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In bacteria, DnaA is the most conserved DNA replication initiator protein. DnaA is a
DNA binding protein that is part of the AAA+ ATPase family. In addition to initiating
chromosome replication, DnaA can also function as a transcription factor either as
an activator or repressor. The first gene identified to be regulated by DnaA at the
transcriptional levels was dnaA. DnaA has been shown to regulate genes involved in
a variety of cellular events including those that trigger sporulation, DNA repair, and cell
cycle regulation. DnaA’s dual functions (replication initiator and transcription factor) is
a potential mechanism for DnaA to temporally coordinate diverse cellular events with
the onset of chromosome replication. This strategy of using chromosome replication
initiator proteins as regulators of gene expression has also been observed in archaea
and eukaryotes. In this mini review, we focus on our current understanding of DnaA’s
transcriptional activity in various bacterial species.
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INTRODUCTION

DnaA is a multifunctional protein that can serve as a master regulator in bacteria. DnaA is
composed of four structural domains with some species-specific variations: (I) protein–protein
interaction domain, (II) linker domain, (III) AAA+ ATPase domain, and (IV) DNA binding
(helix–turn–helix) domain (Fujikawa et al., 2003; Duderstadt and Berger, 2013) (Figure 1A).
The two functions of DnaA that are best understood are as an initiator of chromosome
replication and as a transcription factor. DnaA and/or the onset of chromosome replication
have been linked to cell size regulation and chromosome segregation; however, details about
these links remain unclear (Lobner-Olesen et al., 1989; Hill et al., 2012; Mera et al., 2014).
As a replication initiator, DnaA opens the origin of replication (ori) by binding at specific
DNA sequences referred to as DnaA boxes (Fuller and Kornberg, 1983; Bramhill and Kornberg,
1988). This function has been extensively studied, and mechanistic questions continue to be
articulated (recent reviews; Hansen and Atlung, 2018; Frandi and Collier, 2019; Leonard et al.,
2019; Ozaki, 2019; Kohiyama, 2020). In this mini review, we focus on the transcriptional
activity of DnaA and its role in modulating various cellular events (Figure 1B). DnaA has
been shown to have a global transcriptional impact because it regulates the expression levels
of other global regulators involved in cell cycle progression and developmental processes
(Figure 2). The specific genes found in DnaA’s transcriptional regulon vary significantly
depending on the bacterial species. To begin, we will discuss the ability of DnaA to autoregulate
its levels as a way to provide context for the importance of its transcriptional activity.
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FIGURE 1 | Cellular impact from transcriptional activity of DnaA.
(A) Schematic of the promoter region of dnaA in Escherichia coli and
conserved domains of the DnaA protein. Within the promoter region, purple
boxes depict ATP-specific DnaA boxes and green boxes have no
nucleotide-bound DnaA specificity. (B) Cellular processes from different
bacterial species shown to be influenced by DnaA’s transcriptional activity.
Thickness of arrow is an approximate representation of the amount of
evidence that exists for that particular process.

AUTOREGULATION OF dnaA
EXPRESSION

The ability of DnaA to autoregulate its transcription was
discovered at a time when the direct role of DnaA in
chromosome replication was not yet clear. Early characterizations
of temperature-sensitive dnaA mutants of Escherichia coli
revealed that the copy number of ori decreased, while DnaA levels
increased simultaneously at nonpermissive temperatures, thus
accurately predicting that DnaA had a positive involvement in the
onset of chromosome replication and a negative involvement in
regulating its own synthesis (Hanna and Carl, 1975; Hansen and
Rasmussen, 1977). DnaA’s ability to repress its own transcription
was later confirmed using in vitro and in vivo analyses. In vitro,
DnaA was shown to directly bind dnaA’s promoter region using
gel shift assays and DNase footprinting methods (Braun et al.,
1985; Wang and Kaguni, 1987). In vivo, two strategies were
used to show that DnaA represses its own transcription. First,
increased cellular levels of DnaA (expressed from inducible
promoters) were shown to decrease the activity of the dnaA
promoter, and second, decreased DnaA levels able to bind the
dnaA promoter (by adding dnaA binding sites on a plasmid that
titrated DnaA levels away) were shown to increase the activity
of the dnaA promoter (Atlung et al., 1985; Braun et al., 1985;
Kucherer et al., 1986; Hansen et al., 1987).

