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The virulence and drug resistance of globally prevalent Candida albicans has presented
complications toward its control while advances in effective antivirulence drugs remain
critical. Emerging methods are now being evaluated to facilitate development of novel
therapeutic approaches against this pathogen. This study focuses on the biofilm
formation inhibition of ethnobotanical crude extracts and the use of nanotechnology
through the ethnobotanically-synthesized gold nanoparticles to control C. albicans.
Control on biofilm formation was compared using crude extracts (CEs) and biologically
synthesized gold nanoparticles (CEs + AuNPs). Significantly lower biofilm formation
was exhibited in thirteen (13) CEs and fourteen (14) CEs + AuNPs. Biofilm-linked
genes Bcr1 and HSP90 expression were consequently downregulated. Higher biofilm
inhibition activity was noted in some CEs + AuNPs compared to its counterpart CEs.
This study emphasizes the biofilm inhibition activity of ethnobotanicals and the use
of nanoparticles to enhance delivery of compounds, and points to its prospects for
developing anti-pathogenic drugs without evolving resistance.

Keywords: Candida, biofilm, quorum sensing, gold nanoparticles, ethnobotanicals, Bcr1, HSP90

INTRODUCTION

Candida albicans is a globally prevalent pathogen owing to its capability to survive at diverse
biotic and abiotic sites (Mathe and Van Djick, 2013; Gao et al., 2016; Lee et al., 2018) with the
ability to cause an array of infections that ranges from superficial to life threatening. Candida
infections, commonly known as candidiasis or candidosis (Douglas, 2003; Moran et al., 2012),
can occur as a consequence of its ability to develop a biofilm, a quorum sensing (QS) mechanism
associated with its pathogenicity (Silva et al., 2011; Pfaller, 2012). The complexity of its biofilm
offers virulence through its three-dimensional structure and innate drug resistance (Pereira et al.,
2020) while withstanding host immune responses (Lee et al., 2018), thus, requiring multifaceted
scheme for its control.

This high level of tolerance to multiple drugs (Duo et al., 2010; Gao et al., 2020) contribute
complications to control this pathogen, and this pose serious threats to healthy and medically
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compromised individuals that often lead to severe fatal infections
(Hall-Stoodley et al., 2004; Lohse et al., 2018). Control of Candida
through commercial antifungal drugs such as triazole drugs and
echinocandins (Cruz et al., 2007; Peman et al., 2009) is practiced,
but not without the consequences of developing fungal resistance
and reduced susceptibility. Administration with these antifungal
drugs inevitably produce evolving strains throughout long-term
treatment (Cruz et al., 2007), hence, the increasing incidence of
drug-resistant Candida.

To address emerging virulence and fungal resistance, Quorum
Sensing (QS) mechanisms are now targeted. Quorum sensing is
a cell-to-cell communication system that coordinate virulence
and gene regulation through specific signal molecules that enable
bacteria to adapt to changing conditions. Targeting this QS
system reduces microbial virulence without disabling growth,
thereby counteracting microbial resistance (Maeda et al., 2012;
Zhong and He, 2021) brought about by selective pressure through
overuse and mishandling of antipathogenic drugs (Borges and
Simoes, 2019; Lewis, 2020; Zhong and He, 2021). Current
therapies are limited and this situation has paved for the
discovery of new antipathogenic agents (Duo et al., 2010). Recent
studies have shown that plant metabolites offer essential agents to
target drug-resistant microorganisms (Lee et al., 2018).

