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As sequencing costs continue to decrease, new tools are being developed for assessing 
pathogen diversity and population structure. Traditional marker types, such as 
microsatellites, are often more cost effective than single-nucleotide polymorphism (SNP) 
panels when working with small numbers of individuals, but may not allow for fine scale 
evaluation of low or moderate structure in populations. Botrytis cinerea is a necrotrophic 
plant pathogen with high genetic variability that can infect more than 200 plant species 
worldwide. A panel of 52 amplicons were sequenced for 82 isolates collected from four 
Michigan vineyards representing 2 years of collection and varying fungicide resistance. A 
panel of nine microsatellite markers previously described was also tested across 74 
isolates from the same population. A microsatellite and SNP marker analysis of B. cinerea 
populations was performed to assess the genetic diversity and population structure of 
Michigan vineyards, and the results from both marker types were compared. Both methods 
were able to detect population structure associated with resistance to the individual 
fungicides thiabendazole and boscalid, and multiple fungicide resistance (MFR). 
Microsatellites were also able to differentiate population structure associated with another 
fungicide, fluopyram, while SNPs were able to additionally differentiate structure based 
on year. For both methods, AMOVA results were similar, with microsatellite results 
explaining a smaller portion of the variation compared with the SNP results. The SNP-based 
markers presented here were able to successfully differentiate population structure similar 
to microsatellite results. These SNP markers represent new tools to discriminate B. cinerea 
isolates within closely related populations using multiple targeted sequences.
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INTRODUCTION

Botrytis cinerea is a necrotrophic pathogenic fungus that 
infects hundreds of plant species (Alfonso et  al., 2000; Ma 
and Michailides, 2005; Williamson et  al., 2007; Fillinger, 
2016) including economically important crops such as fruits, 
ornamentals, and vegetables (Elad et al., 2004; Leroux, 2007). 
B. cinerea causes gray mold, a major worldwide destructive 
disease that results in significant yield loss of grapevines 
in the field and postharvest (Campia et  al., 2017; Rupp 
et  al., 2017b; Saito et  al., 2019; Alzohairy et  al., 2020). 
B.  cinerea infects all grapevine plant parts, though fruit rot, 
known as botrytis bunch rot (preharvest) and gray mold 
(postharvest), is the most common (Gabler et  al., 2003; 
Elmer and Michailides, 2007; Saito et  al., 2019).

Control of gray mold is dependent on regular applications 
of synthetic fungicides. Several Fungicide Resistance Action 
Committee (FRAC) classes are available to control bunch rot, 
including quinone outside inhibitors (QoIs), benzimidazole, 
phenylpyrroles, succinate dehydrogenase inhibitors (SDHIs), 
anilinopyrimidines (APs), dicarboximides, and hydroxyanilides 
(Leroux, 2004). However, B. cinerea is considered a difficult 
pathogen to control due to its rapid spread by wind (Holz 
et  al., 2007) and the high genetic variability (Leroux et  al., 
2002) that allow the pathogen to develop resistance against 
applied synthetic fungicides (Rupp et  al., 2017b). In grapes, 
fungicide resistance has been reported in different countries 
worldwide (Leroch et al., 2011; Angelini et al., 2014; Panebianco 
et al., 2015; Yin et al., 2015) and in the US including Michigan 
(Alzohairy et  al., 2020) and California (Saito et  al., 2019; Avenot 
et al., 2020; Delong et al., 2020). An increasing number of isolates 
with resistance to not only a single fungicide but also to multiple 
fungicides of different chemical classes have been reported (Leroch 
et  al., 2013; Fernández-Ortuño et  al., 2015; Saito et  al., 
2019; Alzohairy et  al., 2020; Delong et  al., 2020). Fungicide 
resistance frequencies have been shown to differ between 
years, crop hosts, and locations (Fernández-Ortuño et al., 2015; 
Delong et  al., 2020; Kozhar et  al., 2020).

The genus Botrytis is highly genetically diverse with more than 
30 species that differ in morphology, ecology, biology, and host 
range (Walker, 2016). The genus Botrytis was generally considered 
as a single complex species until the late 1990s when it was 
subdivided into two clades, one clade contains Botrytis spp. that 
infect mostly monocots and some dicots, while the second clade 
contains Botrytis spp. that infect a wide host range of eudicots; 
B. cinerea falls under this second clade (Staats et  al., 2005). 
Population structure and genetic variations have been studied in 
B. cinerea populations, and new morphologically identical or 
similar species were identified. Recently a number of cryptic 
species causing gray mold that lives in sympatry with the B. cinerea 
complex have been identified on a variety of hosts (Li et  al., 
2012; Saito et  al., 2016; Dowling et  al., 2017; Rupp et  al., 2017b; 
Harper et  al., 2019). These new cryptic species are more likely 
considered as host or region specific. Formerly known as B. cinerea 
Group I, B. pseudocinerea isolates are morphologically identical 
and live in sympatry with B. cinerea (Fournier et  al., 2005; 
Walker et  al., 2011). Genetic polymorphisms  in transposable 

element presence and a group of genes including Bc-hch, 
erg27, sdh, and cyp51 between B. cinerea and B. pseudocinerea 
provided evidence for the differentiation of B. pseudocinerea 
as a new species (Fournier et  al., 2003; Walker et  al., 2011; 
Plesken et  al., 2015). Within B. cinerea sensu stricto, a large 
variability in genetic and phenotypic diversity, and host 
specialization have also been observed (Corwin et  al., 2016; 
Mercier et  al., 2019; Soltis et  al., 2019; Meng et  al., 2020).