In E. coli, the expression of dnaA is regulated from two
promoters: dnaAp1 and dnaAp2 ((Hansen E. B. et al., 1982;
Hansen F. G. et al., 1982) (Figure 1A). DnaA can repress its
own expression from both promoters with dnaAp2 being a
threefold stronger promoter than dnaAp1 (Atlung et al., 1984,
1985; Braun et al., 1985; Kucherer et al., 1986; Chiaramello and
Zyskind, 1990). A 9-mer DnaA box with the consensus sequence
TTATCCACA was first identified between dnaAp1 and dnaAp2
explaining the mechanism of autoregulation (Hansen F. G. et al.,
1982). Intriguingly, the elimination of this DnaA box on dnaA’s
promoter did not fully eliminate the autoregulation of dnaA
expression, leading to the hypothesis of indirect mechanisms
(Polaczek and Wright, 1990; Smith et al., 1997). The mystery
was solved by the identification of DnaA-ATP-specific DnaA
boxes (AGATCT) that were involved in full repression of dnaA
expression (Speck et al., 1999). In addition to the autoregulation
by DnaA, the transcription of E. coli dnaA is regulated at multiple
levels and by various other proteins, including DNA methylation,
second messenger ppGpp, growth rate, SeqA, Fis, IciA (ArgP),
and QseB (Braun and Wright, 1986; Kucherer et al., 1986;
Campbell and Kleckner, 1990; Chiaramello and Zyskind, 1990;
Polaczek and Wright, 1990; Zyskind and Smith, 1992; Lu et al.,
1994; Froelich et al., 1996; Lee et al., 1996; Hansen and Atlung,
2018; Riber and Lobner-Olesen, 2020; Wu et al., 2021).

Besides E. coli, autoregulation by DnaA directly binding at its
promoter region has been confirmed in Bacillus subtilis (Ogura
et al., 2001), Vibrio harveyi (Berenstein et al., 2002), Streptomyces
lividans (Zakrzewska-Czerwinska et al., 1994; Jakimowicz et al.,
2000), and in slow-growing mycobacteria (Salazar et al., 2003). In
Pseudomonas putida, 12 DnaA boxes were identified on its dnaA
promoter region (Fujita et al., 1989). However, when the levels
of DnaA from P. putida were increased (by inducible expression
from plasmid), repression of dnaA expression was not observed
in P. putida. Interestingly, the overexpression of dnaA (only the
open reading frame) from E. coli under the same broad host
range plasmid construct in P. putida does result in repression of
dnaA’s transcription (Ingmer and Atlung, 1992). The function, if
any, of the 12 DnaA boxes in P. putida dnaA promoter remains
to be determined. Likewise, in Caulobacter crescentus, the role
that DnaA plays in its transcriptional regulation remains unclear.
Transcription of dnaA in C. crescentus has been proposed to
be regulated by methylation status of the promoter region and
by a cis-acting element upstream of the -35 promoter region
(Collier et al., 2007; Cheng and Keiler, 2009; Felletti et al., 2019;
Frandi and Collier, 2019).

NUCLEOTIDE SWITCH REGULATES THE
TRANSCRIPTIONAL ACTIVITY OF DnaA

Both activities of DnaA (transcription factor and replication
initiator) can be modulated using an ATP-dependent molecular
switch. In E. coli, DnaA can be found inside the cell tightly
bound to ATP (Kd 30 nM) or bound to ADP (Kd 100 nM)
(Sekimizu et al., 1987). The protein Hda (homologous to DnaA)
and chromosomal loci datA promote hydrolysis of DnaA–ATP
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FIGURE 2 | DnaA regulates the transcription of other global regulators. (A) In Caulobacter crescentus, DnaA is part of a genetic network responsible for regulating
the forward progression of the cell cycle. (B) In Bacillus subtilis, DnaA indirectly inhibits the phosphorylation of Spo0A, a global regulator of sporulation and entrance
to stationary phase.

to DnaA–ADP in E. coli (Kato and Katayama, 2001; Kasho and
Katayama, 2013). The cellular ratio of DnaA–ATP to DnaA–ADP
changes as the cell progresses over the cell cycle. Although DnaA–
ATP and DnaA–ADP bind ori, only DnaA–ATP can open ori and
initiate replication in E. coli (Sekimizu et al., 1987; Mizushima
et al., 1996). As a transcription factor, the nucleotide switch has
been shown to turn DnaA into a stronger repressor or stronger
activator depending on the bound nucleotide. The ability of
DnaA’s transcriptional activity to be regulated with this switch
was first identified in the autoregulation of dnaA’s transcription
in E. coli (Speck et al., 1999). DnaA–ATP is able to fully repress
the expression of dnaA, whereas DnaA–ADP can only repress up
to 40%. By distinguishing the nucleotide bound to DnaA, four
new DnaA boxes were identified in the promoter region of dnaA
with specificity for DnaA–ATP and potential cooperative binding
(Speck et al., 1999).

