection**.

Additional GenBank numbers: $tef1-\alpha = MW396660$ (KUMCC 20-0200A); MW396661 (KUMCC 20-0200B).

Notes: Our collections KUMCC 20-0200A and KUMCC 20-0200B cluster with Plenodomus artemisiae (KUMCC 18-0151) with strong bootstrap support (MP/ML/BI = 99%/96%/1.00) (Figure 1). They have very similar morphological characteristics, except our collections have more septa (5-7-septate vs. only 5septate) than the holotype (KUN-HKAS 102226) of Pl. artemisiae (Phookamsak et al., 2019). Our two collections have 99.65%, 99.90, 99.44, and 99.34% similarities with the ex-type strain (KUMCC 18-0151) of Pl. artemisiae in LSU, SSU, ITS, and *tef1-\alpha* sequence data, respectively, which indicate them to be conspecific. We therefore identify our collections as Pl. artemisiae based on morphological and molecular evidences. Plenodomus artemisiae was initially reported from dead branches and stems of an unidentified Artemisia sp. in Yunnan Province, China (Phookamsak et al., 2019). Our new collection was collected from the same region, and we identify its host as Artemisia argyi.

Plenodomus sinensis Tennakoon, Phook. and K. D. Hyde, in Tennakoon et al., Phytotaxa 324(1): 76 (2017), **Figures 4b**, **5**

Saprobic on Ageratina adenophora. Sexual morph: Ascomata 220–325 μ m high, 205–345 μ m diam., black, scattered to gregarious, raised, superficial, subglobose to conical, with

 $(c,d) = 50 \ \mu m, (e) = 30 \ \mu m, (f-m) = 10 \ \mu m.$

flattened and thickened base, uniloculate, glabrous, coriaceous, with minutely ostiolate papilla, easily removed from the host substrate. Ostioles 55–95 μ m diam., central, brown, ostiolar canal filled with some periphyses. *Peridium* unevenly thick, 25–115 μ m wide at the base, 30–70 μ m wide at the sides, mostly thickened at the base and thinner at the sides, three-layered, outer layer composed of dark brown, thick-walled cells of *textura angularis*, middle layer composed of pale brown to subhyaline, thick-walled, large cells of *textura globulosa* or *textura angularis*,

inner layer composed of light brown, thin-walled, compressed cells of *textura angularis*. *Hamathecium* 2–4.5 μ m wide, septate, branched, of cellular pseudoparaphyses embedded in a gelatinous matrix, slightly constricted at the septa. *Asci* 80–115 × 10–13 μ m ($\bar{x} = 98 \times 11 \mu$ m, n = 20), eight-spored, bitunicate, fissitunicate, cylindrical, with short furcate pedicel, apically rounded, with a distinct ocular chamber. *Ascospores* 29–39 × 4–5.5 μ m ($\bar{x} = 33 \times 4.9 \mu$ m, n = 30), overlapping 2–3-seriate, hyaline, 0–1-septate when immature, becoming olivaceous to

FIGURE 4 | Colonies on PDA (up-front, down-reverse). (a) Plenodomus artemisiae (HKAS 112653). (b) Plenodomus sinensis (HKAS 112657). (c) Sphaerellopsis artemisiae (HKAS 112655).

yellowish, fusiform, with obtuse ends, 6–7-septate, constricted at the middle septum, not or slightly constricted at each septum, cell above central septum slightly wider, guttulate, thick- and smoothwalled, with mucilaginous globoid-shaped appendages at both ends. **Asexual morph:** Undetermined.

Culture characteristics: On PDA, colony irregular, reaching 40 mm diam. in 30 days at room temperature (25–30°C), surface rough and dull, with dense mycelia mostly immersed in culture, dry, umbonate from the side view, edge undulate; from above, dark gray at the margin, gray at the center; from below, greenish at the margin, black at the center; not producing pigmentation in culture.

Material examined: CHINA, Yunnan Province, Chuxiong City, Daguokou Township, Biji Village, dead branches of *Ageratina adenophora* (Asteraceae), September 14, 2019, C. F. Liao, (HKAS 112657, **new host record**); living culture KUMCC 20-0204; *ibid.*, YMF 107633, **new host record**.