Generally, the population structure in B. cinerea was detected 
to vary between different hosts (Fournier and Giraud, 2008; 
Walker et  al., 2015) or year (Walker et  al., 2015; Delong 
et  al., 2020), while less or no variation was detected at the 
region level (Fournier and Giraud, 2008; Karchani-Balma 
et  al., 2008; Esterio et  al., 2011; Wessels et  al., 2013; Walker 
et  al., 2015). On the other hand, Muñoz and Moret (2010) 
found that genetic diversity was high, and population structure 
varied when comparing isolates of B. cinerea at a continent 
level. The molecular marker method that is used to investigate 
genetic differences can also contribute to the observed genetic 
differences (Walker et  al., 2011).

Various molecular markers have been used to investigate 
the genetic variability and population structure in B. cinerea. 
Fournier et  al. (2003) developed a PCR-RFLP method that 
differentiated B. pseudocinerea from the B. cinerea complex 
based on the polymorphism detected in the Bc-hch gene. 
Other genes that are Botrytis spp. specific were used to 
differentiate different populations on table grape and blueberry 
using Sanger sequencing (Staats et al., 2005, 2007; Saito et al., 
2016). Recently, DeLong et al. developed a set of microsatellite 
markers spanning the genome to characterize Botrytis 
populations (2020). Commonly, the presence/absence of TEs 
is used for the determination of Botrytis sp. population diversity 
(Kretschmer and Hahn, 2008; Fekete et  al., 2012; Wessels 
et  al., 2016; Hu et  al., 2018). Previous studies that used TEs 
or microsatellites as markers for population differentiation 
showed that different hosts can be  dominated by different 
populations such as grape and pomegranate, and were dominated 
by transposa isolates that have both TEs (Váczy et  al., 2008; 
Johnston et  al., 2014; Delong et  al., 2020; Testempasis et  al., 
2020). The fungicide resistance profile is different between 
different strains of Botrytis (Martínez et  al., 2008; Leroux 
et al., 2010; Johnston et al., 2014; Delong et al., 2020). However, 
studies of population variability in relation to fungicide 
resistance profile showed limited to no association with the 
population structure (Wessels et al., 2016; Campia et al., 2017; 
Hu et  al., 2018; Delong et  al., 2020).

Several studies in other systems have compared the use of 
single-nucleotide polymorphism (SNP) or sequencing-based 
markers and microsatellite markers to describe population 
structure and diversity (Fischer et  al., 2017; Lemopoulos et  al., 
2018). In one such study, SNP diversity estimates and 
microsatellite heterozygosity in Arabidopsis were not significantly 
correlated, but genetic differentiation among populations was 
correlated (Fischer et  al., 2017). Similarly in trout, 16 
microsatellites performed similarly to >4,000 SNPs at measuring 
genetic differentiation, but SNPs were more accurate at estimating 
individual level heterozygosity (Lemopoulos et  al., 2018). 
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However, similar studies have found that studies, where a low 
number of SNPs >300 were used, had lower power than 
microsatellites (Vali et  al., 2008). Yet most of these studies 
involved animals or plants with larger plant genomes than 
Botrytis (Ciani et  al., 2013; Singh et  al., 2013). A study on 
Plasmodium vivax, a malarial parasite, demonstrated that 146 
high-quality SNPs using an amplicon sequencing approach were 
more informative than microsatellite markers (Fola et al., 2020).

Because different Botrytis sp. can exhibit differences in 
fungicide resistance profile, it is critical to understand the 
pathogen population structure in different environments. This 
will allow development of better disease management schemes. 
There is no information about B. cinerea population structure 
and genetic diversity in Michigan grapevine. Therefore, this 
is the first study to investigate the genetic diversity of the 
B. cinerea population in Michigan grapes in combination with 
fungicide sensitivity phenotypic characteristics. Our objectives 
were to study the population structure of MI isolates of 
B.  cinerea related to year, location, fungicide resistance, and 
to compare the use of microsatellite and amplicon-based 
sequencing SNP strategies to quantify genetic diversity and 
population structure.

MATERIALS AND METHODS

Isolates and DNA Extractions
A total of 82 B. cinerea isolates were collected from four 
Michigan vineyards, three southwest and one northwest Michigan 
locations (Supplementary Table 1). The “West” Michigan 
vineyard location represents B. cinerea isolates recovered from 
a Vitis interspecific hybrid (cv. Vignoles), and “Southwest” 
Michigan vineyards 1 and 2 are also hybrids recovered from 
cultivars Vignoles and Aurora, respectively. Finally, the 
“Northwest” Michigan samples were recovered from symptomatic 
Vitis vinifera (cv. Reisling).