The second example of this switch involves the synthesis
of DNA substrates in E. coli. Ribonucleotide reductase (RNR)
encoded by nrdAB catalyzes the reduction of ribonucleotides
to deoxyribonucleotides (Thelander and Reichard, 1979). In
E. coli, DnaA regulates the expression of nrdAB by binding the
promoter region that contains three DnaA boxes: two boxes do
not have specificity for the nucleotide-bound DnaA, and one box
is specific for DnaA–ATP (Tuggle and Fuchs, 1986; Augustin
et al., 1994; Jacobson and Fuchs, 1998; Olliver et al., 2010). DnaA
can activate or repress the expression of nrdAB based on the
nucleotide bound to DnaA and based on the levels of DnaA. For
instance, cells expressing DnaA variants that are deficient for ATP
binding or hyperactive for ATPase activity display an increased
expression of nrdAB (Gon et al., 2006; Babu et al., 2017). Thus,
high levels of DnaA-ATP repress the transcription of nrdAB
presumably by precluding RNA polymerase from binding the
promoter region (Olliver et al., 2010). Conversely, DnaA–ADP

or low levels of DnaA–ATP bound at the high-affinity DnaA
boxes in nrdAB promoter region can activate nrdAB transcription
by stabilizing the RNA polymerase–DNA complex (Augustin
et al., 1994; Olliver et al., 2010). Although the expression of RNR
coincides with the onset of chromosome replication (Sun and
Fuchs, 1992), DnaA seems to only regulate the expression levels
and not necessarily the timing of nrdAB expression (Sun et al.,
1994; Olliver et al., 2010). Interestingly, the expression of dnaA
and nrdAB in E. coli share two other regulators besides DnaA: Fis
and IciA (Augustin et al., 1994; Froelich et al., 1996; Lee et al.,
1996; Han et al., 1998). In B. subtilis and C. crescentus, DnaA
has also been proposed to act as a transcriptional regulator of
genes encoding RNR (Goranov et al., 2005; Hottes et al., 2005),
although no detailed analyses has been performed to determine if
DnaA’s nucleotide switch is also involved.

In C. crescentus, DnaA-ADP (not DnaA-ATP) has been
proposed to activate the transcription of a set of three essential
genes encoding proteins involved in cell cycle regulation: FtsZ
(tubulin-like protein essential for cell division), MipZ (inhibitor
of FtsZ polymerization), and GcrA (global transcription factor)
(Fernandez-Fernandez et al., 2011). The expression of the
hyperactive replication initiator variant DnaAR357A resulted
in C. crescentus cells over-initiating replication (Fernandez-
Fernandez et al., 2011; Wargachuk and Marczynski, 2015). The
corresponding variant in E. coli (DnaAR334A) was shown to bind
ATP but was unable to hydrolyze ATP (Nishida et al., 2002). In
C. crescentus, DnaAR357A variant was shown to lose its ability
to activate the transcription of ftsZ, mipZ, and gcrA (Hottes
et al., 2005; Fernandez-Fernandez et al., 2011). In B. subtilis,
most chromosomal regions that bind DnaA displayed higher
specificity for DnaA-ATP over DnaA-ADP in vitro (Smith and
Grossman, 2015), suggesting a potential wide usage of DnaA’s
nucleotide switch to modulate the transcriptional activity of

Frontiers in Microbiology | www.frontiersin.org 3 June 2021 | Volume 12 | Article 662317

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-662317 May 26, 2021 Time: 18:31 # 4

Menikpurage et al. DnaA as Transcription Factor

DnaA. However, the mechanism(s) that regulate differences
in DNA binding specificity between DnaA–ATP and DnaA–
ADP remain unclear.

