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Curative therapies for chronic hepatitis B virus (HBV) infection remain a distant goal, and 
the persistence of stable covalently closed circular DNA (cccDNA) during HBV replication 
is a key barrier that is hard to break through using the drugs currently approved for HBV 
treatment. Due to the accuracy, efficiency, and cost-effectiveness of genome editing, 
CRISPR/Cas technologies are being widely used for gene therapy and in antiviral strategies. 
Although CRISPR/Cas could possibly clear cccDNA, ensuring its safety is requirement 
for application. In our study, we analyzed the liver specificity of several promoters and 
constructed candidate promoters in the CRISPR/Staphylococcus aureus Cas9 (SaCas9) 
system combined with hepatotropic AAV8 (whereby AAV refers to adeno-associated virus) 
to verify the efficacy against HBV. The results revealed that the reconstructed CRISPR/
SaCas9 system in which the original promoter replaced with a liver-specific promoter 
could still inhibit HBV replication both in vitro and in vivo. Three functional guide RNAs 
(gRNAs), T2, T3, and T6, which target the conserved regions of different HBV genotypes, 
demonstrated consistently better anti-HBV effects with different liver-specific promoters. 
Moreover, the three gRNAs inhibited the replication of HBV genotypes A, B, and C to 
varying degrees. Under the action of the EnhII-Pa1AT promoter and AAV8, the expression 
of SaCas9 was further decreased in other organs or tissues in comparison to liver. These 
results are helpful for clinical applications in liver by ensuring the effects of the CRISPR/
Cas9 system remain restricted to liver and, thereby, reducing the probability of undesired 
and harmful effects through nonspecific targeting in other organs.
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INTRODUCTION

Hepatitis B virus (HBV) infection remains a major public health burden. One-third of 
people worldwide have been exposed to HBV, of which about 257 million are chronically 
infected according to a WHO report (Revill et  al., 2019). Although effective preventive 
vaccines developed for HBV have been in use for decades, there is no effective treatment. 
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Viral hepatitis is still one of the top  10 causes of death in 
the world today due to the large population of infected people, 
and HBV accounted for near half of viral hepatitis-related 
mortality (Stanaway et  al., 2016).

At present, the approved HBV treatment drugs mainly include 
reverse transcriptase inhibitors and immune mediating factors. 
Among the reverse transcriptase inhibitors are nucleoside analogs 
(NUCs), including lamivudine, adefovir dipivoxil, telbivudine, 
entecavir, and tenofovir (Terrault et  al., 2016; Liver, 2017). 
NUCs can effectively inhibit the reverse transcription of HBV 
by directly acting on HBV reverse transcriptase, reducing the 
virus to a level below the detection limit; however, due to the 
nuclear closure of NUCs, they are ineffective against covalently 
closed circular DNA (cccDNA; Zoulim et  al., 2016).

After treatment ceases, HBV can continue to use cccDNA 
as a template to produce progeny viruses, and viremia recurs. 
Of concern is that long-term use may result in the development 
of drug-resistant mutation strains. Interferon (IFN), which is 
an immune-mediated factor, achieves antiviral effects by 
regulating innate and acquired immune responses, which could 
clear infected cells to achieve a functional cure for HBV 
infection. However, the rate of treatment success is low and 
often accompanied by side effects (Woo et  al., 2017). Virus 
replication may return to normal levels at any time after drug 
withdrawal or drug resistance occurs (Zoulim and Locarnini, 
2009; Deng and Tang, 2011). cccDNA serves as a template 
for the transcription of viral RNAs through employing the 
cellular transcription machinery (Rall et  al., 1983; Shi and 
Zheng, 2020), which is resistant to common antiviral therapies. 
The key challenge is the persistence of cccDNA in infected 
hepatocytes. Therefore, specific treatments targeting cccDNA 
have become an important direction of the current research.

Given its ability to suppress viruses along with the current 
lack of an effective cure, the CRISPR/Cas9 system has been 
used as part of a potential therapeutic method in which 
conserved HBV DNA sequences are targeted to inhibit HBV 
replication (Abe et  al., 2014; Lin et  al., 2014; Dong et  al., 
2015). Although data acquired from experimental models look 
promising, challenges that are broadly associated with genetic 
editing therapies need to be met for the approach to be successful 
against chronic HBV infection. For future clinical applications, 
one of the most critical issues is safety. Since HBV is a 
hepatotropic virus, restricting the effects of the CRISPR/Cas9 
system to liver is a promising strategy for improving safety.