Among the promising sources of QSI (Quorum Sensing
Inhibition) agents is a group of unexplored plants, the
ethnobotanicals. These are plants that are utilized by ethnic
groups for the treatment of diseases. Majority of the ethnic
communities are geographically isolated and mostly depend on
natural products for their medicines. One of the diverse ethnic
communities in the Philippines is the Ilongot-Eǵongot. As one of
the significant ethnic groups in the Philippines, they largely reside
in the biologically diverse areas of Aurora, in the island of Luzon,
Philippines. These areas comprise a deep, vast source of plants for
medicinal use. Their use of ethnobotanicals, typical of the other
ethnic tribes, are transferred from one generation to another,
and thus, of cultural importance. Until recently, ethnobotanical
evaluations are limited and this represents a recent group of
plants that have gained interest for evaluating antipathogenic
sources. The prospects of discovering natural QSI compounds
from ethnobotanicals are evident in few existing researches that
provide scientific validation of its potential use. These plants
are powerful sources of natural QS inhibitors essential for the
development of safe, novel therapeutic and antipathogenic agents
(Fernando and Judan Cruz, 2020). Recently, the Ilongot-Eǵongot
ethnobotanicals evaluated in this study have been demonstrated
to possess QS inhibition properties against pathogenic bacteria
such as Pseudomonas aeruginosa (Velasco et al., 2020; Santos
et al., 2021), Staphylococcus aureus (Salamanca et al., 2019),
Aeromonas hydrophila (Fernando and Judan Cruz, 2020), and
Streptococcus agalactiae (Fernando et al., 2020). QSI actions of
these plants against pathogenic fungi such as Candida have not
yet been explored.

The formation of biofilm in pathogens is mediated by a
network of genetic mechanisms. Among the key genes that
are linked to biofilm adhesion, dispersion and regulation in
C. albicans are the Bcr1 and Hsp90. Expression of these genes
impacts the formation and quality of the biofilm. Bcr1 is among

a system of transcription regulators that facilitates the formation
of biofilm in C. albicans (Nobile et al., 2006; Mayer et al., 2013).
As a transcription regulator, Bcr1 directs functionally associated
target genes that can eradicate a function that is carried out by
redundant genes (Fanning et al., 2012). Bcr1 and its downstream
genes are expressed during adhesion of C. albicans on the
substrate (Nobile et al., 2006) and this adhesion impacts the
arrangement of the polysaccharide matrix (Douglas, 2003). The
heat shock proteins (HSPs) unique to fungi and not present in
humans have surfaced as a promising drug target for C. albicans
management (Mayer et al., 2013). HSP90, a major HSP, is a
key regulator in biofilm formation and virulence by suppressing
dispersion (Robbins et al., 2011) and intricate cell signals
(Pearl and Prodromou, 2006; Shapiro et al., 2009). HSP90 also
controls temperature- dependent morphogenesis by suppressing
cAMP-PKA signals (Robbins et al., 2011). It also allows for
the emergence of resistance to majority of existing antifungals
(Robbins et al., 2011). Downregulation of these genes affects the
formation, adherence and dispersion of the complex biofilm and
its multi- dimensional polysaccharide matrix (Douglas, 2003).
Hence, by negatively affecting Bcr1 and Hsp90 expression, fungal
communication will be inactivated and consequently, virulence
(Rasmussen and Givskov, 2006).

For a more efficient delivery of anti-pathogenic drugs from
the natural metabolites, nanotechnology has gained substantial
interest and relevance in drug design. Nanoparticles are used in
drug delivery for an efficient transport of soluble drugs (Kamat
et al., 2002; Daniel and Astruc, 2004) targeted to a specific site
and bioavailability. The use of biosynthesized nanoparticles to
enhance treatment of diseases increases the relay of drugs and
subsequently enhances treatment of diseases due to their reduced
dimensions, its efficiency due to their extremely small size and
large relative surface area (Hentzer et al., 2003; Srisawat, 2007;
Khatami et al., 2017).

This study evaluated the QSI properties of the ethnobotanical
crude extracts as well as the biosynthesized nanoparticles using
the Ilongot-Eǵongot ethnobotanicals to control biofilm formation
and QS-related gene expression.

MATERIALS AND METHODS

Collection of Plant Samples and Ethanol
Extraction Procedure
Ethnobotanicals surveyed by Balberona et al. (2018) at the
Ilongot-Eǵongot community of Maria Aurora, Aurora,
Philippines were evaluated. Necessary permits from the
provincial and tribal chieftains as well as from the Department
of Natural Resources (DENR), Philippines were obtained for the
collection of plant samples. Voucher specimens were identified
by an expert taxonomist and deposited at the Department
of Biological Sciences, Science City of Muñoz, Nueva Ecija,
Philippines. Plant samples were collected, sterilized, air-dried
and ground. Fifty grams (50 g) of ground leaf were soaked in
500 ml of 80% ethanol in a covered flask for 72 h and was filtered.
The alcohol was removed through a rotary evaporator. The
crude extracts were sterilized by centrifugation of the mixture
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at 10,000 × g for 30 min followed by membrane filtration using
Acrodisc 25 mm Syringe Filter. The sterile extracts were kept
at 2–8◦C prior to use (Srisawat, 2007). Plant extracts evaluated
were: Hydrocotyle vulgaris (leaf), Eluesine indica (root), Eluesine
indica (leaf), Mikania micrantha (leaf), Dillenia philippinensis
(leaf), Dillenia philippinensis (bark), Ceiba pentandra (leaf),
Cymbopogon winterianus (leaf), Senna alata (leaf), Urena
lobata (leaf), Premna odorata (bark), Premna odorata (leaf),
Stachytarpeta jamaicensis (leaf), Diplazium esculentum (leaf),
and Phyllanthus urinaria (leaf).