These locations were sampled in both 2014 and 2018, where 
42 and 40 samples were collected in 2014 and 2018, respectively, 
with at least eight isolates per location. Throughout the study, 
isolates were maintained on 20% clarified V8 agar media 
(100  ml of V8 juice, 1  g of CaCO3, 10  g of agar, and 400  ml 
of distilled water) at room temperature. All isolates were 
previously evaluated for fungicide resistance against eight 
fungicides with seven different chemical classes (Alzohairy 
et  al., 2020). For each isolate, a multiple fungicide resistance 
(MFR) value was determined based on the total number of 
fungicides an isolate demonstrated resistance toward. For DNA 
extraction and quantification, we  followed Alzohairy et  al. 
(2020); in brief, mycelia were collected from 1- to 2-week-old 
cultures. Mycelia were lyophilized, then approximately 5  mg 
of tissue was ground using a tissuelyser (Qiagen, Valencia, 
CA). Automated DNA extraction was performed using a MagMax 
plant DNA isolation kit (ThermoFisher 192 Scientific, Waltham, 
MA) and processed on the KingFisher Flex purification system 
(ThermoFisher Scientific). For DNA quantification, we  used 
two methods: first, DNA samples were processed with a Qubit 
1X dsDNA HS assay kit (ThermoFisher Scientific), then DNA 

concentrations were quantified by a Qubit 4 fluorometer 
(ThermoFisher Scientific); second, DNA samples were processed 
using PicoGreen Quant-iT DNA reagent and kits (ThermoFisher 
Scientific), then DNA concentrations were determined using 
the Synergy HTX multi-mode reader (Biotec, VT). Insufficient 
DNA was available for all 82 isolates for both microsatellite 
and SNP evaluation, and only 74 isolates were consistent 
between the two datasets.

Multiplex PCR and Sequencing
Candidate Genes and Neutral Markers
Candidate genes were selected to screen for resistance-
associated mutations in β-tubulin (tub), sdhB, cytochrome 
b (cytb), and keto-reductase (erg27), mating type (Mat1-1 
and Mat1-2), transposable element (Flipper), virulence (Nep1 
and mrr1), and species identification (G3PDH, ITS, RPB2, 
and HSP60; Supplementary Table 2). Previously published 
primer sets for diversity testing using SSRs were also 
included (Fournier and Giraud, 2008; Delong et  al., 2020; 
Supplementary Table 2). Primers for candidate genes were 
designed using Primer3 software (Koressaar et  al., 2009; 
Untergasser et al., 2012) and screened using the three-primer 
method (Delong et  al., 2020). All markers were validated 
on a subset of 15 Botrytis isolates using the following 25  μl 
PCR reaction; 12.5  μl of 2× GoTaq Green Master Mix 
(Promega Corp.), 1  μl of 10  μM forward primer, 1  μl of 
10  μM reverse primer, 1  μl of DNA template (50  ng/μl), 
and 9.5  μl of sterile double-deionized water (sddH2O). 
Reaction conditions were 95°C for 2 min followed by 30 cycles 
of denaturation at 95°C for 30  s, annealing at 60°C for 
30 s, and extension at 72°C for 1 min, then a final extension 
at 72°C for 5  min. The PCR products were separated by 
electrophoresis at 65  V for 1.5  h on ethidium bromide 
stained (10  μg/ml) 1.5% agarose gel, then visualized under 
the UV light for validation. All primer sets successfully 
produced clear bands within the expected size range for 
the 15 isolates. Designed primers were aligned to the reference 
genome B05.10 (ASM83294v1 http://fungi.ensembl.org/
Botrytis_cinerea/Info/Index) using Geneious Prime v 2020.2.1 
to determine the expected SNP locations.

Design of Multiplex Primer Sets
Primers (microsatellite and candidate genes) were grouped in 
sets of five, six, or eight-plex for simultaneous amplification 
of Botrytis target genes. Grouping was based on the following 
parameters: (1) expected amplicon size, with at least 30-bp 
difference between each amplicon for clear validation by gel 
electrophoresis and (2) the same annealing temperature. Since 
the presence of multiple oligonucleotides in one PCR reaction 
could alter the efficiency of amplification, several combinations 
of primer concentrations (0.2–0.4  μM) were tested in parallel 
in a single-plex and in multiplex formats using the cycling 
conditions mentioned above. Amplicons were separated by 
electrophoresis at 50  V for 2  h on ethidium bromide-stained 
(10  μg/ml) 4% agarose gel and visualized under the UV light 
for validation of band presence.
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Multiplex PCR and Samples Pooling
After primer validation, multiplex groups (five-, six-, or eight-
plex) were used to amplify Botrytis target regions on all 82 
isolates. For each multiplex PCR reaction, each isolate was 
amplified using QIAGEN Multiplex PCR Kit (Qiagen) as follows: 
5  μl of 2× QIAGEN Multiplex PCR master mix (Qiagen), 1  μl 
of 10× primer mix, 2  μl of DNA template (50  ng/μl), and 
2  μl of sddH2O. Reaction conditions were 95°C for 2  min 
followed by 30 cycles of denaturation at 95°C for 30 s, annealing 
temperature varied between 50 and 60°C (based on primer 
design) for 30  s, and extension at 72°C for 1  min and, then, 
a final extension at 72°C for 5  min. For sample DNA pooling, 
the multiplex PCR products were grouped by isolates as follows: 
for each isolate, 5 μl from each multiplex group was transferred 
to new PCR plates to end up having a total of 15  μl of DNA 
per isolate, representing three multiplex groups (5  μl each). 
DNA was diluted 1:10 using sddH2O in PCR plates for 
quantification using Qubit dsDNA HS Assay Kit (ThermoFisher 
Scientific) following the manufacture procedure. Concentrations 
were adjusted to 2–10  ng/μl of DNA and submitted to the 
Research Technology Support Facility (College of Natural Science, 
Michigan State University) for sequencing using a 250-bp 
paired-end MiSeq.