Adeno-associated virus (AAV) emerged as an ideal delivery 
tool due to its high viral titer capability with the potential for 
transduction of all virus-infected cells within a patient. The 
targeted delivery of AAV to a certain tissue could be  achieved 
by recombinant engineering of an AAV capsid protein with a 
tissue tropism for an intended infection site. The use of recombinant 
adeno-associated virus as gene carrier proved to be  helpful in 
gene therapy, provided a safe and effective delivery approach 
and prompting a series of related studies (Scott et  al., 2017; 
Wang et  al., 2017; Liu et  al., 2018). In addition, having an 
established record of safety and its lack of integration properties 
makes AAV appear to be  an ideal candidate for the delivery 
of CRISPR/Cas9 (Balakrishnan and Jayandharan, 2014). 

Consequently, several groups have already demonstrated the 
feasibility of such an AAV delivery method in CRISPR/Cas9-
based antiviral studies (Chen et al., 2018). Staphylococcus aureus 
(Sa) Cas9 is approximately 25% smaller than Streptococcus 
pyogenes (Sp) Cas9 (Kotterman and Schaffer, 2014; Ran et  al., 
2015); this small size makes it possible to deliver SaCas9 using 
AAV vectors. Among the various serotypes of AAV, AAV8 
and AAV9 have commonly been used for delivery into liver, 
with high tissue tropism.

In addition, two kinds of liver-specific promoters have been 
studied, including promoters derived from both the HBV and 
its host. Previous studies have shown that regulatory elements 
of the HBV are strong and liver-specific in vitro and, therefore, 
might be  useful in hepatic gene therapy (Sandig et  al., 1996). 
In addition, the HBV core promoter linked to EnI and EnII 
(EII-EI-Pc) and X promoter linked to EnI and EnII (EI-EII-Px) 
could direct a constant and high-level gene expression in vivo 
(Zhao et  al., 2010). Certain liver-specific promoters from hosts 
were characterized and applied to transcriptional targeting both 
in vitro and in vivo, including the mouse albumin (Alb) promoter 
(Gorski et  al., 1986), human α-1 antitrypsin (hAAT) promoter 
(Hafenrichter et  al., 1994a; Kramer et  al., 2003), and 
phosphoenolpyruvate carboxykinase (PEPCK) gene promoter 
(McGrane et  al., 1990; Valera et  al., 1994). However, there is 
still a lack of reports on the effectiveness of AAV8-derived 
CRISPR/SaCas9 with a liver-specific promoter.

Here, in addition to the application of AAV8 for liver-specific 
delivery, we  used liver-specific promoters to solely induce 
expression of the SaCas9 protein in hepatic cells. We  verified 
the anti-HBV effects of CRISPR/SaCas9 expressed under 
liver-specific promoters. We found that T2, T3, and T6, targeting 
the conserved regions of different HBV genotypes, could inhibit 
HBV replication steadily and efficiently, in contrast to other 
tested gRNAs. We  selected the promoters EnhII-PEPCK and 
EnhII-Pa1AT for expression of these three gRNA sequences 
and further verified their anti-HBV effects.

In this study, we  provide evidence that the reconstructed 
CRISPR/SaCas9 system, whose cytomegalovirus (CMV) promoter 
was replaced with a liver-specific promoter, could still profoundly 
inhibit HBV replication both in vitro and in vivo. Both the 
use of liver-specific promoters and the choice of AAV8 virus 
delivery vector could improve hepatic specificity. In conclusion, 
the AAV8-derived CRISPR/SaCas9 system with liver-specific 
promoters demonstrated prominent anti-HBV effects and liver-
specific expression of the transduced genes in mouse.

MATERIALS AND METHODS

Plasmids
The human codon-optimized SaCas9 and chimeric gRNA 
expression plasmid pX601 were obtained from Addgene (plasmid 
61591). The reproduced rcccDNA system, including plasmid 
prcccDNA-shB2M (genotype D: GenBank accession no. 
V01460.1) and pCMV-KRAB-Cre, was a generous gift from 
Qiang Deng (Fudan University; Li et al., 2018a). pAAV/HBV1.2 
(genotype A: GenBank accession no. AF305422.1) was a generous 
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gift from Pei-jer Chen (National Taiwan University). The HBV 
replicons (genotype B: GenBank accession no. EU570069.1; 
genotype C: GenBank accession no. FJ899793.1) were generous 
gifts from Ying Zhu (Wuhan University). Several candidate 
promoters were inserted into the SacI and HindIII restriction 
sites of pGL3-Basic (Promega). Three promoters with linked 
luciferase fragments were inserted between the XhoI and BamHI 
restriction sites of pHAGE (Addgene). The pSV-β-gal and 
pRL-TK plasmids were obtained from Promega.