DnaA’S GLOBAL TRANSCRIPTIONAL
REGULATION

Identifying the complete transcriptional regulon of DnaA is
complex due to the essential function of DnaA as a replication
initiator and the role that replication initiation plays in the
progression of the cell cycle. Work on C. crescentus and
B. subtilis utilized innovative approaches to separate DnaA’s
transcriptional activity from its function as a replication
initiator (Hottes et al., 2005; Washington et al., 2017). One major
finding from these whole-cell transcriptional analyses is that
the transcriptional activity of DnaA can have a global effect
on the cell. Aside from DnaA regulating the expression of
various important genes, DnaA has also been found to be
part of genetic networks where DnaA (directly or indirectly)
regulates the expression of other transcription factors that
are themselves global regulators (Figure 2). A global analysis
of DnaA’s transcriptional activity remains to be determined
for E. coli.

To identify the transcriptional regulon of DnaA in
C. crescentus, Hottes et al. (2005) took advantage of the
ability to synchronize the Caulobacter cell cycle in a strain with
dnaA’s expression regulated from an inducible promoter. DnaA-
dependent and DnaA-independent changes were identified by
comparing transcriptional profiles of cells grown expressing
dnaA with cells whose dnaA expression was delayed. This
study focused on DnaA-dependent changes of genes whose
expression increased during the transition from G1 to S phase.
Of the 40 genes identified to be DnaA-dependent, 13 genes
included DnaA boxes on their promoter region, and three genes
(gcrA, ftsZ, and podJ) were shown in vitro to have promoter
regions with affinity for purified His6DnaA. Notably, one of the
DnaA-dependent genes identified was the gene encoding for
GcrA, the global regulator of Caulobacter cell cycle (Holtzendorff
et al., 2004) (Figure 2). The role of DnaA in the progression
of the cell cycle has been predicted to be widely conserved
among alpha proteobacteria (Panis et al., 2015). In the two
alpha proteobacteria model systems C. crescentus (Hottes et al.,
2005; Collier et al., 2006) and the plant symbiont Sinorhizobium
meliloti (De Nisco et al., 2014), DnaA has been shown to be
a key component of a closed genetic network that drives the
progression through G1–S–G2.

In B. subtilis, the transcriptional regulon of DnaA has been
characterized using various in vitro and in vivo high-throughput
analyses (Goranov et al., 2005; Ishikawa et al., 2007; Cho et al.,
2008; Breier and Grossman, 2009; Hoover et al., 2010; Smith and
Grossman, 2015). To isolate the transcriptional activity of DnaA
from DNA replication, Washington et al. (2017) eliminated
DnaA’s essential role in replication by using a strain that initiates
chromosome replication from the plasmids oriN by the plasmids
replication initiator RepN. This B. subtilis strain has its native
ori and the operon flanking it (dnaA–dnaN) knocked out. The

expressions of dnaA and dnaN were engineered at different
loci regulated by two different inducible promoters. Using this
system, 91% of 339 total number of genes that displayed DnaA-
dependent transcriptional regulation were shown to be indirectly
regulated by DnaA via Sda. DnaA regulates the transcription
of sda by directly binding at sda’s promoter region (Burkholder
et al., 2001; Ishikawa et al., 2007; Breier and Grossman,
2009). Sda is an inhibitor of the phosphorelay that ultimately
activates Spo0A, a global regulator of sporulation and stationary
phase gene expression (Figure 2B) (Burkholder et al., 2001;
Rowland et al., 2004; Whitten et al., 2007). Consistent with
previous analyses, Washington et al. identified eight sets of
genes that are directly regulated by DnaA: dnaA-dnaN, sda,
yqeG-M, ywlC, ywcI-sacT, vpr, yyzF-yydABCD, and trmEF-rsmG-
noc (Burkholder et al., 2001; Ogura et al., 2001; Ishikawa et al.,
2007; Washington et al., 2017).

