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The diverse chemical, biological, and microbial properties of litter and organic matter
(OM) in forest soil along an altitudinal gradient are potentially important for nutrient
cycling. In the present study, we sought to evaluate soil chemical, biological, microbial,
and enzymatic characteristics at four altitude levels (0, 500, 1,000, and 1,500 m)
in northern Iran to characterize nutrient cycling in forest soils. The results showed
that carbon (C) and nitrogen (N) turnover changed with altitude along with microbial
properties and enzyme activity. At the lowest altitude with mixed forest and no
beech trees, the higher content of N in litter and soil, higher pH and microbial
biomass nitrogen (MBN), and the greater activities of aminopeptidases affected soil
N cycling. At elevations above 1,000 m, where beech is the dominant tree species,
the higher activities of cellobiohydrolase, arylsulfatase, β-xylosidase, β-galactosidase,
endoglucanase, endoxylanase, and manganese peroxidase (MnP) coincided with higher
basal respiration (BR), substrate-induced respiration (SIR), and microbial biomass
carbon (MBC) and thus favored conditions for microbial entropy and C turnover. The low
N content and high C/N ratio at 500-m altitude were associated with the lowest microbial
and enzyme activities. Our results support the view that the plain forest with mixed
trees (without beech) had higher litter quality and soil fertility, while forest dominated
by beech trees had the potential to store higher C and can potentially better mitigate
global warming.

Keywords: forest soils, litter quality, enzyme activity, microbial entropy, N stock

INTRODUCTION

In terrestrial ecosystems, forest soils, as the largest carbon (C) reservoir, play a pivotal role in C
cycling (Nottingham et al., 2020) and can potentially affect nitrogen (N) dynamics (Ndossi et al.,
2020). Many studies have indicated that geography, soil, and litter properties (soil pH, nutrient
content, and water content) and aboveground biotic factors (stand composition and diversity)
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are important predictors of soil C and N stocking (Delgado-
Baquerizo et al., 2017; Walker et al., 2018). In addition,
altitude has long been considered a potential driver of soil
nutrient turnover through its influence on the biotic and
abiotic components of forest ecosystems (Gebrewahid et al.,
2018). Although altitude may not have a direct impact on
soil organic matter (SOM) turnover, it can still influence this
process indirectly by shaping soil, climatic, and vegetation
conditions (Sierra and Causeret, 2018; Devi and Sherpa, 2019).
Climatic conditions (i.e., decreased temperature and humidity)
are heavily influenced by altitude, which in turn affects vegetation
distribution/composition and alters the quality and quantity of
litter/soil characteristics and C loss (Kotas et al., 2018; Quan
et al., 2019). Recent studies have documented how changes in
climatic conditions and forest canopy composition associated
with altitude can affect the litter decomposition rate (Cardelli
et al., 2019), soil microbial/enzyme activities (Feng et al., 2019;
D’Alò et al., 2021), and nutrient storage in different ways
(Bello et al., 2015).

As the main source of SOM, tree species composition
and diversity along an altitudinal gradient may have a strong
impact on C and N cycling (Gebrewahid et al., 2018; Sierra
and Causeret, 2018). Despite the importance of soil nutrient
cycling in the characterization of soil biogeochemistry under
varying forest ecosystems (Bello et al., 2015; Frouz, 2018), the
nature of soil nutrient reservoirs and their turnover in different
regions are largely unknown. SOM decomposition involves both
chemical and biological processes, including enzymatic catalysis
(Sierra and Causeret, 2018; Nottingham et al., 2019), which
generally decrease with increasing altitude, resulting in slower
decomposition of organic matter (OM) (D’Alò et al., 2021).

Soil extracellular enzyme activities are essential for C and N
cycling/stocking and litter decomposition and thus for microbial
life (Baldrian and Štursová, 2011; Šnajdr et al., 2013; D’Alò
et al., 2021). They also play an essential role in soil fertility
as useful indicators for soil management (Baldrian et al., 2010;
Cardelli et al., 2019). Changes in tree species composition along
an altitudinal gradient alter soil microbial activity and thus the
activity of soil enzymes (Feng et al., 2019; Ndossi et al., 2020). In
fact, enzyme activity is sensitive to changes in vegetation and is
closely related to soil primary quality, and health (Šnajdr et al.,
2013; Nottingham et al., 2019). Soil nutrients (Cardelli et al.,
2019), forest stands (Šnajdr et al., 2013), and climate (Walker
et al., 2018) are factors affecting extracellular enzyme activity
along altitudinal gradients. Recent studies have shown that the
activity of C- and N-dependent enzymes has different trends with
increasing altitude (Ndossi et al., 2020; D’Alò et al., 2021). The
effects of altitude on soil extracellular enzyme activities are highly
variable across individual studies (Lladó et al., 2017), since they
do not follow simple biochemical rules (Baldrian et al., 2013). It is
widely assumed that extracellular enzyme activity increases with
increase in temperature, but in the forest altitudinal gradient their
activity is more related to the quality of available OM, vegetation,
and nutrient demands of the microbial biomass (Nottingham
et al., 2019; D’Alò et al., 2021), which can have different trends
with altitude (Lladó et al., 2017; Ndossi et al., 2020). Meng et al.
(2020) reported that the higher C content of the soils at the higher

altitude may denote a bigger labile C availability for C-dependent
extracellular enzymes.