Notes: Our specimen HKAS 112657 and the holotype of *Plenodomus sinensis* (MFLU 17-0767) have 6–7-septate ascospores with mucilaginous globoid-shaped appendages at both ends, but they are slightly different in ascomatal base. Tennakoon et al. (2017) described flattened ascomatal base in the holotype, in addition, we observed the thickened one in our collection. Multilocus phylogeny shows that our collection KUMCC 20-0204 clusters with four collections of *Pl. sinensis*, including paratype MFLU 17-0757, but separates from the holotype MFLU 17-0767. Although MFLU 17-0767 clusters with *Pl. collinsoniae* (Figure 1), it differs in having larger asci, longer ascospores with olivaceous to yellowish pigmentation as discussed in Tennakoon et al. (2017). Our collection must be *Pl. sinensis* as its morphological characteristics are more similar to *Pl. sinensis*. *Plenodomus sinensis* appears to have a

wide host range, occurring on *Cirsium* sp., *Plukenetia volubilis*, *Tamarindus indica*, and ferns in China (Tennakoon et al., 2017; Phookamsak et al., 2019). This is the first report of *Pl. sinensis* on *Ageratina adenophora* in China.

Sphaerellopsis artemisiae Doilom, W. Dong, K. D. Hyde and

C. F. Liao, sp. nov., Figures 4c, 6

Index Fungorum number: IF557892; FoF number: FoF 09227 Etymology: The specific epithet "*artemisiae*" refers to the host genus *Artemisia*.

Holotype: HKAS 112655

Saprobic on dead stems of Artemisia argyi. Sexual morph: Ascomata 320-400 µm high, 230-300 µm diam., black, scattered or gregarious in small groups, superficial, subglobose, uniloculate, glabrous, coriaceous, with minutely ostiolate papilla. Ostioles 110-130 µm diam., central, dark brown to black, ostiolar canal filled with some periphyses. Peridium 30-55 µm at the sides, unevenly thick, thicker at the base, up to 70 µm wide, thinner at the ostiole, 13-18 µm wide, composed of several layers of brown to dark brown, thin-walled, large cells of textura angularis, inwardly compressed. Hamathecium 2-5.5 µm wide, sparse, hyaline, filamentous, septate, cellular pseudoparaphyses, constricted at the septa. Asci 105–170 \times 17– 25.5 μ m ($\bar{x} = 122 \times 20.5 \mu$ m, n = 15), eight-spored, bitunicate, fissitunicate, narrowly clavate, short pedicellate, apically rounded with a well-developed ocular chamber. Ascospores 80-117 \times 5-7.5 μ m ($\bar{x} = 92.5 \times 6.5 \mu$ m, n = 25), overlapping 4–6seriate, hyaline to yellowish, scolecosporous, bent at the fourth to fifth septum from the base, 10-13-septate, constricted at the septa, split into two part-spores at the bending point when old; upper part 45-75 µm long, cylindrical, 6-8-septate, with rounded apex and truncate base; lower part 30-42 µm long, subcylindric-clavate, 3-4-septate, with truncate apex and

tapering or conical base, guttulate, without sheath or appendages. Asexual morph: Undetermined.

Culture characteristics: On PDA, colony circular, reaching 15 mm diam. in 7 days at room temperature (25–30°C), surface rough, with dense mycelia, velvety to fluffy, dry, raised from the side view, edge entire; from above, white to cream; from below, white at the margin, pale brown at the middle, black at the center; not producing pigmentation in culture.

Material examined: CHINA, Yunnan Province, Kunming City, dead stems of *Artemisia argyi* (Asteraceae), October 27, 2019, C. F. Liao, (HKAS 112655, **holotype**), ex-type living culture KUMCC 20-0202; *ibid.*, YMF 107391, **isotype**.

Additional GenBank numbers: $tef1-\alpha = MW396662$ (KUMCC 20-0202A); = MW396663 (KUMCC 20-0202B).

Notes: In our multilocus analysis, our collections Sphaerellopsis artemisiae (KUMCC 20-0202A and KUMCC 20-0202B) cluster with Sphaerellopsis isthmospora and separate from other Sphaerellopsis species with high bootstrap support (Figure 1). Sphaerellopsis artemisiae resembles S. isthmospora in having scolecosporous ascospores with deeply constricted septa that split into two parts at the fourth to fifth septum from the base (Phookamsak et al., 2019), but it differs in having longer and wider ascospores (92.5 \times 6.5 μ m vs. 87.1 \times 5.9 μ m). Phylogenetic analysis of combined LSU, SSU, and ITS sequence data also supports the idea that they are different species (**Figure 1**). In addition, a comparison of *tef1*- α sequence data shows that *S. artemisiae* has 4.04% differences with *S. isthmospora*. Based on morphological difference and molecular data, we therefore introduce *S. artemisiae* as a novel species.