Cell Cultures and Transfection
The cells were maintained in Dulbecco’s modified Eagle’s medium 
(DMEM) supplemented with 10% fetal bovine serum (FBS) 
at 37°C and 5% CO2. All cells were transfected using Neofect 
(Neofect Biotech) according to the manufacturer’s instructions. 
The reconstructed pX601 plasmid/HBV-expressing plasmid/
pSV-β-gal plasmid ratio was 8:1:1.

Animal Experiments
For analysis of the activity of three candidate promoters in 
different tissues, C57BL/6 mice (5  weeks old) were used and 
separated into three groups (five mice each). The concentrated 
lentivirus supernatants were injected into the tail vein of the 
mice. A week later, the mice were sacrificed, and the liver, 
lung, kidney, spleen, and heart were extracted and homogenized 
in 1  ml TRIzol reagent (Life Technologies), and total RNA 
was isolated following the manufacturer’s instructions.

For analysis of the in vivo inhibition of HBV by the liver-
specific and HBV-targeting SaCas9 system, C57BL/6 mice (4 weeks 
old) were used and separated into four groups (five mice each). 
We  injected 4  μg prcccDNA-shB2M and 4  μg pCMV-KRAB-Cre 
into the tail vein of mice within 8–10  s in a volume of saline 
equivalent to 10% of the mouse body weight. After 7  days, AAV8 
containing EnhII-Pa1AT-T2, EnhII-Pa1AT-T6, EnhII-Pa1AT-Tmix 
(EnhII-Pa1AT-T2:EnhII-Pa1AT-T6=1:1), or AAV8 containing GFP 
were intravenously delivered into the mice via tail vein injection 
(200 μl, 2 × 1011 vg). Mice were sacrificed 7 days after two injections. 
Sera were taken for the analysis of HBsAg, HBeAg, and HBV 
DNA. For HBsAg and HBeAg detection, mice sera were diluted 
10 times with DMEM. For HBV RNA analysis, a piece of liver 
tissue was homogenized for extracting total RNA. HBV core antigen 
expression in mice livers was analyzed using immunohistochemical 
staining as described previously (Liu et  al., 2015).

All mice were housed in a pathogen-free mouse colony, 
and the animal experiments were performed according to the 
1998 Guide for the Care and Use of Medical Laboratory Animals 
(Ministry of Health, China). The protocol was approved by 
the institutional animal care and use committee of Wuhan 
University (project license WDSKY0201802).

Dual-Luciferase Assay
The human hepatoma cell lines Huh7, HepG2, stable expression 
of sodium taurocholate co-transporting polypeptide in the 
HepG2-derived cells (NTCP), and the non-hepatocellular 
carcinoma cell lines HeLa and HEK293T were seeded in 24-well 
dishes and co-transfected with the promoter luciferase reporter 

plasmid (450 ng) and pRL-TK (50 ng). At 48 h post-transfection, 
the cells were lysed and subjected to luciferase activity assays 
using the Dual-Glo System (Promega).

Packaging of Virus Vectors
For delivering the reporter system into mice, we  packaged 
lentiviruses through the triple-plasmid transfection method. 
HEK293T cells were co-transfected with the inserted promoter 
luciferase fragment plasmid pHAGE, envelope plasmid pMD2.G, 
and packaging plasmid psPAX. Then, the lentiviruses were 
harvested 48  h post-transfection, and we  concentrated the 
lentivirus supernatants into a suitable volume (100  μl, over 
1  ×  108  copies/ml) for injection according to the precipitation 
method using PEG-8000 (Sigma).

HBV-specific AAV8 delivery vector construction, viral 
packaging, and titration were performed by Beijing SyngenTech 
Co. Ltd. (Beijing, China). The efficient HBV gRNA T2 and 
gRNA T6 were separately cloned into the reconstructed vector 
pX601-EnhII-Pa1AT-SaCas9. Verification and sequencing 
confirmation of the plasmids were conducted by SyngenTech.