Moreover, knowledge about the function and activity of soil
microorganisms along altitude is essential for understanding
forest soil productivity (Massaccesi et al., 2020), as soil microbes
play a fundamental role in biogeochemical cycling (Walker et al.,
2018). Soil microbes play a pivotal role in the mineralization and
decomposition of SOM by producing various hydrolytic enzymes
(Cardelli et al., 2019). In particular, basal respiration (BR),
substrate-induced respiration (SIR), microbial biomass C (MBC),
microbial biomass N (MBN), and metabolic and microbial
quotients as microbial indicators change with forest vegetation
along the altitudinal gradient, while soil organic C (SOC) is
often less affected (Walker et al., 2018; Massaccesi et al., 2020).
In most cases, MBC and MBN showed different trends with
changes of forest types along the altitudinal gradient (Massaccesi
et al., 2020; Ndossi et al., 2020). Climatic conditions, vegetation,
and edaphic factors also contribute to changes in substrate
availabilities and microbial activities (Walker et al., 2018; Ndossi
et al., 2020). Trees, as the primary source of plant biomass, affect
microbial processes in ecosystems via specific litter chemistry and
rhizodeposition (Šnajdr et al., 2013). Moreover, soil microbial
activities are directly linked to C and N turnover/stock (Urbanová
et al., 2015; Razanamalala et al., 2018) and mineralization of OM
(Walker et al., 2018; Nottingham et al., 2019).

Soil fauna represents another important driver of SOM
dynamics (García-Palacios et al., 2013; Frouz, 2018). Soil macro-
and meso-organisms play key roles in nutrient cycling and SOM
decomposition through their own metabolism, stimulation of
microbial activity, and bioturbation (Frouz, 2018). Soil fauna
is known as the engineer of the soil ecosystem that interacts
with the soil microbiome and influences litter decomposition
and nutrient cycling (García-Palacios et al., 2013). Climate
directly alters litter decay because of the sensitivity of processes
mediated by soil fauna to factors such as temperature or
precipitation (García-Palacios et al., 2013). Recent studies have
identified environmental factors (i.e., temperature and moisture)
(García-Palacios et al., 2013), stand composition (Massaccesi
et al., 2020), and soil and litter properties (Bayranvand et al.,
2017b) as the main factors influencing the activity of soil
fauna and flora in natural forests along altitudinal gradients
(Bayranvand et al., 2021b).

Hyrcanian forests are located south of the Caspian Sea in
northern Iran and are covered by temperate broadleaf forests
(Bayranvand et al., 2017b), which are similar to vegetation in
parts of Europe, northern Turkey, and the Caucasus (Talebi
et al., 2013). Forest stand composition and climate change with
altitude (Talebi et al., 2013), which in turn affect soil microbial
and enzyme activities, and nutrient turnover (Gebrewahid et al.,
2018; Banday et al., 2019). The aim of the present study was
to investigate (i) how a shift in forest stand composition along
an altitudinal gradient affects litter and soil chemical properties
and soil C and N cycling; (ii) how biological (earthworm,
nematode, protozoa, and fine-root biomass), microbial (BR, SIR,
and microbial biomass C and N), and enzymatic activity patterns
change along an elevation gradient; and (iii) which factors
determine C and N stocks across transects. We hypothesized
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that (i) the C stock increases with altitude due to decreased
litter decomposition and quality of beech forests and a low soil
temperature (ST); (ii) the N stock is greater at low altitudes
where tree diversity, pH, and litter quality are high; and (iii) the
soil microbial respiration, MBC, and C-dependent enzymes are
associated with higher soil and litter C with increasing altitude
where beech forest are dominant, while the opposite is assumed
for the N stock.

MATERIALS AND METHODS

Study Area
Soil and litter samples were collected in the Hyrcanian mountain
forest along three parallel altitudinal transects from 0 to
1,500 m a.s.l. in Mazandaran Province in northern Iran (57◦90′–
58◦20′ E 43◦30′–43◦90′ N) (Figure 1). The region has a sub-
Mediterranean climate where the mean annual temperature
(MAT) decreases from 15 to 5◦C (4–5◦C decrease in temperature
per 1,000 m), and the mean annual precipitation (MAP)
decreases from 1,200 to 600 mm along an altitudinal gradient.
Approximately 35–45% of the rainfall occurs in autumn, 18–
35% in winter, and the rest (10–20%) in summer (Noushahr
city meteorological station; for the period 1977–2010). The MAP
is approximately 898, 843, 805, and 746 mm at 0, 500, 1,000,
and 1,500 m a. s. l., respectively (Karger et al., 2017; Figure 1).
The MATs at 0, 500, 1,000, and 1,500 m a. s. l. are 19.2,
16.3, 14, and 11.6◦C, respectively. Based on clear changes in
tree canopy composition along elevation, four altitude classes
based on dominant trees were identified from 0 to 1,500 m
a.s.l. (Khaleghi et al., 1997): including (1) plain mixed forests
(0 m) with ironwood (Parrotia persica C.A.M.), oak (Quercus
castaneifolia C.A.M.), hornbeam (Carpinus betulus L.), alder
(Alnus subcordata), and Persian poplar (Populus alba caspica
Bornm); (2) low mountainous mixed forests (500 m) with
beech (Fagus orientalis Lipsky), ash (Fraxinus excelsior L), and
ironwood; (3) middle mountainous mixed forests (1,000 m) with
beech, maple (Acer velutinum Boiss), and hornbeam; and (4) high
mountainous pure forests (1,500 m) with pure beech.