DISCUSSION

The members of the plant family Asteraceae are distributed throughout the world. Many novel fungal species have been reported from several genera in this family (Li et al., 2017; Tibpromma et al., 2017; Crous et al., 2018; Phookamsak et al., 2019; Mapook et al., 2020). Thus, Asteraceae is a promising cache of novel fungal species that warrant further study for

basic science, use in biocontrol and biotechnology (Hyde et al., 2019). Our study reveals one new genus (*Praeclarispora*), two new species (*Praeclarispora artemisiae* and *Sphaerellopsis artemisiae*), one new collection of the sexual morph report (*Plenodomus artemisiae*), and one new host record (*Pl. sinensis*) on *Ageratina adenophora* in Yunnan Province, China. The two new species have remarkable ascospores that are unusual for sexual ascomycetes when compared with other genera (Doilom et al., 2018; Pem et al., 2019; Dong et al., 2020; Hongsanan et al., 2020a,b; Hyde et al., 2020c).

Praeclarispora has fusiform ascospores, with a larger median cell and tapering end cells which is slightly similar to Heptameria. However, Praeclarispora and Heptameria are different genera based on the distinct characteristics of ascomata, asci and ascospores. Heptameria has pseudothecial ascomata with rather thick pseudothecial wall (100-160 μ m thick in H. obesa) (Lucas and Sutton, 1971), whereas Praeclarispora has euthecial ascomata with relatively thin peridium (30-60 µm thick in P. artemisiae). In addition, Heptameria often forms in several roundish groups on the substrate (Lucas and Sutton, 1971), while Praeclarispora mostly forms in linear fissures (never form in roundish groups). Heptameria has club-like asci (Lucas and Sutton, 1971), while they are narrowly obovoid in Praeclarispora. The ascospores of Heptameria are bi- or tri-seriate in the upper portion of the asci and uniseriate below (Lucas and Sutton, 1971), contrasting the tri- to tetra-seriate ascospores in Praeclarispora. Heptameria has distoseptate, rather thickwalled ascospores with a median, brown, rather large and muriform cell comprising of several transverse, longitudinal, and occasionally oblique septa (Lucas and Sutton, 1971), while Praeclarispora has euseptate, thin-walled ascospores and lacking the muriform median cell. Unfortunately, Heptameria cannot be incorporated in the phylogenetic tree as lacking sequence data and is referred to Dothideomycetes genera incertae sedis based on morphology (Lumbsch and Huhndorf, 2007, 2010; Zhang et al., 2012; Hyde et al., 2013; Wijayawardene et al., 2020). On the other hand, the available sequence data support Praeclarispora as a distinct genus within Leptosphaeriaceae (Figure 1).

Heptameria was introduced by Thümen with H. elegans as the type species (Thümen, 1879). However, H. elegans was considered as a synonym of an earlier proposed species H. obesa (\equiv Sphaeria obesa) based on the examination of the holotype of H. elegans and H. obesa (Lucas and Sutton, 1971). Therefore, H. obesa is used as the type species. Although the current name of H. obesa is recorded as Leptosphaeria obesa in Index Fungorum (2021), Heptameria is not synonymized as Leptosphaeria and treated as a distinct genus by its cucurbitaria-like pseudothecia and characteristic ascospores (Petrak, 1951), which is also accepted by recent outline of fungi (Wijayawardene et al., 2020). However, sequence data derived from the type species H. obesa are indeed needed to confirm whether Heptameria is a valid genus, as most species of Heptameria have been transferred to other genera. Currently, only two species, i.e., H. obesa and H. uncinata, are accepted in the genus

(Lucas and Sutton, 1971). It is very likely that the type species *H. obesa* will be extinct as it has been missing for nearly 150 years, especially in the increasingly serve climate change. Considering this circumstance and avoiding future confusion of *Heptameria, Praeclarispora* gen. nov. is introduced based on its distinct morphology.