Biological Synthesis of Gold
Nanoparticles
Gold chloride (Sigma Aldrich) was prepared at the 10−3 M
concentration with sterilized Milli-Q (Merck) water. For the
synthesis, 5 ml of crude extract was mixed with 45 ml 10−3 M
gold chloride. The bottles were incubated in dark condition under
room temperature with consistent stirring through a magnetic
stirrer for 60 min until a pink red color was attained. This change
in color indicates the synthesis of AuNPs. To assess the stability
of nanoparticles, the AuNPs obtained from the solution were
purified by centrifugation at 4,000 rpm for 20 min and dispersed
in deionized water. The water suspended NPs were frozen at 30◦C
overnight and were kept under vacuum for 24 h for drying.

Preparation of Fungal Culture
Pure culture of C. albicans ATCC 9002 was obtained from UPLB
BIOTECH, Los Baños, Laguna, Philippines. Corn meal agar was
used to revive and maintain cultures of C. albicans. For the
subsequent assays, 24 h fungal culture was suspended in sterile
saline solution (0.9% NaCl) at 26–30◦C and the turbidity was
adjusted to 1.0 M McFarland standard.

Analysis of Antifungal Activity of Crude
Extracts (CEs) and Biologically
Synthesized Gold Nanoparticles
(CEs + AuNPs) Against Candida albicans
As a pre-screening for the biofilm formation assay, antifungal
activity was assessed. The absence of zone of inhibition is required
for the subsequent biofilm formation assay to rule out antifungal-
mediated decrease in virulence factor production (Fernando and
Judan Cruz, 2020; Velasco et al., 2020). Samples with antifungal
activities shall not be included in the biofilm formation assay.
The protocol of Fernando and Judan Cruz (2020) was used with
some modifications. Sterile paper discs (5 mm) were soaked and
air dried on sterilized petri plates under a biosafety laminar flow.
Prepared media of corn meal agar on petriplates were swabbed
with fungal culture. Air dried discs with treatments were seeded
on plates; Ketoconazole served as positive control whereas sterile
distilled water served as negative control. Plates were incubated
at 37◦C for 24–48 h and were observed for the appearance of the
zone of inhibition.

Microtiter Plate Biofilm Formation Assay
The effect of CEs and CEs + AuNPs on biofilm formation was
measured using a microtiter plate assay. Overnight cultures of

C. albicans with a volume of 180 µl were added with 20 µl of each
treatment and were transferred to 96-well microtiter plates and
incubated at 37◦C for 40 h without shaking. After the incubation
period, the microtiter plates were washed with sterile distilled
water five times to discard planktonic cells. These were air dried
for 45 min and stained with 150 µl of 1% crystal violet for 45 min
(Fernando and Judan Cruz, 2020). Plates were rinsed with sterile
distilled water five times.

To quantify the biofilm, 200 µl of 95% ethanol was added
to destain the wells. From each well, 100 µl were transferred
to a new microtiter plate. Optical Density (OD) values were
determined at 595 nm (Djordjevic et al., 2002) using UV-visible
spectrophotometer (Biotek Instruments, Inc., United States).