Design and Cloning of the Liver-Specific 
and HBV-Targeting SaCas9 System
We designed seven functional gRNA sequences T1–T7, and 
with the exception of T4 and T7, the other gRNA sequences 
differed from similar publications (Liu et  al., 2015; Li et  al., 
2018b). All sequences were derived from the conserved region 
of the HBV genome among different genotypes from A to H, 
which included the initiating 5'G and the downstream 3'PAM 
NGGRRT (GN20-NNGRRT). We separately replaced the original 
CMV promoter with four liver-specific promoters EnhI/X, 
PEPCK, EnhII-PEPCK, and EnhII-Pa1AT to drive cas9 expression 
in plasmid pX601.

Detection of HBsAg and HBeAg
At the indicated time points, cell culture supernatants or mice 
sera were collected to detect the levels of HBsAg and HBeAg 
using a commercial ELISA kit (Kehua Bioengineering). All 
values were normalized against β-galactosidase activities in the 
cell lysates as measured using the Beta-Glo System (Promega).

Quantitative RT-PCR
Hieff® qPCR SYBR Green Master Mix (Low Rox Plus) was 
used in quantitative PCR (qPCR). The primers used in this 
study are provided in Supplementary Table S1. For the 
quantification of HBV RNA, GFP RNA, and SaCas9 RNA, 
total RNA was reverse transcribed into cDNA using random 
primers (PrimeScript RT kit; Takara), and 2  μl of the cDNA 
was used for qPCR assay.

DNA and RNA Hybridization
The extraction and analysis of HBV DNA and RNA were 
performed as previously described (Hao et al., 2015; Liu et al., 2015). 
Probe preparation and subsequent DIG detection were conducted 
using the DIG Northern Starter Kit (Roche Diagnostics, 
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Indianapolis, IN, United  States) according to the manufacturer’s 
instruction. The DIG-labeled plus strand-specific RNA probe 
corresponding to nucleotides 156–1,061 of the HBV genome 
was used for HBV DNA and RNA detection. 28S and 18S rRNA 
were used as loading controls.

Statistical Analyses
All experiments were repeated at least three times. The results 
are presented as means  ±  SEM. The statistical significance 
differences were determined by using one-way ANOVA analysis 
with multiple comparison test and independent Student’s t-test. 
Statistical analyses were achieved using the Prism 8 software 
(GraphPad Software Inc., San Diego, CA, United  States). 
A  p  <  0.05 was considered statistically significant.

RESULTS

Design and Cloning of Liver-Specific and 
HBV-Targeting SaCas9 System
To ensure that the gRNAs could target different HBV genotypes 
and reduce missing targets caused by viral genome mutations, 
we  aligned the sequences of 22 representative HBV genotypes 
from the NCBI Viral Genomes Resource (Supplementary Figure S1). 
EnhI/X and PEPCK were selected to replace the CMV promoter 
in the gRNA/SaCas9-expressing vector pX601, as shown in 
Figure  1A. Based on the screening criteria mentioned in the 
Materials and Methods section, seven gRNAs targeting different 
regions of HBV genome were designed (Figure  1B; Table  1).

In vitro Inhibition of HBV by the CRISPR/
SaCas9 System Under Control of a Single 
Liver-Specific Promoter
To explore the anti-HBV effects of the reconstructed CRISPR/
SaCas9 system with single liver-specific promoters, we  selected 

promoters from both the virus and host to replace the CMV 
promoter. The vectors carrying T1–T7 or their mixture (Tmix, 
seven gRNAs mixed in equal amounts) were co-transfected 
into Huh7 cells with the HBV genotype D to reproduce the 
rcccDNA system (prcccDNA-shB2M and pCMV-KRAB-Cre at 
a 1:1 ratio) and pSV-β-gal (as internal control). Comparison 
with the TGFP (Target GFP gRNA) control group revealed that 
all gRNAs of two reconstructed CRISPR/SaCas9 systems reduced 
the average HBsAg and HBeAg levels in the supernatants by 
25–85% (Figure  2A).

T2, T3, T6, and Tmix reduced the average HBsAg and HBeAg 
levels in the supernatant by more than one-half. Intracellular 
viral replication and extracellular offspring virion DNA were 
extracted and investigated using qPCR analysis. All gRNAs of 
the two reconstructed CRISPR/SaCas9 systems were found to 
dramatically suppress HBV replication (Figure  2B). Extracted 
DNA in the nucleus was detected by Southern blotting, and 
viral transcription was detected by Northern blotting. All gRNAs 
of the two reconstructed CRISPR/SaCas9 systems effectively 
reduced the amount of rcccDNA (similar to the natural cccDNA 
of HBV; Figure 2C), and the HBV RNA transcripts were stably 
reduced by T2, T3, and T6 (Figure  2D). These data suggest 
that the CRISPR/SaCas9 system containing a replacement liver-
specific promoter still had evident in vitro inhibition of HBV, 
and T2, T3, and T6 were more effective than the other 
tested gRNAs.