One of the findings here is that *Plenodomus sinensis* has both flattened and thickened ascomatal bases, while the type that was studied by Tennakoon et al. (2017) has a flattened ascomatal base. The information of new collections and new records can be used to update fungal classification and improved identification of species (Hyde et al., 2020a). Our collection amends the morphology of *P. sinensis*, which is useful for fungal identification.

Additional protein-coding markers such as rpb2 and tef1- α are necessary to improve the phylogenetic resolution of genera and families in Pleosporales (Jaklitsch et al., 2018). However, most species of Leptosphaeriaceae lack tef1- α sequence data and other protein-coding markers, and some known species were sequenced using different tef1- α primer pairs. Thus, the phylogenetic analysis was constructed based on combined LSU, SSU, and ITS sequence data as provided in Dayarathne et al. (2015); Wanasinghe et al. (2016), Tennakoon et al. (2017), and this study. Nevertheless, we provide tef1- α sequence data for *P. artemisiae*, *P. artemisiae*, and *S. artemisiae* to facilitate the future identification of species. The rpb2 sequence data were unsuccessfully obtained even after several attempts.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/**Supplementary Material**.

AUTHOR CONTRIBUTIONS

MD and WD designed the study. MD, WD, and KH wrote the manuscript. MD, WD, C-FL, and NS conducted the experiments, analyzed the data, and revised the manuscript. MD, NS, and SL contributed to research funds. All authors revised the manuscript.

FUNDING

This research work is partially supported by the Chiang Mai University. MD sincerely thanks the 5th batch of Postdoctoral Orientation Training Personnel in Yunnan Province (grant no. Y934283261) and the 64th batch of China Post-doctoral Science Foundation (grant no. Y913082271) for financial research support. KH thanks Chiang Mai University for the award of Visiting Professor, and the Foreign Experts Bureau of Yunnan Province, Foreign Talents Program (2018; grant no. YNZ2018002), and Thailand Research grant entitled Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion (grant no. RDG6130001).

ACKNOWLEDGMENTS

We gratefully thank Shaun Pennycook (Landcare Research, New Zealand) for assistance in new epithets.