Single-Nucleotide Polymorphism 
Processing and Alignments
Quality control, processing, read alignments, and SNP calling 
were completed using the Galaxy bioinformatics server.1 Reads 
were trimmed using Trimmomatic (v0.38.0) with paired-end 
adapter trimming for Illumina MiSeq and HiSeq adapters. Reads 
shorter than 30 bp were removed, and read quality was assessed 
using a sliding window of 4 bp with a quality ≥20. Overrepresented 
sequences, GC content, and read quality were visualized using 
FastQC. Single reads (reads without a corresponding mate) were 
not retained for downstream analyses. Mapping was performed 
using Bowtie2, read groups (Sam/Bam format) were automatically 
set, and alignments were based on the sensitive local parameters 
to the B. cinerea reference genome (Van Kan et  al., 2017). 
Unaligned reads were output to a separate file. Sam files were 
merged for downstream analysis. Single-nucleotide polymorphisms 
(SNPs) and insertions/deletions (indels) were identified for each 
isolate using FreeBayes. Indels were left aligned, and 60% of 
the observations were required for an alternate allele to 
be suggested within an individual. The variant call format (VCF) 
file was further filtered using TASSEL 5 (v20180222) to remove 
sites present in fewer than 10 individuals. The resulting VCF 
with 496 SNPs was used for all downstream analyses. An SNP 
was considered to be associated with a primer set, if the variant 
fell within the mapped boundaries of the forward and reverse 
primer visualized with Geneious Prime.

Microsatellite Genotyping
Published microsatellites were evaluated across 74 isolates using 
a three-primer method as previously described (Schuelke, 2000; 

1 https://usegalaxy.org/

Delong et al., 2020; Supplementary Table 1). PCR was carried 
out in 25-μl reactions with 12.5  μl of 2× GoTaq Clear 
Master Mix (Promega Corp. Madison, WI), 0.75 μl of 10 μM 
forward primer, 1.25  μl of 10  μM 5' 6FAM-labeled M13 
tag primer, 2.0  μl of 10  μM reverse primer (Invitrogen Inc. 
Carlsbad, CA), 7.5 μl of sddH2O, and 1.0 μl of approximately 
25.0  ng/μl of DNA template. Reaction conditions were 95°C 
for 2  min followed by 29  cycles of denaturation at 95°C 
for 30  s, annealing (temperature varied between 50 and 
60°C, specific to optimal temperature based on primer design) 
for 30  s, extension at 72°C for 30  s, followed by a final 
extension at 72°C for 5 min. One microliter of PCR product 
was added to 0.3  μl of GeneScan 500 LIZ-labeled size 
standard and 9.7 μl of Hi-Di formamide (Applied Biosystems 
Inc. Foster City, CA). Amplicons were denatured by incubation 
at 95°C for 5  min and immediately placed on ice. Fragment 
analysis was conducted on an Applied Biosystems 3730xl 
96-capillary DNA Analyzer. Geneious Prime v.11.0.3 (Kearse 
et  al., 2012) was used to determine allele sizes based on 
electropherograms. Isolates with >33% missing data (missing 
a peak or a failed reaction) were removed from the dataset. 
Microsatellite data were clone corrected using Poppr (v 2.8.6) 
implemented within R (v 4.0.2; R Development Core Team, 
2012). Seventy isolates were retained for use with all 
downstream analyses.

Genetic Diversity and Population Structure
For both the SNP and the microsatellite data sets, genetic 
diversity, and analysis of molecular variance (AMOVA) were 
calculated for the population based on location, year, and 
fungicide resistance using Poppr. Insufficient resistant or 
sensitive isolates were available for fludioxonil or pyraclostrobin, 
and thus, AMOVAs were not conducted for these fungicides. 
For the microsatellite data, MFRs for 1, 2, 3, 4, 5, and 6+ 

TABLE 1 | Single-nucleotide polymorphism (SNP) distribution across the Botrytis 
genome.

Chromosome Number of SNPs

1 104
2 8
3 16
4 17
5 77
6 46
7 19
8 41
9 15
10 36
11 3
12 32
13 20
14 39
15 23
16 -
17 -
18 -
Total 496
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were compared due to an insufficient number of isolates 
in the 6 and 7 categories. Genetic distance trees were 
generated using a UPGMA tree based on Provesti’s distance 
(Parada-Rojas and Quesada-Ocampo, 2018).

RESULTS

Single-Nucleotide Polymorphism-Based 
Diversity
The number of reads per isolate ranged from 14,000 to 32,000 
and the percentage of reads mapped to the reference genome 
ranged from 95 to 99.92% (Supplementary Table 3). 
Overrepresented sequences ranged from 7 to 11 sequences 

per isolate. On average, each isolate had 23,844 reads with 
nine overrepresented sequences and 97% of reads mapping 
to the reference genome. When BLASTed against the Botrytis 
genome, unaligned reads were able to be  aligned or were 
determined to be  Botrytis but not in the nuclear reference 
genome (e.g., Cyt b and Mat1-2). SNP distribution across 
the genome ranged from three SNPs on chromosome 11 to 
101 SNPs on chromosome 1 with a total of 496 SNPs detected 
post filtering used for subsequent analyses (Table  1). No 
SNPs were identified on chromosomes 16, 17, or 18, consistent 
with primer design (Figure 1). The greatest number of positional 
variants was detected for products associated with primer 
sets NEPO5, Bc_pop22, alpha 1, Flip3, Bc_pop16, Bc_pop59, 
Bc_pop82, and mrr1 (Table  2).