Sample Collection and Laboratory
Analysis
The study area constitutes an altitude gradient from 0 to 1,500 m
along the Albourz Mountains on the southern coast of the
Caspian Sea. At each elevation level, three 1-ha plots with a
horizontal distance of 1,500 m were sampled. Each of these main
plots was subdivided into three random subplots (each 400 m2).
Samples were collected from corners and the center of each
subplot (five samples per subplot, Figure 1). Elevation at each
main plot was recorded using a Garmin model GPSMAP 60Cx.
All living trees and the diameter of the trees at breast height
(DBH, 1.3 m) were measured in each subplot with diameter
tape for calculating of trees basal area (Table 1). Litter and soil
samples were collected during May 2018. In total, 180 samples
were collected for laboratory analyses (four altitude levels× three
main plots × three subplots × five profiles). The soil and litter

samples collected in each subplot were pooled separately and
processed as an independent replicate for each elevation level.

After digging the profile, organic layer thickness [i.e., OL, OF,
and OH (in some profiles)] was measured with tape from the
forest-floor surface to the top of the mineral soil (Bayranvand
et al., 2021a). Subsequently, composite litter samples including
OL and OF layers were obtained (Bayranvand et al., 2017a).
After removing organic layers, soil samples were collected with
plastic tubes (5 cm diameter). At the same time, earthworms were
counted in a metal frame (30× 30× 10 cm) in both organic and
mineral layers. ST was also recorded with a portable temperature
probe (model: TA-288).

Litter samples were transported to the laboratory, dried at
65◦C in a fan-assisted oven for 48 h and crushed/homogenized
with an electric stamp for subsequent chemical analysis.

Soil samples were kept in a Styrofoam box filled with dry ice
and transferred to the laboratory. Soil samples were sieved using
a<2-mm mesh and either kept at 4◦C for the measurement of
chemical and soil respiration or freeze-dried and stored at−20◦C
for subsequent enzyme activity assays.

Chemical, Biological, and Microbial
Properties
The organic C content in litter samples was determined by dry
combustion at 450◦C for 4 h. The N content was measured using
the micro-Kjeldahl technique (Bremner et al., 1982). Soil pH
was measured with an Orion Analyser Model 901 pH meter in
a 1:2.5 soil: deionized water slurry. Bulk density was calculated
by the cold method [soil dry weight/core volume basis (Plaster,
1985)]. Soil moisture (SM) was measured by drying soil samples
at 105◦C for 24 h. SOC and total N (TN) were measured by
the modified method of Walkley–Black (wet oxidation) (Allison,
1975) and micro-Kjeldahl techniques (Bremner et al., 1982).
C and N contents were calculated by taking into account soil
bulk density and depth (Plaster, 1985). MBC (Anderson and
Domsch, 1990) and MBN (Brookes et al., 1985) were assessed
by chloroform fumigation extraction using 5 g fresh soil and
20 ml 0.5 M K2SO4. MBC was calculated as the difference
between organic C extracted from fumigated and non-fumigated
soils using a conversion factor of 0.45. MBN was calculated by
subtracting extracted N from fumigated and non-fumigated soils
using a conversion factor of 0.54. Soil BR and SIR were measured
by trapping CO2 emitted from fresh soil with NaOH in glass tubes
during 5 days of incubation at 25◦C (Alef, 1995) and titration
with HCl. Glucose (1%) was used as a substrate for the SIR
measurement. The ratio of the carbon availability index (CAI),
metabolic quotient (qCO2), and microbial entropy ratio were
calculated by dividing BR to SIR, BR to MBC, and MBC to Corg ,
respectively (Cheng et al., 1996).

To demonstrate soil biological activity, earthworm, nematode
and protozoan population densities as well as fine-root biomass
were measured. Earthworms were enumerated in a 30-cm2 area
and 10-cm depth (Bayranvand et al., 2017b). Nematode and
protozoal densities were estimated in 100 g fresh soil by the
modified cotton-wool filter method. After adding 1 g glucose
and centrifugation, the numbers of nematodes (Liang et al., 2009)
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FIGURE 1 | The study site at the Experimental Forest Station, Vaz watershed in the Central Caspian region of northern Iran, and tree species composition along the
altitudinal gradient in the Alborz Mountains. The tree species growing in the area were Fagus orientalis Lipsky (beech), Parrotia persica C.A.M. (ironwood), Carpinus
betulus L. (hornbeam), Quercus castaneifolia C.A.M. (oak), Fraxinus excelsior L. (ash), Acer velutinum (maple), Alnus subcordata C.A.M. (alder), and Populus alba
caspica Bornm (Persian poplar).