Study of the Tissue Tropism Effects of 
Candidate Liver-Specific Promoters in 
vitro and in vivo
To screen for suitable liver-specific promoters, nine promoter 
fragments were inserted into pGL3-Basic (Figure  3A). EnhI/X 
(nt 950–1,375), EnhII/C (nt 1,415–1,815), preSI (nt 2,707–2,849), 
and preSII (nt 2,937–3,182) were from HBV (genotype D: GenBank 
accession no. V01460.1); PEPCK (540  bp) was from rat; and 

A B

FIGURE 1 | Design of liver-specific and hepatitis B virus (HBV)-targeting CRISPR/SaCas9 system. (A) Design of the reconstructed guide RNA (gRNA)/SaCas9-
expressing vector pX601-U6-HBVgRNA plasmids. NLS, nuclear localization signal; HA, HA-tag; SaCas9, human codon-optimized Staphylococcus aureus Cas9; 
bGHpA, bovine growth hormone poly(A) signal. (B) Schematic diagram of the gRNA-targeted sequences located in the HBV genome.
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Pa1AT (305  bp) was derived from human. EnhancerII (EnhII, nt 
1,621–1,775) was added at the 5' end of the host-derived promoter 
to increase the gene expression levels. CMV was used as a control 
promoter that can be widely and highly expressed in all cell types. 
To control the transfection efficiency, all the results in different 
cells were corrected for Renilla luciferase expression.

As negative controls, we used the human non-hepatocellular 
carcinoma cell lines HeLa and HEK293T. Of the four HBV 
promoters tested, EnhI/X was the strongest, yielding over 10% 
of CMV activity in NTCP; however, EnhII/C had the biggest 
difference in activity between hepatocellular carcinoma and 
non-hepatocellular carcinoma cell lines (Figure  3B). Overall, 
the expression of Pa1AT was higher than PEPCK, and the 
expression levels of both improved significantly after inclusion 
of EnhII. Among all the liver-specific promoters, EnhII-Pa1AT 
had the highest expression activity in hepatocellular carcinoma 
cell lines, showing the biggest difference expression between 
hepatoma and non-hepatocellular carcinoma cell lines.

To further test the in vivo specificity of the two liver-specific 
promoters derived from the host linked with a viral enhancer, 
we  detected the expression of genes transduced using the 
lentiviral vector. Three promoters followed by luciferase were 
inserted into pHAGE (Figure 3C). RT-qPCR analysis was used 
to detect the luciferase mRNA driven by CMV and the other 
two chimeric promoters. Based on the expression levels in 
liver tissue, lower levels of expression were observed in heart, 
spleen, lung, and kidney with EnhII-Pa1AT compared to the 
CMV promoter (Figure  3D). However, the effect of EnhII-
PEPCK was mediocre, even showing opposite liver specificity 
revealed by the results in spleen and lung. Taken together, 
these results demonstrate the higher activity and better specificity 
of the chimeric liver-specific promoter compared with the single 
liver-specific promoter. Especially, EnhII-Pa1AT demonstrated 
potential for further verification.

Inhibition of HBV in vitro by the CRISPR/
SaCas9 System Under the Control of 
Chimeric Liver-Specific Promoters
To further explore the CRISPR/SaCas9 system reconstructed 
with chimeric liver-specific promoters, we  replaced the CMV 
promoter of gRNA/SaCas9-expressing vector pX601 with EnhII-
PEPCK and EnhII-Pa1AT (Figure 4A). For testing, we selected 
the three more-effective gRNAs (T2, T3, and T6) and their 

mixture (Tmix – the three gRNAs mixed in equal amounts) 
according to the previous results. Similar to the anti-HBV 
activity of the reconstructed CRISPR/SaCas9 system with the 
single liver-specific promoter, all parameters of the HBV lifecycle, 
including the HBsAg, HBeAg, HBV DNA, rcccDNA, and HBV 
RNA transcripts, were significantly repressed (Figures  4B–D).