FIGURE 1 | Single-nucleotide polymorphism (SNP) distribution (orange ticks) across each chromosome (green bars) of the Botrytis cinerea genome for B. cinerea 
isolates collected from Michigan vineyards.
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Multilocus statistics for the population grouped by year 
showed that the standardized index of association was significant 
at 0.0428 and 0.0189 for 2014 and 2018, respectively (Table  3; 
Figures 2A,B). A greater number of unique multilocus genotypes 
(MLGs) was detected in 2014 than in 2018, but the total 
number of MLGs between years was similar. A small (1.6%) 

yet significant (p  =  0.049) difference was detected between 
isolates collected in 2014 and those collected in 2018 (Table 4). 
G’ST was 0.060 and Nei’s unbiased genetic diversity for the 
two populations was 0.122 (2014) and 0.113 (2018). The greatest 
SNP contribution was from marker N_Bc_pop90 on chromosome 1 
at position 2,341,856 (Supplementary Figure 1).

TABLE 2 | Mapped position of primer sets relative to the Botrytis cinerea reference genome and the total number of positional SNPs located within the product 
boundaries.

Primer Gene name Purpose Chromosome Starting position of 
primer

End position of 
primer

No. of SNPsx

HMG3 MAT1-2 HMG Mating type 1 Not in reference 2,909,239 9
HMG2 MAT1-2 HMG Mating type 1 Not in reference 2,629,868 1
NEPO5 NEP1 Virulence 6 2,351,497 2,351,754 17
Bc3 Microsatellite 1 277,529 277,750 7
N_Bc_pop22 BC1G_00215 Microsatellite 1 2,591,465 2,591,645 15
N_Bc_pop72 BC1G_00283 Microsatellite 1 2,431,994 2,432,202 4
N_Bc_pop90 BC1G_00324 Microsatellite 1 2,341,658 2,341,889 0
Alpha1 MAT1-1 α Mating type 1 815,137 815,347 8
Flip3 Flipper Transposable element 14,12 1,589,025, 8,353 15,889,046, 8,550 10, 18
N_Bc_pop17 BC1G_15884 Microsatellite 10 2,266,952 2,267,104 2
N_Bc_pop53 BC1G_03602 Microsatellite 10 1,923,167 1,923,342 4
N_Bc_pop78 BC1G_13432 Microsatellite 10 1,225,628 12,258,899 3
N_Bc_pop81 BC1G_05124 Microsatellite 10 446,603 446,476 5
N_Bc_pop48 BC1G_04625 Microsatellite 11 1,297,541 1,297,660 1
N_Bc_pop89 BC1G_13854 Microsatellite 12 2,288,599 2,288,797 4
MS5 MS547 Species Id 12 1,034,628 1,034,861 2
N_Bc_pop16 BC1G_04929 Microsatellite 13 1,213,165 1,213,421 15
N_Bc_pop35 BC1G_06422 Microsatellite 13 2,027,869 2,028,138 1
N_Bc_pop36 BC1G_11998 Microsatellite 14 1,261,613 1,261,855 5
N_Bc_pop38 BC1G_11999 Microsatellite 14 1,264,180 1,264,320 1
RPB1 RPB2 Species Id 14 703,587 730,818 13
N_Bc_pop34 BC1G_11591 Microsatellite 15 1,868,719 1,868,992 1
N_Bc_pop57 BC1G_13682 Microsatellite 15 655,984 656,108 1
G3P4 G3PDH Species Id 15 731,751 731,978 1
N_Bc_pop85 BC1G_08081 Microsatellite 2 1,983,066 1,983,741 2
N_Bc_pop12 BC1G_11679 Microsatellite 3 2,515,919 2,516,035 2
N_Bc_pop62 BC1G_06127 Microsatellite 3 2,148,252 2,148,353 2
N_Bc_pop79 BC1G_06541 Microsatellite 3 907,286 907,387 1
Bchch2 Bc-hch Group II Vs Group I 3 1,379,221 1,379,288 6
N_Bc_pop13 BC1G_04200 Microsatellite 4 1,606,579 1,606,693 3
N_Bc_pop29 BC1G_10612 Microsatellite 4 556,235 556,349 1
N_Bc_pop87 BC1G_03782 Microsatellite 4 1,897,120 1,897,233 1
N_Bc_pop55 BC1G_01555 Microsatellite 5 65,880 1,066,113 6
N_Bc_pop24 BC1G_05702 Microsatellite 6 1,203,520 1,203,684 3
N_Bc_pop31 BC1G_05733 Microsatellite 6 1,132,149 1,132,260 1
Bc9 Microsatellite 7,2 651,438 27,728,787 4
N_Bc_pop42 BC1G_02801 Microsatellite 7 828,575 828,792 3
HSP5 HSP60 Species Id 7 1,919,752 1,919,977 4
Bc8 Microsatellite 8 1,446,040 1,446,166 2
N_Bc_pop20 BC1G_07837 Microsatellite 8 767,428 767,625 1
N_Bc_pop50 BC1G_14573 Microsatellite 8 78,528 78,698 1
N_Bc_pop52 BC1G_07540 Microsatellite 8 1,501,117 1,501,358 4
N_Bc_pop14 BC1G_12133 Microsatellite 9 1,570,300 1,570,551 1
N_Bc_pop19 BC1G_12993 Microsatellite 9 1,095,632 1,097,796 5
N_Bc_pop71 BC1G_07681 Microsatellite 9 23,238,313 2,328,489 5
N_Bc_pop59 BC1G_01708 Microsatellite 5 2,263,846 2,263,972 7
N_Bc_pop82 BC1G_12477 Microsatellite 5 635,736 635,929 9
mrr3 mrr1 Group S 5 681,986 682,243 37
Cytochrome b Cytochrome b Fun resistance 3,8,9 (mitochondrial) - - -
Erg27 Erg27 Fun resistancey 3 1,724,223 1,724,411 2
sdhB sdhB Fun resistance 1 1,792,746 1,793,044 1
tubA tubA Fun resistance 1 2,812,981 2,813,092 1