TABLE 1 | Distribution of forest types and properties along an altitudinal gradient in the Hyrcanian forest profile (Vaz catchment, Alborz Mountains, northern Iran).

Altitude (m a.s.l.) Land cover (abbreviation) Tree species density
(number of trees/ha)

Tree species basal area
(m2/ha)

Soil texture

1,500 ± 30 High mountainous pure forests
(HMPF)

Beech (586.11) Beech (17.49) Clay loam
(Clay = 34, Silt = 33, Sand = 33%)

1,000 ± 30 Middle mountainous mixed
forests (MMMF)

Beech (91.67), hornbeam
(36.11), maple (33.33)

Beech (28.41), maple (20.86),
hornbeam (11.27)

Clay loam
(Clay = 38.4, Silt = 29.2, Sand = 32.4%)

500 ± 30 Low mountainous mixed
forests (LMMF)

Beech (203.56), ash (98.22),
ironwood (75)

Ironwood (20.91), ash (11.63),
beech (5.55)

Clay loam
(Clay = 33.14, Silt = 32.86, Sand = 34%)

0 ± 30 Plain mixed forests (PMF) Ironwood (194.44), oak (33.33),
hornbeam (22.22), poplar
(11.11), alder (2.28)

Ironwood (12.34), oak (11.24),
poplar (5.90), hornbeam (2.59),
alder (0.30)

Clay
(Clay = 45.11, Silt = 34.44, Sand = 20.44%)

The tree species growing in the area were (English name) Fagus orientalis Lipsky (beech), Parrotia persica C. A. Meyer (ironwood), Carpinus betulus L. (hornbeam), Quercus
castaneifolia C.A.M. (oak), Fraxinus excelsior L. (ash), Acer velutinum (maple), Alnus subcordata C.A.M. (alder), and Populus alba caspica Bornm (Persian poplar).

and protozoa (Mayzlish and Steinberger, 2004) were counted
under a microscope. To determine the biomass of fine roots
(<2 mm diameter), roots were extracted from 10-cm3 soil
samples, washed with water, dried at 65◦C, and weighed
(Neatrour et al., 2005).

Enzyme Activity Assays
In our study, the potential of exocleaving hydrolytic,
endocleaving polysaccharide hydrolases, and ligninolytic
enzyme activities were measured in laboratory. To assay
exocleaving hydrolytic enzymes, 0.5 g of fresh soil was
homogenized in 50 ml of 50 mM sodium acetate (pH 5.0)
using an UltraTurrax (IKA Labortechnik, Germany) for 3 min
at 8,000 rpm in an ice bath. The activities of arylsulfatase (EC
3.1.6.1), 1,4-α-glucosidase (EC 3.2.1.20), cellobiohydrolase

(exocellulase; EC 3.2.1.91), 1,4-β-glucosidase (EC 3.2.1.21), 1,4-
β-xylosidase (EC 3.2.1.37), N-acetylglucosaminidase (chitinase,
EC 3.2.1.30), phosphomonoesterase (PME, EC 3.1.3.2), alanine
aminopeptidase (EC 3.4.11.12), and leucine aminopeptidase
(EC 3.4.11.1) were measured in homogenate using 4-
methylumbelliferol- (MUF) or 7-amido-4-methylcoumarin-
(AMC)-based substrates as described previously (Baldrian,
2009). The substrates were dissolved in DMSO at a final
concentration of 500 µM. For background fluorescence
subtraction, 200 µl of 50 mM sodium acetate (pH 5.0) was
combined with 40 µl of MUF standards to correct the results for
fluorescence quenching. The multiwell plates were incubated at
40◦C, and the fluorescence was recorded after 5 min and until
125 min using a microplate reader (Infinite, TECAN, Austria) at
an excitation wavelength of 355 nm and an emission wavelength
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of 460 nm. Enzymatic activities were calculated based on a
standard curve of MUF or AMC.One unit of enzyme activity was
defined as the amount of enzyme releasing 1 nmol of MUF or
AMC per min and expressed per gram of soil dry mass.