TRANSCRIPTIONAL ACTIVITY OF DnaA
AND ITS ROLE IN DNA REPLICATION

Replication Initiation
Aside from opening the double-stranded ori region, DnaA has
been proposed to regulate the initiation of replication in three
other ways that are dependent on its transcriptional activity.
First, DnaA regulates the levels of the replication initiator
by modulating its own expression in various bacterial species
(as discussed in previous sections). Second, in C. crescentus,
DnaA regulates the levels of the active form of the replication
initiator (DnaA–ATP) by regulating the expression of hdaA
(Collier and Shapiro, 2009). HdaA represses DnaA’s activity as
a replication initiator by promoting the hydrolysis of DnaA–
ATP to DnaA–ADP (Collier and Shapiro, 2009). Third, DnaA’s
transcriptional activity can promote the replication of λ-derived
plasmids via a potential direct interaction between DnaA and the
β-subunit of RNA polymerase (RpoB) (Szalewska-Palasz et al.,
1998b). In E. coli, DnaA’s binding at ori-λ is necessary for
transcriptional activation of ori-λ and also for efficient expression
of λ replication initiator proteins (Szalewska-Palasz et al., 1998a).

DNA Replication
DnaA as a transcription factor regulates the levels of substrates
for DNA synthesis and of components of the replisome
(molecular machinery required for chromosome replication).
In E. coli, DnaA has been shown to repress the expression of
the gua operon involved in purine biosynthesis (Tesfa-Selase
and Drabble, 1992). The role of DnaA in regulating expression
levels of nrdAB (involved in the last step of deoxynucleotide
biosynthesis) has been shown in E. coli and proposed in
C. crescentus (Tuggle and Fuchs, 1986; Augustin et al., 1994;
Jacobson and Fuchs, 1998; Hottes et al., 2005). In E. coli and
B. subtilis, DnaA regulates the transcription of dnaN (DNA
polymerase III, β-subunit) commonly found in the same operon
downstream of dnaA (Hansen F. G. et al., 1982; Ogura et al., 2001;
Berenstein et al., 2002; Washington et al., 2017). In C. crescentus,
predicted DnaA boxes are found upstream of dnaQ (DNA
polymerase III, β-subunit) and dnaB (DNA helicase), both of
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which were identified as part of the DnaA transcriptional regulon
by delaying dnaA transcription (Hottes et al., 2005).

DNA Repair
DNA repair plays an important role in DNA replication due
to the relatively frequent replication-fork arrests that occur in
bacteria even when growing under normal conditions (Cox
et al., 2000). DnaA has been proposed to serve as a regulator
for maintaining the integrity of the genome in response to
DNA damage (Wurihan et al., 2018). In stationary phase, DnaA
activates the transcription of polA (Quinones et al., 1997), the
DNA polymerase in E. coli involved in DNA replication and DNA
repair (Sharma and Smith, 1987; Savic et al., 1990; Quinones
et al., 1997). DnaA along with LexA (global regulator of the
SOS response) were shown to co-regulate the transcription of
two key genes in the SOS regulon (Wurihan et al., 2018): uvrB
(component of Nucleotide Excision Repair NER system) and
recN [involved in repair of double-stranded breaks (Uranga et al.,
2017)]. The expression of uvrB had previously been predicted
to be regulated by DnaA based on DnaA boxes found upstream
of uvrB (van den Berg et al., 1985; Arikan et al., 1986). In
B. subtilis, the transcriptional activity of DnaA has been linked
to the RecA-independent response to DNA stress (Goranov et al.,
2005; Washington et al., 2017).

DnaA BEYOND CHROMOSOME
REPLICATION

Cytokinesis
Maintaining the integrity of the chromosome after each cell
division requires exquisite coordination between chromosome
replication and cytokinesis. In E. coli, the expression levels of
the gene encoding FtsZ oscillate over the cell cycle reaching the
highest levels at the same time when chromosome replication
initiates (Garrido et al., 1993). The cell cycle-dependent
expression of ftsZ and the identification of three DnaA boxes
found upstream of ftsZ (within ftsQA) initially suggested DnaA’s
involvement in ftsZ expression; however, the three DnaA boxes
were later shown not to play a role in ftsZ transcription (Masters
et al., 1989; Garrido et al., 1993; Smith et al., 1996). A more recent
potential connection between DnaA’s transcriptional activity and
cytokinesis involves MioC in E. coli in that DnaA regulates
the transcription of mioC that is located next to ori (Lother
et al., 1985; Rokeach and Zyskind, 1986; Nozaki et al., 1988).
The protein MioC has been proposed to promote cell division
independent of ori’s replication and segregation (Lies et al., 2015).
However, mioC mutants display only a moderate cell division
defect. In C. crescentus, DnaA was shown to bind ftsZ’s promoter
region in vitro and its in vivo expression to be dependent
on DnaA’s nucleotide switch (Hottes et al., 2005; Fernandez-
Fernandez et al., 2011). In B. subtilis, DnaA was shown to bind the
promoter region of ftsL (encodes membrane-associated Z-ring
protein) in vivo using chromatin immunoprecipitation assays
(Goranov et al., 2005). So far, the transcriptional activity of DnaA
has not been shown to have a major impact with the timing of
cytokinesis in any bacterial species. Our current understanding

of the mechanism(s) that coordinate the timing of replication
initiation with cytokinesis remains limited.