To explore whether the target sequences showed broad-spectrum 
anti-HBV activity, we next verified the effects of the three selected 
gRNAs or Tmix for each reconstructed CRISPR/SaCas9 system 
using different HBV genotypes. The corresponding plasmids were 
co-transfected into Huh7 cells with each individual gRNA or 
mixture. The relative levels of HBeAg in the culture supernatants 
were measured using ELISA. The reconstructed CRISPR/SaCas9 
system with EnhII-PEPCK effectively inhibited the HBeAg 
expression of HBV with genotypes A and C, and EnhII-Pa1AT 
could inhibit the HBeAg expression of HBV with genotype C 
to varying degrees (Figure  4E). However, T6 with EnhII-Pa1AT 
revealed an effective rate of almost 50% for the inhibition of 
HBV with the genotypes A, B, and C. According to this study 
of tissue tropism effects and the verification of anti-HBV in vitro, 
EnhII-Pa1AT was the most effective chimeric liver-specific promoter.

Inhibition of HBV in vivo by the 
AAV8-Derived CRISPR/SaCas9 System 
With EnhII-Pa1AT Promoter
To verify the inhibition efficiency of the reconstructed CRISPR/
SaCas9 system with the EnhII-Pa1AT promoter in vivo, we used 
the C57BL/6 mice where HBV replication persists for a long 
time after injection with the reproduce rcccDNA system. 
We injected the reproduced rcccDNA system 1 week in advance 
for production and maintenance of HBV in mice through 
hydrodynamic injection (HDI), and then injected them again 
with AAV8 containing EnhII-Pa1AT-T2, EnhII-Pa1AT-T6, or 
EnhII-Pa1AT-Tmix (EnhII-Pa1AT-T2:EnhII-Pa1AT-T6  =  1:1) or 
AAV8 containing GFP. After 14  days, we  harvested serum and 
liver samples from the mice (Figure  5A).

To eliminate the issue of differences in observations being 
due to differences in virus expression levels between groups 
of mice, we  collected the orbital venous plexus blood before 
the second injection for detection of the HBsAg and HBeAg 
levels in the mice. Compared with the AAV8-delivered GFP 
expression control, the serum HBsAg levels fell even more 
with the AAV8-delivered CRISPR/SaCas9 system treatment, 
and AAV8-T2 had significant effects in inhibiting HBeAg 
(Figure  5B). HBV DNA in the serum and HBV RNA in liver 
were remarkably reduced after the administration of T2, T6, 
or Tmix (Figure  5C). As shown in Figure  5D, the expression 
of the HBV core protein antigen (brown color labeled by red 
arrow) in the mouse liver was also significantly inhibited by 
the AAV8-delivered CRISPR/SaCas9 system.

In the case of the reconstructed CRISPR/SaCas9 system 
delivered by the AAV8 vector, we  collected the organs and 
tissues in addition to the liver (heart, spleen, lung, kidney, 
eyeball, thigh muscle, brain, and intestine). We  analyzed the 
RNA levels of GFP and SaCas9 transgenes, which were driven 
by different promoters but delivered by the same tissue-specific 
AAV8 vector, using RT-qPCR. The expression of the target 

TABLE 1 | Sequences of HBV-specific gRNAs.

Name Sequence 5'-3' Location

T1(gRNA1) caccGTCCAACTTGTCCTGGTTATCG 354–374
T2(gRNA2) caccGGGCTTTCGGAAAATTCCTAT 623–643
T3(gRNA3) (−)caccGACCTGGCCGTTGCCGGGCAA 1,153–1,173
T4(gRNA4) caccGTTTGTTTACGTCCCGTCGGCG 1,422–1,442
T5(gRNA5) (−)caccGCGTTGACATTGCAGAGAGTCC 1,670–1,690
T6(gRNA6) caccGCATGGACATCGACCCTTATA 1,901–1,921
T7(gRNA7) caccGTCGCAGAAGATCTCAATCTC 2,417–2,437
TeGFP caccGAGCTGGACGGCGACGTAAA

The capital letters are guide RNA sequences, and the lower case letters are sticky ends 
for cloning.
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gene was significantly decreased in non-liver organs (Figure 5E). 
Under the action of the EnhII-Pa1AT promoter, the expression 
of the SaCas9 was further decreased in organs and tissues 
other than liver. In comparing the differences in transgene 
expression driven by the same promoter between the lentiviral 
vector and AAV8 vector, AAV8 had clear liver tropism effects.