To analyse the activity of endocleaving polysaccharide
hydrolases and ligninolytic enzymes, homogenized samples
were extracted at 4◦C for 2 h on an orbital shaker (100 rpm)
with 100 mM phosphate buffer, pH 7 (16: 1 w/v), filtered
through Whatman #5 filter paper and desalted using PD-10
desalting columns (Pharmacia, Sweden) according to the
supplier’s protocol to remove inhibitory small-molecular mass
compounds (Baldrian, 2009). Laccase (EC 1.10.3.2) activity
was measured by monitoring the oxidation of 2,2′-azinobis-
3-ethylbenzothiazoline-6-sulfonic acid in citrate–phosphate
(100 mM citrate, 200 mM phosphate) buffer, pH 5.0, at 420-nm
wavelength. Manganese peroxidase (MnP, EC 1.11.1.13) was
assayed in succinate–lactate buffer (100 mM, pH 4.5). 3-Methyl-
2-benzothiazolinone hydrazone and 3,3-dimethylaminobenzoic
acid were oxidatively coupled by the enzymes, and the resulting
purple indamine dye was detected spectrophotometrically
at 595 nm. The results were corrected using the activities of
the samples without manganese (for MnP); the addition of
manganese sulfate was substituted by an equimolar amount of
ethylenediaminetetraacetic acid (EDTA). Endo-1,4-β-glucanase
(endocellulase; EC 3.2.1.4) and endo-1,4-β-xylanase (EC
3.2.1.8) activities were measured with azo-dyed carbohydrate
substrates (carboxymethyl cellulose and birch wood xylan,
respectively) using the protocol of the supplier (Megazyme,
Ireland). The reaction mixture contained 0.2 ml of 2% dyed
substrate in 200 mM sodium acetate buffer (pH 5.0) and
0.2 ml of the sample. The reaction mixture was incubated
at 40◦C for 60 min and stopped by adding 1 ml of ethanol
followed by vortexing for 10 s and centrifuging for 10 min at
10,000 × g (Baldrian, 2009). The amount of released dye was
measured at 595 nm, and the enzyme activity was calculated
according to standard curves correlating the dye release with
the release of reducing sugars. One unit of enzyme activity
was defined as the amount of enzyme releasing 1 mmol
reducing sugars per minute. Enzyme activity was expressed per
g soil dry mass.

Statistical Analysis
To test for normality and equality of the variances of
variables, Kolmogorov–Smirnov and Levene’s tests were
employed, respectively. The differences in litter floor and
soil physicochemical, biological, biochemical, and enzyme
activities across the four forest types along an altitudinal gradient
were analysed using one-way analysis of variance (one-way
ANOVA). Means were compared using Tukey tests (HSD
test). P-values < 0.05 were considered statistically significant.
To examine associations between litter floor, soil data, and
enzyme activities, a multivariate ANOVA analysis based on
principal component analysis (PCA) was performed using the
“ellipse” package in R version 3.3.2 (R Core Team, 2016). The
two first axes with higher explained variations were plotted in
PCA. Selected for further interpretation of the results, their

relationship with all parameters was determined through a
correlation matrix.

RESULTS

Litter and Soil Chemical, Biological, and
Microbial Properties
As expected, the altitude gradient greatly influenced tree canopy
composition, litter quality, and quantity and soil chemical and
biological properties, but with different trends (Tables 1, 2). Litter
C was significantly elevated at 1,000–1,500-m altitudes, while
litter N was significantly higher at the lowest altitude (0 m) than
at the other altitude levels. In addition, the lowest litter C/N
ratio and thickness were also found at this altitude level and
increased with altitude (Table 2). The highest SM was recorded at
1,500 m. ST, however, sharply decreased with increasing altitude.
The highest soil pH was recorded at the lowest (0 m) and highest
(1,500 m) altitudes. Soil C was higher at elevations above 1,000 m,
while soil N was significantly higher at the 0-m altitude (Table 2).
The lowest soil C/N ratio was recorded at the 0-m altitude,
and its content increased with altitude, particularly in beech
forests (Table 2).

The highest amount of MBC was observed at 1,000 m, while
the highest MBN was found at the 0-m altitude level, and
the content decreased along the elevation gradient (Table 2).
A significantly higher soil BR and SIR were observed at 1,500 m
in pure beech forests compared with 0 > 500 ≈ 1,000 m altitude
levels (Figure 2A). The CAI ratio did not change along the
altitudinal gradient (Figure 2B). Microbial entropy was enhanced
at the 1,000-m altitude compared with other altitude levels
(Figure 2C), while the lowest altitude (0 m; mixed plain forest)
showed the highest qCO2 ratio compared with other levels
(mixed and pure beech forests) (Figure 2D). The soil C stock
was highest under mixed and pure beech forests at 1,000- to
1,500-m elevation levels compared with the lower altitudes (0–
500 m) (Figure 2E). The N stock was significantly higher at
0-m altitude under plain forest than under pure forest (1,500 m)
(Figure 2F). The highest density of earthworms was found at
500 m, whereas the total protozoan density was highest at 1,000 m
(Table 2). Fine-root biomass also increased along the altitudinal
gradient (Table 2).

Soil Enzyme Activity
The extracellular enzyme activities were significantly different
between altitudes with no clear trend (Figures 3A–P). The
activities of β-glucosidase (Figure 3A), acid phosphatase
(Figure 3B), N-acetylglucosaminidase (Figure 3C), arylsulfatase
(Figure 3D), and laccase (Figure 3E) were significantly higher
at higher elevation levels (1,000 to 1,500 m). Specifically,
higher activities of cellobiohydrolase (Figure 3H), endoglucanase
(Figure 3I), endoxylanase (Figure 3K), oxidase (Figure 3F),
peroxidase (Figure 3G), and Mn-peroxidase (Figure 3J) were
observed at the middle altitude level (1,000 m), where mixed
beech forest is dominant. In contrast, the activities of lipase
(Figure 3N), alanine aminopeptidase (Figure 3O), and leucine
aminopeptidase (Figure 3P) declined with increasing altitude,

Frontiers in Microbiology | www.frontiersin.org 5 September 2021 | Volume 12 | Article 660603

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-660603 August 28, 2021 Time: 12:16 # 6

Bayranvand et al. Soil Properties Along an Altitudinal Gradient

TABLE 2 | Litter and soil chemical, biological, and microbial properties along an altitudinal gradient.