xNumber of individual positional SNPs found within the primer boundaries.
yFungicide resistance.
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When grouped by location (West, Southwest 2, Northwest, 
and Southwest 1), overall G’ST was 0.154. Both the genetic 
distance tree and AMOVA showed no significant differences 
based on location among isolates (p  >  0.05; Figure  3). The 
standardized index of association for each location was significant, 
0.025–0.074. The highest rbarD was detected at Southwest 1, 
and Southwest 2 had the highest number of MLGs (Table  3). 
The greatest SNP contribution was from position 1,783,010 

located on chromosome 1, which was not located within the 
aligned primer boundaries for any of the primer sets evaluated 
(Table  2; Supplementary Figure 2). When grouped by MFR, 
significant variation (p  =  0.004, 7.76%) was explained by the 
populations (Table  5). When grouped by individual fungicide 
resistances, fluopyram, cyprodinil, and fenhexamid had no 
significant variation between resistant and sensitive populations. 
Thiabendazole, iprodione, and boscalid all had moderate 

TABLE 3 | Multilocus statistics based on amplicon sequencing for Botrytis isolates grouped by year or location of collection.

Pop Nt MLGu eMLGv Hw Lambdax Hexpy rbarDz

2018 39 39 39 3.66 0.974 0.113 0.0189
2014 42 42 39 3.74 0.976 0.122 0.0428
Total 81 81 39 4.39 0.988 0.118 0.0251
West 20 20 18 3 0.95 0.1125 0.0341
Southwest 1 18 18 18 2.89 0.944 0.0898 0.0735
Southwest 2 25 25 18 3.22 0.96 0.1169 0.0452
Northwest 18 18 18 2.89 0.944 0.0911 0.047
Total 81 81 18 4.39 0.988 0.1181 0.0251

tNumber of isolates observed.
uMultilocus genotypes observed.
vNumber of expected multilocus genotypes.
wShannon-Weiner index of MLG diversity (Stoddart and Taylor, 1988).
xSimpson’s index (Simpson, 1949).
yNei’s unbiased gene diversity (Nei, 1978).
zStandardized index of association.

A C

B D

FIGURE 2 | Index of Association for Botrytis cinerea isolates collected in Michigan in 2014 (A,C) and 2018 (B,D) using SNP (A,B) or microsatellite (C,D) markers.
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variability (7.7–10%) explained between the resistant and sensitive 
populations (Table  5).

Microsatellite-Based Diversity
Alleles identified in the population ranged from four to seven, 
with an average of 5.89 alleles per locus and a total of 53 
alleles across all nine markers (Table 6). After clone correction, 

56 original multilocus genotypes were identified when grouped 
by year. Both years had a similar number of MLG identified 
(30 vs. 27), and the standardized index of association (rbarD) 
for the populations ranged from 0.040 to 0.029  in 2014 and 
2018, respectively (Figures  2C,D). Hedrick’s GST across all 
markers was 0.044 (Hedrick, 2005; Meirmans and Hedrick, 
2011). AMOVA revealed no significant variation explained by 
grouping the population by year. When grouped by location, 
genetic diversity was similar across populations (Hexp  =  0.61–
0.64), but rbarD varied widely with slightly negative values 
for Southwest 2 and West (−0.003 and −0.002, respectively) 
and a large positive value (0.15) for Southwest 1 (Table  7). 
However, AMOVA revealed no significant variation explained 
when grouped by location (p  =  0.069).

When grouped by fungicide resistance (individual or MFR), 
no significant variability was detected between resistant and 
sensitive populations for cyprodinil, iprodione, or fenhexamid. 
MFR was grouped into categories designated 3 (0–3), 4, and 
5 (5–7) because insufficient numbers of isolates had resistance 
to 0, 1, 2, 6, or 7 fungicides. AMOVA results indicated significant 
variability in the population was explained when grouped by 
MFR (0–7) or MFR categories (3, 4, 5; 3.7% at p  =  0.037 
and 4.4% at p  =  0.012, respectively; Table  8). When grouped 
into resistant or sensitive categories for thiabendazole or boscalid, 
14% of the population variability (p  =  0.001) was explained 
(Table  8). When grouped by fluopyram resistance or sensitive 
groupings, 4.4% of the variability was explained (p  =  0.026).