DISCUSSION

We first investigated the anti-HBV effects of reconstructed 
CRISPR/SaCas9  in which the original promoter (CMV) was 

replaced with liver-specific promoters (Figures 2, 4, 5). Although 
the activity of liver-specific promoters for expression of the 
downstream gene was significantly weaker compared with the 
original CMV promoter (Figure 3B), the reconstructed CRISPR/
SaCas9 still had significant anti-HBV suppression efficacy 
(Figures 2, 4). The use of multiple gRNAs (Tmix) also demonstrated 
efficient inhibition of HBV. In fact, HBV polymerase lacks 
proofreading activity, i.e., does not have 3'-5' exonuclease activity. 
HBV is likely to mutate during reverse transcription, which 
increases its risk of escaping traditional antiviral drug treatment 
(Chan, 2011; Rajoriya et  al., 2017). Therefore, more research 
is required on the use of multiple gRNAs to consider and 

A

B

C D

FIGURE 2 | Anti-HBV effects of the reconstructed CRISPR/SaCas9 system under the control of single liver-specific promoter in Huh7 cells. Huh7 cells were co-
transfected with reconstructed gRNA/SaCas9 system plasmids and reproduce rcccDNA system plasmids. (A) At 48 h post-transfection, the relative levels of HBsAg 
and HBeAg were measured by ELISA. (B) At 96 h post-transfection, intracellular HBV replication intermediates and extracellular virion DNA were extracted and the 
expression levels were measured using quantitative PCR (qPCR). (C) The expression levels of HBV intracellular replication were measured by Southern blotting. 
(D) The expression levels of the HBV transcripts were measured by Northern blotting. In each of the transfections, the pSV-β-gal plasmid was included to normalize 
the transfection efficiencies. The results of the ELISA and qPCR were calculated from three independent experiments, and the data are presented as the 
mean ± SEM. *p < 0.05 and ***p < 0.001. Tmix, the mixture of T1–T7.
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discuss its potential ability to inhibit virus escape variants and 
the risks of off-target effects.

There have been numerous studies on liver-specific promoters. 
Daniel et al. quantitatively compared the in vivo levels of several 
liver-specific promoters, and their results indicated that hAAT 
had the strongest priming effect in reverse transcription vectors, 
which is of great significance for gene therapy (Hafenrichter 
et  al., 1994b). As the effect of a single liver-specific promoter 
is much lower than that of the CMV promoter and enhancer, 
researchers often construct chimeric enhancers/promoters to 
regulate the transcription of a target gene.

Gabriela et  al. linked the albumin enhancer (Ealb) and HBV 
enhancer (EII) to other promoters to construct different chimeric 
promoters (Kramer et  al., 2003). Combining in vitro and in vivo 
data, studies have shown that Ealb-Pa1AT and EII-Pa1AT can 
continuously and efficiently induce gene expression in the liver 
and can be  used as candidate promoters for gene therapy. Similar 
conclusions were obtained in our work, where EnhII-Pa1AT was 
observed to have the best efficiency and liver specificity at the 
cellular level among all the studied liver-specific promoters (Figure 3).

Compared to the CMV promoter, EnhII-Pa1AT had 
significantly reduced downstream gene expression in non-liver 

organs or tissues according to the results of the lentivirus and 
AAV vector transgene expression model. In addition, we found 
that the expression of downstream genes transduced by AAV 
vectors in non-liver organs was even less than the gene 
transduction by the lentivirus (Figures 3D, 5E). The replacement 
of liver-specific promoters or the use of hepatophilic AAV 
types can reduce the chance of cleavage in other organs or 
tissues, thereby reducing the possibility of pernicious targets 
as a whole.

Powerful models that can generate substantial cccDNA 
supercoils both in vitro and in vivo and with high efficiency 
and a long half-life are an important research requirement for 
HBV. Several recombinant cccDNA (rcccDNA) systems based 
on site-specific DNA recombination were developed (Guo et al., 
2016; Li et  al., 2016; Yan et  al., 2017). These rcccDNAs were 
generated in large quantities and were heat stable and 
epigenetically organized as a mini-chromosome, with the unique 
attribute of establishing HBV persistence in immunocompetent 
mice. Such a system also represents a useful model for in 
vitro and in vivo evaluation of antiviral treatments against 
HBV cccDNA. We  could easily determine the reduction of 
rcccDNA produced by the reproduced rcccDNA system through 