Gene Expression Analysis
Treatments with significant inhibition in biofilm formation
were subjected to gene expression analysis. RNA extraction was
done following the RNA extraction kit manufacturer’s protocol
(Promega Corp.) with modifications. The expression of HSP90
and Bcr1 in C. albicans was determined through qRT-PCR
analysis using Bio-Rad CFX96 Real-Time System Thermal Cycler
and KAPA One Step RT-PCR kit (KAPA Biosystems). The specific
primers used were: HSP90F 5′ CGATGAATATGCCATGACT,
HSP90R 5′ TCCATAGCAGATTCTCCAG 3′ (Mi-Kyung et al.,
2004); Bcr1F 5′ GGCTGTCCATGTTGTTGTTG 3′, Bcr1R 5′
GAGCACGCATCTATGGCTTA 3′ (Alves et al., 2000); and the
internal standard 16SF 5′ATGGCCGTTCTTAGTTGGTG 3′,
16SR 5′ GCCAAGGCTTATACTCGCTG 3′ (Zhang et al., 2000).
The qRT-PCR program was as follows: incubation at 42◦C for
5 min for reverse transcription; 95◦C for 1 min; followed by
45 cycles of 95◦C for 10 s, 60◦C for 30 s, and 72◦C for 20 s
(Nailis et al., 2006).

Statistical Analysis
Significant differences in OD values were analyzed via
independent sample Tukey’s Honest Significant Difference Test
with 0.05 level of significance. For the gene expression analysis,
Ct values were analyzed using the 2−11CT (Livak) method
(Livak and Schmittgen, 2001). The statistical analysis for the
gene expression was performed with the use of Kruskal-Wallis
test (non-parametric ANOVA).

RESULTS

Antifungal Activity of CEs and
CEs + AuNPs Against C. albicans
None of the CEs and CEs + AuNPs showed antifungal activity
against C. albicans, hence, all samples were evaluated for its effects
on biofilm formation.

Inhibitory Effect of CEs and AuNPs on
Biofilm Formation of C. albicans
The optical density (OD) values of the C. albicans clinical
isolate culture treated with 13 CEs namely H. vulgaris leaf
(0.065 mg/ml); M. micrantha leaf (0.062 mg/ml); C. pentandra
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leaf (0.066 mg/ml); C. winterianus Leaf (0.063 mg/ml); S. alata
(0.063 mg/ml); U. lobata leaf (0.065 mg/ml); D. philippinensis
leaf (0.080 mg/ml); P. odorata bark (0.060 mg/ml); S. jamaicensis
leaf (0.067 mg/ml); E. indica roots (0.067 mg/ml); D. esculentum
(0.083 mg/ml); E. indica L. leaf (0.067 mg/ml); and P. urinaria L.
(0.067 mg/ml) showed significantly lower OD values in biofilm
formation compared to the negative control (no extract) with
a value of 0.19 mg/ml (Table 1). In contrast, two (2) CEs
showed significantly higher OD values when compared to the
control: D. philippinensis (0.12 mg/ml) bark and P. odorata leaf
(0.19 mg/ml). These showed no QSI activity with increased
formation of biofilm.

The OD values of 14 CEs + AuNPs showed significant
decrease in C. albicans biofilm formation compared to the control
(Table 1) with the following values: H. vulgaris (0.080 mg/ml);
M. micrantha leaf (0.067 mg/ml); D. philippinensis bark
(0.067 mg/ml); C. pentandra leaf (0.067 mg/ml); C. winterianus
leaf (0.067 mg/ml); S. alata (0.063 mg/ml); U. lobata leaf
(0.065 mg/ml); P. odorata bark (0.082 mg/ml); S. jamaicensis
leaf (0.074 mg/ml); E. indica (0.067 mg/ml); P. odorata leaf
(0.072 mg/ml); D. esculentum (0.073 mg/ml); E. indica leaf
(0.067 mg/ml); P. urinaria leaf (0.071 mg/ml).

Downregulation of Bcr1 and HSP90 as
Affected by CEs and CEs + AuNPs
The CEs and CEs + AuNPs that showed significantly lower
biofilm formation were subjected to gene expression analysis.
Bcr1 expression analysis showed down regulation in all CEs
and CEs + AuNPs treatments with significantly lower biofilm
formation in the virulence assay (Figure 1). The expression
of Bcr1 in C. albicans was significantly downregulated in
association with the CEs of H. vulgaris (0.071), M. micrantha

TABLE 1 | Biofilm inhibition in C. albicans as affected by CEs and CEs + AuNPs.