Comparison of Single-Nucleotide 
Polymorphisms and Microsatellite Markers
Both SNP and microsatellite markers were able to identify significant 
population differentiation and genetic diversity in Botrytis isolates 
from Michigan. A greater number of MLG groups was identified 
across the total population and within each location with SNP 
markers compared with microsatellites (Tables 3 and 7). Both 
marker systems demonstrated significant linkage among markers 
and genotypes across both years for rbarD suggesting that 
populations persist across years (Figure  2). For instance, MFR 
groupings were significant using both microsatellites and SNPs; 
however, SNP markers explained a greater proportion of the 
variation by this grouping than microsatellites (7.76% compared 
with 3.68%, respectively.) Thiabendazole and boscalid resistance 
groupings were consistently associated with significant population 
structure. Population structure associated with fluopyram resistance, 
a FRAC 7 similar boscalid, was only significant using the 
microsatellite markers (4.3% at p  =  0.026).

TABLE 4 | AMOVA for Botrytis isolates collected from Michigan grouped by year of collection.

Dfv Sum Sqw MSSx % Variabilityy p

Between pop 1 122.897 122.897 1.616264 0.049
Between samples 79 5,640.1228 71.39396 82.84601 0.001
Within samples 81 495.7978 6.12096 15.53773 0.001

vDegrees of freedom.
wSum of squares.
xMean sum of squares.
yPercentage of the variability explained by the grouping.

FIGURE 3 | Genetic relatedness of Botrytis isolates collected from four 
locations (West, Southwest 1, Southwest 2, and Northwest) in Michigan 
based on UPGMA using 496 SNPs.
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DISCUSSION

In this study, we  evaluated SNP and microsatellite markers for 
their ability to describe genetic diversity and population structure 
in B. cinerea using isolates collected from Michigan vineyards. 
B. cinerea is a globally distributed pathogen with a broad host 
range and widespread fungicide resistance. Thousands of studies 
across the globe have used morphological, genic, microsatellite, 
and other PCR-based markers to characterize genetic diversity 
and population structure of Botrytis spp. The pathogen is genetically 
diverse with closely related morphologically similar species that 
can be  found on the same host or tissue complicate diversity 
studies (Walker et  al., 2011; Li et  al., 2012; Saito et  al., 2016; 
Garfinkel et al., 2017; Rupp et al., 2017b; Hu et al., 2018; Harper 
et al., 2019). While it is widely accepted that population structure 
exists within Botrytis, the degree and factors by which populations 
can be  differentiated has not been consistent. Depending on 
the populations and marker systems tested, population structures 
associated with continent, host, year, and fungicide resistance 
have all been reported at varying levels of differentiation and 

significance (Fournier and Giraud, 2008; Muñoz and Moret, 
2010; Walker et  al., 2015; Delong et  al., 2020; Rupp et  al., 
2017a,b). This variability could be, in part, caused by regional 
differences in Botrytis population composition. Fungicide 
spray programs and the resulting resistance have repeatedly 
been shown to play a large role in Botrytis field population 
composition, but smaller differences caused by host, season, 
or marker resolution may also play a role (Wessels et al., 2016; 
Kozhar et  al., 2020; Testempasis et  al., 2020).

Microsatellites have historically been used to assess genetic 
diversity and population structure because of their widespread 
accessibility, requiring no prior known sequence information, 
highly specialized equipment, or software to analyze. As 
sequencing technologies have become more affordable, SNP-based 
assessment of genetic diversity and population structure has 
become more prevalent (Loera-Sanchez et  al., 2019; Sato et  al., 
2019; Li et  al., 2020; Weldon et  al., 2020). Using sequencing 
data has multiple advantages to microsatellites, primarily that 
no prior sequence information is required, marker transferability 
is not a concern, and sequence information can provide higher 
resolution for individuals (Helyar et  al., 2011; Du et  al., 2019). 
However, studies have shown that for organisms with larger 
genomes, well-designed microsatellites are often more effective 
than small (<400) numbers of SNPs at characterizing 
differentiation (Vali et al., 2008; Müller et al., 2015; Lemopoulos 
et  al., 2018). However, Botrytis, like many fungal organisms, 
has a small genome (<45  Mb) and may not require large 
(>400) numbers of SNPs for accurately differentiating populations 
(Abbott et  al., 2010; Tsykun et  al., 2017; Van Kan et  al., 2017). 
This could be achieved either through whole genome sequencing 
or reduced representation sequencing. However, whole genome 
sequencing may be cost prohibitive for large numbers of isolates. 
Amplicon sequencing, compared with GBS, has the added 
advantage of targeting known regions allowing for comparison 
of genes of interest for isolates across different studies. As more 

TABLE 5 | AMOVA for Botrytis isolates collected from Michigan grouped by fungicide resistance using amplicon sequencing.