A B

C D

FIGURE 3 | Activity of liver-specific promoters in vitro and in vivo. (A) Schematic of the reporter plasmids for studying specificity in vitro. Nine promoters were 
inserted into the pGL3-Basic plasmid. (B) Promoter activity in hepatoma and non-hepatocellular carcinoma cell lines. Hepatic (Huh7, HepG2, and NTCP) and non-
hepatic (HeLa and HEK293T) cell lines were transiently transfected with reporter plasmids. (C) Schematic of the reporter plasmids for studying the specificity in vivo. 
Three luciferase linked promoters inserted into pHAGE plasmid for packaging lentivirus. (D) The mice were divided into three groups, and we injected the lentivirus-
packaged luciferase reporter system. At 7 days post-injection, organ samples were harvested and luciferase mRNA was measured using RT-qPCR. The pRL-TK 
plasmid was included to normalize the transfection efficiencies, and Dual-Luciferase assay results were calculated from three independent experiments. The data are 
presented as the mean ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001, ns, no significant.
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FIGURE 4 | Anti-HBV effects of the CRISPR/SaCas9 system under the control of the chimeric liver-specific promoter in Huh7 cells. Huh7 cells were co-transfected with 
reconstructed gRNA/SaCas9 system plasmids and reproduce rcccDNA system plasmids. (A) Design of the reconstructed gRNA/SaCas9-expressing vector pX601-U6-
HBVgRNA plasmids replaced with a chimeric liver-specific promoter. NLS, nuclear localization signal; HA, HA-tag; SaCas9, human codon-optimized S. aureus Cas9; 
bGHpA, bovine growth hormone poly(A) signal. (B) At 48 h post-transfection, HBsAg and HBeAg were measured using ELISA. The intracellular HBV replication 
intermediates and extracellular virion DNA were measured using qPCR at 96 h post-transfection. (C) At 48 h post-transfection, measurement of the HBV intracellular 
replication was through Southern blotting. (D) At 48 h post-transfection, measurement of the HBV RNA transcripts was by Northern blotting. (E) The genotype A, B, and 
C HBV replicons were co-transfected with the reconstructed gRNA/SaCas9 system plasmids. At 48 h post-transfection, the relative levels of HBeAg were measured 
using ELISA. In each of the transfections, the pSV-β-gal plasmid was included to normalize the transfection efficiencies. The results of ELISA and qPCR were calculated 
from three independent experiments and the data are presented as the mean ± SEM. *p < 0.05 and ***p < 0.001. Tmix, the mixture of T2, T3, and T6.
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Southern blot in our study. In the mouse experiment, in contrast 
to operations in cell experiments and other hydrodynamically 
injected mice models, we injected a virus plasmid and CRISPR/
SaCas9 1 week apart. This method without co-injection is more 
in line with a realistic virus treatment situation.

CRISPR variants have been continually identified and 
engineered for enhanced efficiency, decreased off-target editing, 
and reduced immunogenicity or size. These novel CRISPR 
variants, such as xCas9, Cas12a, and CasF, have great 
potential for gene therapy applications (Zetsche et  al., 2016; 
Pausch et  al., 2020; Zhang et  al., 2020). Off-target detection 

still remains a key challenge, and this was also a limitation 
of this study. A variety of sequencing-based approaches are 
used to detect and quantify off-target effects caused by CRISPR 
(Manghwar et  al., 2020). To comprehensively assess the risk 
of off-target effects, genome-wide sequencing is a popular choice 
(Klimke et al., 2019; Yu and Wu, 2019). Akcakaya et al. (2018) 
described verification of in vivo off-targets (VIVO), a highly 
sensitive strategy that can identify the genome-wide off-target 
effects of CRISPR/Cas nucleases in vivo. As the CRISPR system 
and methods for demonstrating off-target risks continue to 
be developed, its therapeutic potential will continue to increase.

A

B C

D

E

FIGURE 5 | Anti-HBV effects of the CRISPR/SaCas9 system with the EnhII-Pa1AT promoter in vivo. (A) The mice were divided into four groups and subjected to 
hydrodynamic injection (HDI) with the reproduce rcccDNA system plasmids. At 7 days post-injection, we injected the adeno-associated virus (AAV)8-packaged 
CRISPR/SaCas9 system into the mice via the tail vein again. After two injections, blood samples were collected on day 0, and the mice were sacrificed on day 14. 
(B) The levels of HBsAg and HBeAg were measured using ELISA. (C) HBV DNA in the sera was measured using qPCR and HBV RNA in the liver was measured 
using RT-qPCR. (D) Immunohistochemical staining for HBcAg was performed in the liver. (E) Nine tissue samples were collected from twice injected mice as 
mentioned above, eGFP mRNA and SaCas9 RNA were measured using RT-qPCR. The results of the ELISA and qPCR were calculated from three independent 
experiments, and the data are presented as the mean ± SEM. *p < 0.05 and ***p < 0.001. Tmix, the mixture of AAV8-T2 and AAV8-T6.
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