Litter and soil properties

Altitudinal gradient Summary ANOVA

0 m 500 m 1,000 m 1,500 m results

Mean SE Mean SE Mean SE Mean SE F test P-value

Litter properties C (%) 45.50 ab 1.65 44.06 b 1.47 48.99 a 0.46 49.74 a 0.40 5.677 0.003

N (%) 1.49 a 0.06 0.99 c 0.05 1.34 ab 0.08 1.18 bc 0.05 12.454 <0.001

C/N 30.73 b 1.19 44.93 a 1.94 37.98 ab 3.17 42.89 a 1.95 8.373 <0.001

Thickness (cm) 2.40 c 0.33 1.01 c 0.24 4.33 b 0.56 9.84 a 0.56 76.370 <0.001

Soil physical and
chemical properties

Moisture (%) 25.03 b 0.56 27.42 ab 0.76 26.10 b 1.72 31.24 a 1.73 4.298 0.012
Temperature (◦C) 17.59 a 0.22 17.82 a 0.15 13.81 b 0.12 10.59 c 0.14 436.04 <0.001

Bulk density (g cm−3) 1.65 0.08 1.66 0.05 1.52 0.05 1.49 0.06 1.984 0.136

pH (1:2.5 H2O) 7.84 a 0.01 6.45 b 0.14 6.09 b 0.17 7.56 a 0.08 51.872 <0.001

C (%) 2.99 b 0.04 3.00 b 0.07 4.94 a 0.36 5.44 a 0.37 24.283 <0.001

N (%) 0.74 a 0.03 0.48 b 0.03 0.56 ab 0.06 0.65 ab 0.08 4.311 0.012

C/N 4.14 c 0.25 6.37 b 0.37 9.18 a 0.60 8.89 a 0.61 24.056 <0.001

Soil microbial and
biological properties

MBC (mg kg−1) 1022.9 b 133.4 1309.2 b 25.81 6496.4 a 1012.7 1887.2 b 198.4 24.396 <0.001
MBN (mg kg−1) 1134.2 a 87.61 303.78 b 86.95 173.6 b 54.98 154.7 b 15.3 47.078 <0.001

Earthworm density (n m−2) 2.22 b 0.56 10.00 a 2.66 1.48 b 0.59 3.33 b 0.96 7.020 0.001

Total nematode (in 100 g soil) 115.56 b 12.37 231.11 ab 31.82 204.44 a 42.92 124.44 b 15.56 4.085 0.015

Protozoa density (×103 g soil) 72.03 b 1.97 89.46 b 5.47 136.49 a 14.13 80.25 b 6.46 12.097 <0.001

Fine root biomass (g m2) 17.71 b 4.93 26.76 b 9.49 48.27 ab 12.88 82.11 a 8.16 9.454 <0.001

Different letters in each line indicate significant differences (P < 0.05 Tukey HSD test) between altitudes.

with the highest activities in plain forests (0 m altitude level). The
lowest activity for β-xylosidase (Figure 3L) and β-galactosidase
(Figure 3M) was recorded at 500 m with no clear trend across the
altitudinal gradient.

The Relationship Among All Litter and
Soil Characteristics
Considering all litter and soil biological and biochemical
properties and enzyme activities, samples were clustered
separately by altitude in the PCA plot (Figures 4A,B). The
two first axes of PCA covered ∼46% of the variation among
samples collected from different altitudes. At the higher
elevation (1,500 m), higher litter C, litter thickness, soil C,
soil C/N ratio, protozoan density, fine-root biomass, MBC,
and microbial entropy were associated with increased C
stock and higher activities of β-glucosidase, acid phosphatase,
N-acetylglucosaminidase, cellobiohydrolase, arylsulfatase,
β-xylosidase, β-galactosidase, endoxylanase, peroxidase, and
Mn-peroxidase enzymes (Figures 4A,B). Litter N, soil N, pH,
BR, SIR, CAI, and MBN were aggregated at the positive portion
of PC2 and were associated with an increased N stock and
higher activities of lipase, alanine aminopeptidase, leucine
aminopeptidase, β-xylosidase, and β-galactosidase enzymes at
the 0-m-altitude level.