Motility, Quorum Sensing, and Heat
Shock Response
The transcriptional activity of DnaA has been linked to other
developmental processes. The first observation connecting DnaA
to motility was in a temperature-sensitive dnaA mutant of E. coli.
When grown at its permissive temperature, this mutant strain
expressed significantly lower levels of flagellin that resulted in
loss of motility (Mizushima et al., 1994). DnaA’s regulation was
later shown to not directly affect the expression of flagellin but
rather indirectly via the expression of the gene (flhD) encoding
the flagellar transcriptional regulator FlhD (Mizushima et al.,
1997). Notably, the quorum sensing regulators QseB and QseC
in E. coli have been shown to regulate the expression of dnaA and
flhD (Sperandio et al., 2002; Wu et al., 2021). In the nitrogen-
fixing symbiont S. meliloti, the transcriptional activity of DnaA
has been proposed to coordinate growth phase with quorum
sensing. DnaA was shown to activate the transcription of nurR
(encodes a LuxR-like solo regulator) by binding the promoter
region during exponential growth and high nutrient availability
(McIntosh et al., 2019). NurR activates the transcription of
sinR, which encodes the major regulator of N-acyl-homoserine
lactones (AHL) production (Calatrava-Morales et al., 2018). The
transcriptional activity of DnaA has also been connected to E. coli
heat shock response. DnaA was shown to bind the promoter
region and repress the transcription of the gene encoding the
sigma factor RpoH (Wang and Kaguni, 1989).

FUTURE DIRECTIONS FOR
REPLICATION INITIATORS

This review has focused on DnaA as the key chromosome
replication initiator in bacteria. Replication initiators are different
in the other domains of life such as archaea and eukaryotes.
Interestingly, the replication initiators in archaea and in
eukaryotes have also been shown to serve as regulators of gene
expression. In eukaryotes, chromosome replication is initiated
by the origin recognition complex (ORC) composed of six
subunits (Bell and Dutta, 2002). In human cells, replication
initiator proteins have been shown to regulate the transcription
of genes involved in cell division (Hossain and Stillman,
2016). Replication initiation in archaea resembles the molecular
machinery of ORC in eukaryotes (Makarova and Koonin,
2013). In the archaeon Sulfolobus islandicus, replication initiator
proteins were shown to bind the promoter regions and regulate
the expression of genes involved in DNA damage response
(Sun et al., 2018). The ability of replication initiators to regulate
gene expression in eukaryotes and archaea are a relatively recent
discovery that continues to accumulate supporting data (Popova
et al., 2018; Hu et al., 2020).

In this mini review, several aspects of the transcriptional
activity of DnaA were discussed including autoregulation, its
mechanism of regulation, and its role in chromosome replication
and other key cellular events. Many exciting questions about
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the transcriptional activity of DnaA remain to be answered. For
instance, DnaA has been shown to act as an activator and a
repressor of transcription (Messer and Weigel, 1997). Is there
a common mechanism that differentiates and regulates these
two opposing functions of DnaA? Furthermore, bipartite oris
flanking the dnaA gene (as in B. subtilis and Helicobacter pylori;
Krause et al., 1997; Donczew et al., 2012) suggest that DnaA
can act as a replication initiator and transcription factor when
bound at the same chromosomal locus upstream of dnaA. How
are these two different functions of DnaA coordinated and
differentiated over the cell cycle? Most of the work done on
DnaA’s nucleotide switch has been performed in E. coli. How
widespread is DnaA’s nucleotide switch used to regulate DnaA’s
transcriptional activity in other bacterial species? To conclude,
the transcriptional activity of DnaA has only been characterized
in a few bacterial species. Within these few, the specifics

of DnaA’s transcriptional regulon vary significantly. Thus, the
characterization of replication initiators’ roles in coordinating
various cellular events will continue to provide exciting results
for years to come.
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