REFERENCES

- Aiello, D., Vitale, A., Polizzi, G., and Voglmayr, H. (2020). Ochraceocephala foeniculi gen. et sp. nov., a new pathogen causing crown rot of fennel in Italy. MycoKeys 66, 1–22. doi: 10.3897/mycokeys.66.48389
- Alves, J. L., Woudenberg, J. H. C., Duarte, L. L., Crous, P. W., and Barreto, R. W. (2013). Reappraisal of the genus *Alternariaster* (Dothideomycetes). *Persoonia* 31, 77–85. doi: 10.3767/003158513x669030
- Ariyawansa, H. A., Phukhamsakda, C., Thambugala, K. M., Bulgakov, T. S., Wanasinghe, D. N., Perera, R. H., et al. (2015). Revision and phylogeny of Leptosphaeriaceae. *Fungal Divers*. 74, 19–51. doi: 10.1007/s13225-015-0349-2
- Barkley, T. M., Brouillet, L., Strother, J. L., and Flora of North America Editorial Committee (eds) (2006). Asteraceae Martinov Tribe Cardueae Cassini. Flora of North America North of Mexico, Vol. 19: Magnoliophyta: Asteridae (In Part): Asteraceae, Part 1, 3–12. Available online at: http://www.efloras.org/florataxon. aspx?flora_id=1&taxon_id=10074 (accessed December 22, 2020)
- Barr, M. E. (1987). New taxa and combinations in the Loculoascomycetes. *Mycotaxon* 29, 501–505. doi: 10.1127/0029-5035/2010/0091-0501
- Chomnunti, P., Hongsanan, S., Aguirre-Hudson, B., Tian, Q., Peršoh, D., Dhami, M. K., et al. (2014). The sooty moulds. *Fungal Divers*. 66, 1–36. doi: 10.1007/ s13225-014-0278-5
- Crous, P. W., Luangsa-ard, J. J., Wingfield, M. J., Carnegie, A. J., Hernández-Restrepo, M., Lombard, L., et al. (2018). Fungal planet description sheets: 785– 867. Persoonia 41, 238–417. doi: 10.3767/persoonia.2018.41.12
- Dayarathne, M. C., Phookamsak, R., Ariyawansa, H. A., Jones, E. B. G., Camporesi, E., and Hyde, K. D. (2015). Phylogenetic and morphological appraisal of *Leptosphaeria italica* sp. nov. Leptosphaeriaceae, Pleosporales from Italy. *Mycosphere* 6, 634–642. doi: 10.5943/mycosphere/6/5/13
- de Gruyter, J., Woudenberg, J. H. C., Aveskamp, M. M., Verkley, G. J. M., Groenewald, J. Z., and Crous, P. W. (2013). Redisposition of phoma-like anamorphs in Pleosporales. *Stud. Mycol.* 75, 1–36. doi: 10.3114/sim0004
- Doilom, M., Dissanayake, A. J., Wanasinghe, D. N., Boonmee, S., Liu, J. K., Bhat, D. J., et al. (2017). Microfungi on *Tectona grandis* (teak) in Northern Thailand. *Fungal Divers*. 82, 107–182. doi: 10.1007/s13225-016-0368-7
- Doilom, M., Hyde, K. D., Phookamsak, R., Dai, D. Q., Tang, L. Z., Hongsanan, S., et al. (2018). Mycosphere notes 225–274: types and other specimens of some genera of Ascomycota. *Mycosphere* 9, 647–754. doi: 10.5943/mycosphere/9/4/3
- Dong, J., Chen, W., and Crane, J. L. (1998). Phylogenetic studies of the Leptosphaeriaceae, Pleosporaceae and some other Loculoascomycetes based on nuclear ribosomal DNA sequences. *Mycol. Res.* 102, 151–156. doi: 10.1017/ s0953756297004826
- Dong, W., Wang, B., Hyde, K. D., McKenzie, E. H. C., Raja, H. A., Tanaka, K., et al. (2020). Freshwater Dothideomycetes. *Fungal Divers*. 105, 319–575. doi: 10.1007/s13225-020-00463-5
- Hall, T. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. *Nucleic Acids Symp. Ser.* 41, 95–98.
- Hongsanan, S., Hyde, K. D., Phookamsak, R., Wanasinghe, D. N., McKenzie, E. H. C., Sarma, V. V., et al. (2020a). Refined families of Dothideomycetes: Dothideomycetidae and Pleosporomycetidae. *Mycosphere* 11, 1553–2107. doi: 10.5943/mycosphere/11/1/13
- Hongsanan, S., Hyde, K. D., Phookamsak, R., Wanasinghe, D. N., McKenzie, E. H. C., Sarma, V. V., et al. (2020b). Refined families of Dothideomycetes: orders and families *incertae sedis* in Dothideomycetes. *Fungal Divers*. 105, 17–318. doi: 10.1007/s13225-020-00462-6

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb. 2021.660261/full#supplementary-material

Supplementary Figure 1 | Phylogenetic tree generated from maximum likelihood analysis (RAxML) based on ITS sequence data.

Supplementary Figure 2 | Phylogenetic tree generated from maximum likelihood analysis (RAxML) based on LSU sequence data.

- Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: bayesian inference of phylogeny. *Bioinformatics* 17, 754–755. doi: 10.1093/bioinformatics/17.8.754
- Hyde, K. D., de Silva, N. I., Jeewon, R., Bhat, D. J., Phookamsak, R., Doilom, M., et al. (2020a). AJOM new records and collections of fungi: 1–100. *Asian J. Mycol.* 3, 22–294. doi: 10.5943/ajom/3/1/3
- Hyde, K. D., Jeewon, R., Chen, Y. J., Bhunjun, C. S., Calabon, M. S., Jiang, H. B., et al. (2020b). The numbers of fungi: is the descriptive curve flattening? *Fungal Divers*. 103, 219–271. doi: 10.1007/s13225-020-00458-2
- Hyde, K. D., Jones, E. B. G., Liu, J. K., Ariyawansa, H., Boehm, E., Boonmee, S., et al. (2013). Families of Dothideomycetes. *Fungal Divers*. 63, 1–313. doi: 10.1007/s13225-013-0263-4
- Hyde, K. D., Norphanphoun, C., Maharachchikumbura, S. S. N., Bhat, D. J., Jones,
 E. B. G., Bundhun, D., et al. (2020c). Refined families of Sordariomycetes. *Mycosphere* 11, 305–1059. doi: 10.5943/mycosphere/11/1/7
- Hyde, K. D., Xu, J. C., Rapior, S., Jeewon, R., Lumyong, S., Niego, A. G. T., et al. (2019). The amazing potential of fungi: 50 ways we can exploit fungi industrially. *Fungal Divers.* 97, 1–136. doi: 10.1007/s13225-019-00430-9
- Index Fungorum (2021). *Index Fungorum*. Available online at: http://www. indexfungorum.org/names/names.asp (accessed January, 2021)
- Jaklitsch, W. M., Checa, J., Blanco, M. N., Olariaga, I., Tello, S., and Voglmayr, H. (2018). A preliminary account of the Cucurbitariaceae. *Stud. Mycol.* 90, 71–118. doi: 10.1016/j.simyco.2017.11.002
- Jayasiri, S. C., Hyde, K. D., Ariyawansa, H. A., Bhat, D. J., Buyck, B., Cai, L., et al. (2015). The faces of fungi database: fungal names linked with morphology, phylogeny and human impacts. *Fungal Divers*. 74, 3–18. doi: 10.1007/s13225-015-0351-8
- Jones, E. B. G., Suetrong, S., Sakayaroj, J., Bahkali, A. H., Abdel-Wahab, M. A., Boekhout, T., et al. (2015). Classification of marine ascomycota, basidiomycota, blastocladiomycota and chytridiomycota. *Fungal Divers*. 73, 1–72. doi: 10.1007/ s13225-015-0339-4
- Katoh, K., Rozewicki, J., and Yamada, K. D. (2019). MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. *Brief. Bioinform.* 20, 1160–1166. doi: 10.1093/bib/bbx108
- Li, J. F., Jeewon, R., Mortimer, P. E., Doilom, M., Phookamsak, R., and Promputtha, I. (2020). Multigene phylogeny and taxonomy of *Dendryphion hydei* and *Torula hydei* spp. nov. from herbaceous litter in northern Thailand. *PLoS One* 15:e0228067. doi: 10.1371/journal.pone.0228067
- Li, J. F., Phookamsak, R., Jeewon, R., Bhat, D. J., Mapook, A., Camporesi, E., et al. (2017). Molecular taxonomy and morphological characterization reveal new species and new host records of *Torula* species (Torulaceae, Pleosporales). *Mycol. Prog.* 16, 447–461. doi: 10.1007/s11557-017-1292-2
- Liu, Y. J., Whelen, S., and Hall, B. D. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. *Mol. Biol. Evol.* 16, 1799–1808. doi: 10.1093/oxfordjournals.molbev.a026092
- Lucas, M., and Sutton, B. (1971). *Heptameria* Rehm & Thüm. *Trans. Br. Mycol. Soc.* 57, 283–288. doi: 10.1016/S0007-1536(71)80010-4
- Lumbsch, H. T., and Huhndorf, S. M. (2007). Outline of ascomycota-2007. Myconet 13, 1–58.
- Lumbsch, H. T., and Huhndorf, S. M. (2010). Outline of ascomycota-2009. Fieldiana Life Earth Sci. 1, 1–60.
- Mapook, A., Hyde, K. D., McKenzie, E. H. C., Jones, E. B. G., Bhat, D. J., Jeewon, R., et al. (2020). Taxonomic and phylogenetic contributions to fungi associated with the invasive weed *Chromolaena odorata* (Siam weed). *Fungal Divers*. 101, 1–175. doi: 10.1007/s13225-020-00444-8