DISCUSSION

The tree composition of forests covering the northern part of
the Alborz Mountains changes with altitude (Talebi et al., 2013),

a condition that is associated with altered soil C and nutrient
stocks. The high C stocks at high altitudes can be due to the
continuous accumulation of leaf litter and slower decomposition
because of the lower temperatures at the higher elevation levels
(Banday et al., 2019). The dominance of F. orientalis Lipsky at
high elevations may likely contribute to C sequestration, resulting
in a higher litter C/N ratio and higher soil C compared with
other deciduous forest stands at lower altitudes (Talebi et al.,
2013; Kooch and Bayranvand, 2017). Compared with other tree
species found at low altitudes, the beech forest floor is more
recalcitrant to decomposition, which could be due to its lower
nutrient contents (Delgado-Baquerizo et al., 2017), higher C/N
ratio (Bayranvand et al., 2017a), and high lignin content (Kooch
and Bayranvand, 2017). The differences in soil C stocks in the
two forest types thus originate from their different vegetation
types, as the quantity, and quality of litter are crucial drivers
that affect the soil microbial biomass and soil pH (Banday
et al., 2019; Massaccesi et al., 2020). Low temperatures at higher
altitudes are another factor contributing to the higher C stock,
as in cooler climates, soils have higher OM due to a slow
mineralization rate and a high forest-floor thickness (Gebrewahid
et al., 2018; Banday et al., 2019). We found that plain mixed
forest with species of P. persica, Q. castaneifolia, and C. betulus
at low altitudes had higher litter quality (high N and low C/N),
higher soil fertilities and N stocks than beech forest stands
at higher altitudes. Krashevska et al. (2017) noted that a high
initial litter N concentration and low C/N ratio as well as
low lignin and high holo-cellulose concentrations are associated
with high litter quality and promote rapid decomposition
(Šnajdr et al., 2013).
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FIGURE 2 | Soil microbial/biochemical properties such as (A) soil basal respiration (BR; green) and substrate-induced respiration (SIR; red), (B) carbon availability
index (CAI), (C) microbial entropy ratio, (D) metabolic quotient (qCO2), (E) carbon stock, and (F) nitrogen stock at various altitudes. Different letters indicate a
significant difference along the altitudinal gradient [analysis of variance (ANOVA) followed by Tukeys HSD post hoc test; p < 0.05].

Previous analyses by Šnajdr et al. (2013) and Feng et al. (2019)
suggested that tree species determine the quality and quantity
of resources available for soil microorganisms and enzyme
functions. Our analyses revealed that higher enzyme activities are
typical of higher altitudes under beech forests with high litter
thickness, litter, and soil C and C/N ratios under appropriate
SM. Šnajdr et al. (2008) studied the relationship between enzyme
production and litter decomposition by fungal communities
under different forest covers and noted that the decomposition
of litter components, such as cellulose and lignin, is often
attributed to cellulase enzyme activities. In agreement, enzymes,

such as laccase, endoglucanase, β-glucosidase, and β-xylosidase,
were reported to be produced in Fagus sylvatica forest by
Lepista nuda fungi. Mn-peroxidase and laccase contribute to
lignin degradation, which results in both depolymerization
and partial mineralization (Valášková et al., 2007). In the
present study, the activities of β-glucosidase, acid phosphatase,
N-acetylglucosaminidase, arylsulfatase, and laccase were higher
at higher elevations (1,000 to 1,500 m) in beech forests where
litter thickness, C and C/N ratios, fine-root biomass, and
SM were significantly higher (Banday et al., 2019). Increased
C-dependent enzyme activity is likely due to a higher availability
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FIGURE 3 | Soil extracellular enzyme activities such as (A) β-glucosidase, (B) acid phosphatase, (C) N-acetylglucosaminidase, (D) arylsulfatase, (E) laccase,
(F) oxidase, (G) peroxidase, (H) cellobiohydrolase, (I) endoglucanase, (J) Mn-peroxidase, (K) endoxylanase, (L) β-xylosidase, (M) β-galactosidase, (N) lipase,
(O) alanine aminopeptidase, and (P) leucine aminopeptidase at various altitudes. Different letters indicate a significant difference along the altitudinal gradient (ANOVA
and Tukey HSD test; p < 0.05).

of aboveground litterfall (with higher C) and fine-root necromass
to soil microorganisms (Feng et al., 2019). In addition to a lower
decomposition rate, litter quality also decreased with altitude
(Marian et al., 2019).

Increased soil enzyme activities could be associated with
higher C accumulation since soil microbial biomass and
heterotrophic respiration increase with plant density (Feng et al.,
2019). Kang et al. (2009) also noted that higher activities of
acid phosphatase and oxidase were dependent on the soil C
content. In previous studies, it has been reported that the
activities of β-glucosidase, cellobiohydrolase, acid phosphatase,

and N-acetylglucosaminidase positively correlate with soil C
(Štursová and Baldrian, 2011; Xu et al., 2020). Our findings are
consistent with recent studies highlighting that higher enzyme
activities are positively correlated with altitude and C, particularly
under beech forests with high C sources and MBC (Štursová and
Baldrian, 2011; Šnajdr et al., 2013; Xiao et al., 2019).

Principal component analysis showed that the higher soil
C, moisture, SIR, BR, MBC, and litter thickness at the highest
altitude (1,500 m; under beech forests) were associated with
C stock, β-glucosidase, N-acetylglucosaminidase, arylsulfatase,
β-xylosidase, β-galactosidase, endoxylanase, peroxidase, and
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FIGURE 4 | Principal component analysis (PCA) of chemical litter and soil properties and soil biological, biochemical, microbial, and enzyme activities at various
altitudes (A) and their correlations with the first two canonical axes (B). * and ** represents correlation coefficients significant level at p < 0.05 and p < 0.01,
respectively.