Scientific name Crude extract Biologically
synthesized gold

nanoparticles

H. vulgaris 0.065*a 0.080*b

M. micrantha 0.062*a 0.067*b

D. philippinensis (bark) 0.116 0.066*

C. pentandra 0.066* 0.066*

C. winterianus 0.064* 0.066*

S. alata 0.063* 0.062*

U. lobata 0.065* 0.065*

D. philippinensis (leaves) 0.080* 0.135

P. odorata (bark) 0.06*a 0.082*b

S. jamaicensis 0.067* 0.074*

E. indica (roots) 0.066* 0.068*

P. odorata (leaves) 0.186 0.072*

D. esculentum 0.083*a 0.072*b

E. indica (leaves) 0.067* 0.070*

P. urinaria 0.067* 0.071*

Control 0.190 0.190

In columns, (*) indicates significantly lower O.D. value in biofilm formation compared
the control; Different letter superscripts among rows indicate significant difference.

leaf (1.036), C. pentandra leaf (3.033), C. winterianus Leaf
(0.403), S. alata (7.459), U. lobata leaf (0.292), D. philippinensis
leaf (0.485), P. odorata bark (3.792), S. jamaicensis leaf (0.87),
E. indica roots (0.437), D. esculentum (0.115), E. indica leaf
(0.213), and P. urinaria leaf (3.772) as compared to the control
with no plant extract used (15.44). Significant downregulation
of the Bcr1 gene was also observed in CEs + AuNPs of
H. vulgaris (0.711), M. micrantha (10.496), D. philippinensis bark
(4.567), C. pentandra leaf (0.223), C. winterianus Leaf (12.898),
S. alata (0.799), U. lobata leaf (0.490), P. odorata bark (0.161),
S. jamaicensis leaf (0.780), E. indica roots (0.140), P. odorata
leaf (0.835), D. esculentum (0.086), E. indica leaf (0.87), and
P. urinaria (0.87) (Figure 1).

HSP90 also showed down regulation in C.albicans treated with
CEs and CEs + AuNPs that showed lower biofilm formation
values. The expression of HSP90 was significantly downregulated
in association with the CEs of H. vulgaris (0.16), M. micrantha
leaf (0.679), C. pentandra leaf (1.473), C. winterianus leaf (0.288),
S. alata (21.274), U. lobata leaf (0.683), D. philippinensis leaf
(0.396), P. odorata bark (0.289), S. jamaicensis leaf (0.246),
E. indica roots (0.350), D. esculentum (0.283), E. indica leaf
(0.248), and P. urinaria (0.221) as compared to the control
with no plant extract used (23.056) (Figure 2). Significant
downregulation of the HSP90 was also observed in CEs+AuNPs
of H. vulgaris (0.099), M. micrantha (0.277), D. philippinensis
bark (1.640), C. pentandra leaf (0.523), C. winterianus Leaf
(0.674), S. alata (21.161), U. lobata leaf (0.463), P. odorata
bark (0.024), S. jamaicensis leaf (0.287), E. indica roots (0.476),
P. odorata leaf (0.115), D. esculentum (0.462), E. indica leaf
(0.407), and P. urinaria (0.377) (Figure 2).

DISCUSSION

Inhibition of biofilm formation by the ethnobotanical CEs and
CEs + AuNPs in this study may be attributed to the presence
of known QSI agents that are recognized to negatively affect
signal receptors (Kalia, 2013) responsible for the functional
communication between adjacent cells (Miller and Bassler, 2001).
The Ilongot-Eǵongot ethnobotanicals evaluated in this study are
known to possess active groups of metabolites against QS such
as: flavonoids, saponins and tannins in C. pentandra (Friday
et al., 2011); flavonoid, saponins, tannins, alkaloids, and geranoil
in C. winterianus (Anosike et al., 2012); S. alata contains
flavonoid, saponins, tannins, alkaloids, and terpenes (Sule et al.,
2011), U. lobata with saponins, tannins, alkaloid, and terpenoid
(Fagbohun et al., 2012), and P. odorata with flavonoid, saponins,
and terpenoids (Chichioco-Hernandez and Paguigan, 2009).
The isolated terpene and sterol compounds in C. pentandra
attenuated virulence factors in P. aeruginosa (Muñoz-Cázares
et al., 2017). Only the major metabolites have been evaluated and
reported against QS while the specific bioactive components of
the ethnobotanicals in this study have not yet been elucidated and
presents an avenue for research in detailed phytochemistry.