- Nylander, J. A. A. (2004). MrModeltest v2.0. Program Distributed by the Author. Evolutionary Biology Centre, Uppsala University. Available online at: https://github.com/nylander/MrModeltest2/releases. (accessed March 15, 2020).
- Pem, D., Jeewon, R., Bhat, D. J., Doilom, M., Boonmee, S., Hongsanan, S., et al. (2019). Mycosphere notes 275–324: a morphotaxonomic revision and typification of obscure Dothideomycetes genera (*incertae sedis*). Mycosphere 10, 1115–1246. doi: 10.5943/mycosphere/10/1/22
- Petrak, F. (1951). Uber die Gattung *Heptameria* Rehm & Thuemen. Sydowia 5, 423–425.
- Phookamsak, R., Hyde, K. D., Jeewon, R., Bhat, D. J., Jones, E. B. G., Maharachchikumbura, S. S. N., et al. (2019). Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. *Fungal Divers*. 95, 1–273. doi: 10.1007/s13225-019-00421-w
- Phookamsak, R., Norphanphoun, C., Tanaka, K., Dai, D. Q., Luo, Z. L., Liu, J. K., et al. (2015). Towards a natural classification of Astrosphaeriella-like species; introducing Astrosphaeriellaceae and Pseudoastrosphaeriellaceae fam. nov. and *Astrosphaeriellopsis*, gen. nov. *Fungal Divers*. 74, 143–197. doi: 10.1007/s13225-015-0352-7
- Rambaut, A. (2009). FigTree v1.3.1 Released. Institute of Evolutionary Biology. Ashworth Laboratories, University of Edinburgh, Scotland. Available online at: http://tree.bio.ed.ac.uk/software/figtree (accessed September 15, 2020)
- Rambaut, A., Drummond, A. J., and Suchard, M. (2013). Tracer [Computer Program]. Available online at: http://tree.bio.ed.ac.uk/software/tracer/ (accessed September 20, 2020)
- Rehner, S. A., and Buckley, E. (2005). A *Beauveria* phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to *Cordyceps* teleomorphs. *Mycologia* 97, 84–98. doi: 10.1080/15572536.2006. 11832842
- Rehner, S. A., and Samuels, G. J. (1994). Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. *Mycol. Res.* 98, 625–634. doi: 10.1016/S0953-7562(09)80409-7
- Senanayake, I. C., Rathnayake, A. R., Marasinghe, D. S., Calabon, M. S., Gentekaki, E., Lee, H. B., et al. (2020). Morphological approaches in studying fungi: collection, examination, isolation, sporulation and preservation. *Mycosphere* 11, 2678–2754. doi: 10.5943/mycosphere/11/1/20
- Tennakoon, D. S., Phookamsak, R., Wanasinghe, D. N., Yang, J. B., Lumyong, S., and Hyde, K. D. (2017). Morphological and phylogenetic insights resolve *Plenodomus sinensis* (Leptosphaeriaceae) as a new species. *Phytotaxa* 324, 73–82. doi: 10.11646/phytotaxa.324.1.5

- The Plant List (2013). Compositae. Available online at: http://www.theplantlist.org/ (accessed January 14, 2021)
- Thümen, F. V. (1879). Contributiones ad floram mycologicam lusitanicam. Ser. II. Inst. Coimbra 27, 251–259.
- Tibpromma, S., Hyde, K. D., Jeewon, R., Maharachchikumbura, S. S. N., Liu, J. K., Bhat, D. J., et al. (2017). Fungal diversity notes 491–602: taxonomic and phylogenetic contributions to fungal taxa. *Fungal Divers.* 83, 1–261. doi: 10.1007/s13225-017-0378-0
- Vilgalys, R., and Hester, M. (1990). Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. *J. Bacteriol.* 172, 4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990
- Wanasinghe, D. N., Camporesi, E., and Hu, D. M. (2016). Neoleptosphaeria jonesii sp. nov., a novel saprobic sexual species, in Leptosphaeriaceae. Mycosphere 7, 1368–1377. doi: 10.5943/mycosphere/7/9/10
- Wanasinghe, D. N., Phukhamsakda, C., Hyde, K. D., Jeewon, R., Lee, H. B., Jones, E. B. G., et al. (2018). Fungal diversity notes 709–839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. *Fungal Divers*. 89, 1–236. doi: 10.1007/s13225-018-0395-7
- White, T. J., Bruns, T., Lee, S., and Taylor, J. (1990). "Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics," in *PCR Protocols: A Guide to Methods and Applications*, eds M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White (New York: Academic Press), 315–322. doi: 10.1016/ b978-0-12-372180-8.50042-1
- Wijayawardene, N. N., Hyde, K. D., Al-Ani, L. K. T., Tedersoo, L., Haelewaters, D., Rajeshkumar, K. C., et al. (2020). Outline of fungi and fungus-like taxa. *Mycosphere* 11, 1060–1456. doi: 10.5943/mycosphere/11/1/8
- Zhang, Y., Crous, P. W., Schoch, C. L., and Hyde, K. D. (2012). Pleosporales. *Fungal Divers*. 53, 1–221. doi: 10.1007/s13225-011-0117-x

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Doilom, Hyde, Dong, Liao, Suwannarach and Lumyong. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.