Mn-peroxidase enzyme activities. Similarly, Cardelli et al.
(2019) showed a positive correlation between C and the
β-glucosidase, cellulase, xylosidase, and glucuronidase activities
under F. sylvatica. These enzymes are involved in the degradation
of cellulose, pectin and lignin, which are the main components
of forest-floor plant residues (Cardelli et al., 2019). Previous
studies have also reported a correlation of arylsulfatase and acid
phosphatase enzyme activities with soil C content in deciduous
forests (Baldrian et al., 2013; Kooch and Bayranvand, 2017).
We also showed the highest enzyme and biological activities

(i.e., nematode and protozoa density) under mixed beech–
hornbeam–maple forest with high MBC and moderate litter/soil
qualities and thickness. This could be due to a high C in beech
litter/soil and a high litter decomposition of hornbeam and
maple trees (Kooch and Bayranvand, 2019). Dehydrogenases
and oxidases facilitate the degradation of lignin and thus
improve C cycling through the release of nutrients from plant
residues (Massaccesi et al., 2020). Enzymes such as urease and
alanine aminopeptidase are involved in N cycling in terrestrial
ecosystems (Šnajdr et al., 2013; Feng et al., 2019).
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In this study, the activities of alanine and leucine
aminopeptidase were significantly higher in the plain mixed
forest with high litter/soil N and pH, while their activities
declined at high altitudes and at low temperatures. pH and N are
both important factors affecting enzyme activity (Šnajdr et al.,
2013). A general decline in qCO2 and N with altitude could be
attributed to a decreased ST and pH (Massaccesi et al., 2020).
Štursová and Baldrian (2011) showed that the specific activity of
leucine aminopeptidase increases with pH and N. A decrease in
pH at high altitudes likely results from leaching of bases from
the surface due to high precipitation or higher concentrations
of H+ ions due to higher litter decomposition (Banday et al.,
2019). The PCA showed that the soil N stock was associated with
higher litter N, pH, qCO2, MBN, and activities of lipase, alanine
and leucine aminopeptidase enzymes. We also noted a clear
association of chitinase and leucine-aminopeptidase enzymes
with high soil quality (high N and low C/N), consistent with their
activities under high fresh OM (Cardelli et al., 2019).

Soil C accumulation is enhanced by low ST and acidic and
anaerobic conditions, all of which inhibit the decomposition
process (Banday et al., 2019; Devi and Sherpa, 2019). As an
important driver of the microbial community and microbial C
limitation (Walker et al., 2018), ST was significantly lower at high
altitudes than at low altitudes (Cui et al., 2019). Increased soil C
and MBC are known to positively correlate with high SM and low
ST (Baldrian et al., 2010; Quan et al., 2019).

The C stock was positively correlated with SM, MBC,
BR, and SIR but negatively correlated with higher levels of
ST. Microbial entropy and MBC were enhanced at middle
altitudes (1,000 m), where the dominant tree species were
beech, hornbeam, and maple. The activities of soil organisms,
including earthworms, protozoa, and nematodes, depend on
soil conditions, such as pH, N, and available nutrients, which
are affected by the rate of OM decomposition (Kooch and
Bayranvand, 2017). Soil N and pH are the main factors affecting
litter decomposition, which is the major source of the soil
microbial qCO2 under high temperatures (Quan et al., 2019).
Hornbeam forest had the highest litter quality, soil fertility,
and soil organism activities compared with beech forest. In
fact, soils under hornbeam had higher nutrient concentrations
and pH that make conditions more favorable for microbial
activities, whereas poor beech litter quality was due to a lower N
concentration, higher C/N ratio, and higher levels of recalcitrant
compounds associated with lower MBN and N sequestration
(Kooch and Bayranvand, 2017). Among chemical variables, N
had the strongest effect on the microbial biomass in litter and soil
(Urbanová et al., 2015). Thus, the higher rate of N mineralization
under hornbeam can be linked to the lower C/N ratio of its topsoil
(Kooch and Bayranvand, 2019).

CONCLUSION

Microbial and enzyme activities can be used as sensitive
indicators of soil function in response to different products
of forest aboveground along altitudinal gradient, which helps
to better understand the dynamics of both C and N cycling.

Our findings indicate that N stock increases under plain mixed
forest, which likely results from increased ST, tree diversity, litter
N, MBN, pH, and leucine/alanine aminopeptidase enzymes. At
higher altitudes, higher litter thickness, litter/soil C and C/N
ratios, BR, SIR, and MBC and β-glucosidase, acid phosphatase,
arylsulfatase, and laccase activities were associated with the
lowest ST, highest SM, and thus greater C accumulation. In
addition, our results showed that decreased litter/soil N and pH
were associated with lower soil microbial and enzyme functions,
which can be seen well at the 500-m altitude. Plain forests
with high tree diversity, which produce high litter quality, had
the highest N-dependent enzyme activity and soil fertilities,
while mountainous forests with dominant beech trees had the
potential to store more C and thus help to increase MBC. This
study provides novel insights into different enzyme activities
along altitude and improves our understanding of soil C and N
cycling in forests.
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