The well documented mechanism of QSI action of
phytochemicals is linked to their similarity in the chemical
structure to QS signals and to their capacity to suppress
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FIGURE 1 | Mean Ct values of Bcr1 in C. albicans with CEs and CEs + AuNPs. (1) Control (2) H. vulgaris (3) M. micrantha (4) D. philippinensis (bark) (5) C. pentandra
(6) C. winterianus (7) S. alata (8) U. lobata (9) D. philippinensis (leaf) (10) P. odorata (bark) (11) S. jamaicensis (leaf) (12) E. Indica (root) (13) E. esculenta (14) E. indica
(leaf) (15) P. urinaria.

FIGURE 2 | Mean Ct values of HSP90 in C. albicans with CEs and CEs + AuNPs. (1) Control (2) H. vulgaris (3) M. micrantha (4) D. philippinensis (bark)
(5) C. pentandra (6) C. winterianus (7) S. alata (8) U. lobata (9) D. philippinensis (leaf) (10) P. odorata (bark) (11) S. jamaicensis (leaf) (12) E. Indica (root) (13)
E. esculenta (14) E. indica (leaf) (15) P. urinaria.

signal receptors (Kalia, 2013). Plants have been known to
contain phytochemicals associated with QSI activities and
is considered as one of the most powerful natural sources
of isolated QSI compounds. These compounds can reduce
microbe pathogenicity (Rasmussen and Givskov, 2006)
owing to their ability to block in intra and inter-species QS
communication systems (Teplitski et al., 2000). This ability of
natural compounds to suspend QS systems can serve as a defense
strategy to fight against microbial penetration. As a prospective
source of antivirulence agents (Rawat et al., 2016) that are
safe for human health, it owes its advantage to its chemical
stability and highly effective low-molecular-mass molecules
(Rasmussen and Givskov, 2006) with non-toxic inhibitors of QS
(Hentzer et al., 2003).

Evaluating the effects of potential QSI agents on the molecular
mechanisms directing biofilm formation is a critical strategy
to facilitate advances in novel antivirulence therapies. In this
study, the expression of 2 biofilm-linked genes, Bcr1 and
HSP90, as affected by CEs and CEs + AuNPs were evaluated.

Molecular expression analyses showed downregulation of both
Bcr1 and HSP90 as affected by CEs and CEs + AuNPs.
Expression of Bcr1 and its downstream genes influences adhesion
and arrangement of the polysaccharide matrix in C. albicans.
Hence, downregulation of Bcr1 affects the formation of the
complex biofilm and its multi- dimensional polysaccharide
matrix (Douglas, 2003); this means that biofilm formation will
be repressed or will not yield a thick extracellular matrix. On the
other hand, by targeting HSP90 downregulation, dispersion will
be suppressed and cell signals critical to biofilm formation will
be blocked without developing resistance to existing antifungals
(Robbins et al., 2011). The compounds in CEs and CEs+ AuNPs
may have acted as QSI molecules that have blocked the pathway
of Bcr1 and HSP90, hence, its downregulation. This showed that
the production of QS molecules was reduced and have decreased
in the expression of a specific receptor or transcription factor
(Nobile et al., 2006). It has been recognized that expression of
QS genes is important in the production of virulence factors
such as the formation of biofilm, and this information gives
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improved understanding of the function of the genes associated
with its morphological features (Nobile et al., 2006). Thus,
downregulation of Bcr1 and HSP90 by the CEs and CEs+AuNPs
not only have the potential to inhibit the growth of biofilm
but also that of antifungal resistance. Blocking or minimizing
expression of these genes provides a key strategy to developing
drugs for C. albicans management.