Dfv Sum Sqw MSSx % Variabilityy p

Multiple fungicide resistance

Between pop 7 846.1156 120.87366 7.76 0.004
Between samples 73 4,916.9042 67.35485 76.88 0.001
Within samples 81 495.7978 6.12096 15.37 0.001
Thiabendazole
Between pop 1 341.9035 341.90351 9.073096 0.001
Between samples 79 5,421.1163 68.62173 76.034211 0.001
Within samples 81 495.7978 6.12096 14.892693 0.001
Iprodione

Between pop 1 226.9774 226.97737 7.769274 0.002
Between samples 79 5,536.0424 70.07649 77.412891 0.001
Within samples 81 495.7978 6.12096 14.817835 0.001
Boscalid

Between pop 1 181.3381 181.33812 10.13 0.013
Between samples 79 5,581.6817 70.6542 75.54 0.001
Within samples 81 495.7978 6.12096 14.33 0.001

vDegrees of freedom.
wSum of squares.
xMean sum of squares.
yPercentage of the variability explained by the grouping.

TABLE 6 | Marker statistics for Botrytis isolates collected in Michigan using 
microsatellites.

Locus Allele No 1-D Hexp Evenness GST_Hedrick

BC4 7 0.81 0.82 0.86 0.012158
BC5 5 0.28 0.29 0.45 0.022234
BC8 4 0.49 0.5 0.64 0.074574
BC26 7 0.76 0.78 0.81 −0.042828
BC30 6 0.75 0.76 0.84 0.213684
BC32 5 0.63 0.65 0.79 0.096077
BC37 6 0.68 0.7 0.71 −0.00051
BC54 6 0.62 0.63 0.7 0.019629
BC74 7 0.77 0.78 0.8 0.009837
Mean 5.89 0.64 0.66 0.73 0.04449
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Botrytis genomes are sequenced, better target sequences (semi-
conserved with high diversity across isolates, fungicide resistance 
genes, etc.) can be  selected to improve detection.

In this study, we  identified 496 SNPs from 52 amplicons 
and nine microsatellites to characterize 82 and 74 isolates, 
respectively. Both types of markers were able to identify 
genetic diversity and population structure across the shared 
isolates. High levels of clonality were observed between years, 
suggesting that these populations can be  persistent over 
multiple years in perennial crops. In our study, Botrytis 
isolates were collected in 2014 and 2018. When comparing 
genetic diversity between the two marker systems, the 496 
SNPs were only able to distinguish an additional two to 
three MLGs for the locations with the highest number 
(Southwest 1 and Southwest 2), but with the two lower MLG 
locations (West and Northwest), more than six additional 
MLGs were detected. While both types of markers were able 
to differentiate population structure at the multiple fungicide 
resistance level, thiabendazole and boscalid resistance, neither 
marker system was able to detect significant differentiation 
based on location similar to other Botrytis studies (Hu et  al., 
2018; Delong et  al., 2020; Testempasis et  al., 2020). Minor 
differences associated with region were detected with 

microsatellite markers, but were not significant at the 
p  =  0.05 level. Significant differentiation based on single 
fungicide resistances and year of collection were also detected, 
but differed, between the two marker systems. This could 
be, in part, due to specific known fungicide resistance-
associated loci being included with the SNP data set and 
not necessarily in the microsatellites. Yet microsatellite 
markers were able to differentiate population structure 
associated with a similar number of fungicides as the SNP 
markers. Resistance to multiple fungicides and iprodione 
each explained approximately 7% of the variability observed, 
but boscalid resistance explained the majority of the 
differentiation (10% with SNPs and 14% with microsatellites). 
This is similar to other studies showing that fungicide 
resistance may be  a driving factor in Botrytis population 
structure in agricultural systems (Kozhar et  al., 2020). In 
summary, microsatellites and SNP markers were both effective 
at identifying population structure associated with major 
factors (e.g., fungicide resistance) in Botrytis. However, as 
populations with greater numbers of individuals are evaluated, 
SNP markers will likely be  more cost effective and useful 
for identifying closely related species and minor factors 
associated with population structure.

TABLE 7 | Multilocus statistics based on microsatellites for Botrytis isolates grouped by location of collection.

Pop Nt MLGu eMLGv Hw lambdax Hexpy rbarDz

West 13 13 12 2.56 0.923 0.616 −0.00242
Southwest 1 15 15 12 2.71 0.933 0.644 0.15107
Southwest 2 21 21 12 3.04 0.952 0.637 −0.00376
Northwest 12 12 12 2.48 0.917 0.614 0.07412
Total 61 56 11.7 3.97 0.979 0.646 0.04254

tNumber of isolates observed.
uMultilocus genotypes observed.
vNumber of expected multilocus genotypes.
wShannon-Weiner index of MLG diversity (Stoddart and Taylor, 1988).
xSimpson’s index (Simpson, 1949).
yNei’s unbiased gene diversity (Nei, 1978).
zStandardized index of association.

TABLE 8 | AMOVA for Botrytis isolates collected from Michigan grouped by fungicide resistance using microsatellites.

Dfv Sum Sqw MSSx %% Variabilityy p

Multiple fungicide resistance

Between samples 2 16.30676 8.15338 4.398508 0.012
Within samples 55 244.02321 4.436786 95.601492
Thiabendazole

Between samples 1 19.17995 19.179954 14.04678 0.001
Within samples 54 233.69633 4.32771 85.95322
Boscalid

Between samples 1 18.14639 18.146391 14.17922 0.001
Within samples 58 345.84913 5.962916 85.82078
Fluopyram

Between samples 1 8.399909 8.399909 4.327576 0.026
Within samples 55 248.778799 4.523251 95.672424

vDegrees of freedom.
wSum of squares.
xMean sum of squares.
yPercentage of the variability explained by the grouping.
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