The efficiency on the use of nanoparticles was demonstrated
in this study wherein treatments with CEs + AuNPS showed
significantly lower biofilm formation in comparison with CEs
alone. The CEs + AuNPs conjugation length and intensities
decreased from 595 to 544 nm which signifies the decrease
in size. The study of Emmanuel et al. (2017) demonstrates
that the decrease in the conjugation length and intensities of
AuNPs indicates the decrease in particle size. The formation of
CEs + AuNPs in this study were monitored by analyzing the
excitation due to the applied electromagnetic field of Surface
Plasmon resonance (SPR) and absorption values. SPR peaks
attained in UV–vis spectroscopy is one of the versatile techniques
to confirm the formation of metal NPs and was generated due
to the coherence of electrons on the surface of AuNPs. The shift
to the blue or red in the λmax of the SPR peak could be related
to the obtained morphology of NPs that has various shapes,
sizes or extract dependencies of formed AuNPs (Vellaichamy
and Periakaruppan, 2016; Emmanuel et al., 2017; Kanwal et al.,
2018). The color change in reaction from yellowish to pink
red and decreased conjugation length confirms the formation
of CE + AuNPs (Mukherjee et al., 2016; Ovais et al., 2016).
Furthermore, the pH of the solution increased from 6.0 to 6.5
after the addition of the crude ethnobotanical extracts indicating
to a more stable state of the gold nanoparticles. The stability
of gold nanoparticles is pH-responsive (Park et al., 2019) and
its stability is pH-dependent, as shown in studies using natural
compound for its synthesis (Tyagi et al., 2011).

The development of methods for integrated solution and
control of pathogenic virulence and drug resistance has led many
scientists to evaluate nanotechnology for efficient delivery of
anti-pathogenic drugs from the natural compounds. Since its
revolution, nanotechnology has been used to improve the uptake
of soluble drugs (Ould-Ouali et al., 2005) due to their extremely
reduced dimensions and somewhat large surface area (Kamat
et al., 2002). Its safety also accompanies its advantages as it
produces environmentally non-toxic molecules (Khatami et al.,
2017). The results of this study may indicate expedited delivery
system of the compounds through extremely reduced particle size
and increased surface area that facilitates entry of compounds
to the phospholipid- and glycoprotein-embedded cell membrane
(Cabrera et al., 2017).

This study has shown that ethnobotanicals are a promising
source of antipathogenic agents. Except for a few studies, these
plants largely remain unexplored for their pharmacological
potential. A number of studies have shown proof that
ethnobotanicals possesses QSI actions in virulence factors
in bacteria such as biofilm formation (Judan Cruz et al.,
2018; Fernando and Judan Cruz, 2020; Fernando et al., 2020;
Velasco et al., 2020; Santos et al., 2021), coagulase (Vias
et al., 2018; Salamanca et al., 2019), pyocyanin production

(Barrogo et al., 2018; Limos et al., 2018a), swarming motility
(Barrogo et al., 2018; Limos et al., 2018a; Padilla et al., 2018),
DNase (Limos et al., 2018b), and α- Hemolysin (Limos et al.,
2018b; Vergara et al., 2018), showing the immense prospects
of tapping these plants for antivirulence drug design. The
QSI actions of the ethnobotanicals were confirmed through
expression analyses of QS-linked genes such as lasR, rhlR, ahyR,
and agrA.

Targeting virulence factors is a promising approach to
design new and effective antifungal therapies (Mayer et al.,
2013). Biofilm is one of the QS-regulated virulence factors that
contribute to the pathogenicity as well as to the increasing
development of fungal drug resistance in C. albicans. Despite
the existing antifungal drugs, fungal resistance is evolving due to
long term exposure. A novel approach for its control is to obtain
plant bioactive compounds to create a wide variety of drugs
(Cruz et al., 2007) that targets the formation of biofilm. Recently,
a number of antifungal drugs have been designed to contain
natural derivatives or compounds mimicking natural products
(Newman, 2008). In C. albicans, numerous plant extracts and its
compounds are already known to change its adhesion mechanics
(Ahmad and Aqil, 2007); adhesion being the first step in its
biofilm formation and significantly contributes to C. albicans
pathogenicity (Mukherjee et al., 2003).

Diverse natural products are recognized to inhibit biofilm
formation through scientific validations and studies. Therefore,
the discovery of plant bioactive compounds that controls
pathogenicity becomes a fundamental strategy (Ahmad and Aqil,
2007) toward C. albicans management. This paper highlights
the great pharmacological potential of these ethnobotanical
extracts for developing efficient therapeutic agents against
C. albicans without the risk of developing drug resistance. This
potential can be further improved through nanotechnology.
This new understanding can be used to direct the discovery of
novel approaches for preventing and controlling complex and
resistant biofilms.
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