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National screening programs use dried blood specimens to detect metabolic disorders 
or aberrant protein functions that are not clinically evident in the neonatal period. Similarly, 
gut microbiota metabolites and immunological acute-phase proteins may reveal latent 
immune aberrations. Microbial metabolites interact with xenobiotic receptors (i.e., aryl 
hydrocarbon and pregnane-X) to maintain gastrointestinal tissue health, supported by 
acute-phase proteins, functioning as sensors of microbial immunomodulation and 
homeostasis. The delivery (vaginal or cesarean section) shapes the microbial colonization, 
which substantially modulates both the immune system’s response and mucosal 
homeostasis. This study profiled microbial metabolites of the kynurenine and tryptophan 
pathway and acute-phase proteins in 134 neonatal dried blood specimens. We newly 
established neonatal blood levels of microbial xenobiotic receptors ligands (i.e., indole-
3-aldehyde, indole-3-butyric acid, and indole-3-acetamide) on the second day of life. 
Furthermore, we observed diverse microbial metabolic profiles in neonates born vaginally 
and via cesarean section, potentially due to microbial immunomodulatory influence. In 
summary, these findings suggest the supportive role of human gut microbiota in developing 
and maintaining immune system homeostasis.

Keywords: human gut microbiota, tryptophan and kynurenine metabolism, dried blood specimens, acute-phase 
proteins, immunomodulation

INTRODUCTION

Dried blood specimens (DBS) are used to quantify circulating levels of drugs (Kloosterboer 
et  al., 2018), metabolites (Sain-van der Velden et  al., 2017), and proteins. The advantages over 
a conventional blood draw include minimally invasive sampling, suitable for neonates and 
other vulnerable populations, fewer processing and handling steps, and facile storage. Neonatal 
DBS collected from a heel prick are widely used in nationwide neonatal screening programs 
for inherited endocrine and metabolic disorders (Mechtler et  al., 2012).
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The initial exposure to microbiota during and immediately 
after birth influences the lifelong colonization and modulates 
the innate and adaptive immune system (Neu and Rushing, 
2011), potentially causing a decreased tolerance or an exorbitant 
antigen representation, inflammatory response, and damage to 
the mucosal barrier function (Francino, 2018). Natural vaginal 
delivery (VD) or cesarean delivery (CD) shapes the diversity 
of commensal, symbiotic, and pathogenic microorganisms 
colonizing the human body, collectively referred to as the 
microbiota (Penders et  al., 2006; Palmer et  al., 2007; Mitsou 
et  al., 2008; Wall et  al., 2009). The composition and timing 
of gut microbiota colonization vary in VD and CD neonates 
(Bennet and Nord, 1987; Grönlund et  al., 1999; Penders et  al., 
2006; Palmer et al., 2007; Mitsou et al., 2008). Fecal and vaginal 
microbiota dominate the initial colonization in VD neonates 
(Mändar and Mikelsaar, 1996; Bezirtzoglou, 1997; Grönlund 
et  al., 1999; Matsumiya et  al., 2002; Wall et  al., 2009). For 
instance, microaerophilic Lactobacillus species (ca. 25% of total 
microbiota) frequently colonizes VD infants (Matsumiya et  al., 
2002; Wall et  al., 2009). On the other hand, CD neonates are 
primarily exposed to nosocomial bacteria or topical skin 
microbiota (Bezirtzoglou, 1997; Grönlund et  al., 1999; Mackie 
et  al., 1999; Wall et  al., 2009). CD infants’ gut microbiota 
typically contain a smaller share of strict anaerobes such as 
Bacteriodetes fragilis and Bifidobacteria (Bennet and Nord, 1987; 
Grönlund et  al., 1999; Torun et  al., 2002; Penders et  al., 2006; 
Wall et  al., 2009). The initial microbial composition’s nuances 
can modulate the immune system’s development and affect 
the infant’s subsequent health (Francino, 2018; Wampach 
et  al., 2018).

The circulating microbial metabolites reflect the diversity 
of human gut microbiota and endogenous inflammatory markers 
(i.e., acute-phase proteins—APP) the immune system’s reaction. 
The microbial community builds contact with intestinal epithelial 

immune cells’ receptors and stimulates signaling cascades leading 
to cell differentiation and inflammatory response control 
(Romagnani, 2006). Microbial catabolites of aromatic amino 
acids (e.g., tryptophan) act protectively in the host immune 
homeostasis, similar to short-chain fatty acids (i.e., acetate, 
butyrate, and propionate; Jin et  al., 2017; Pavlova et  al., 2017). 
Tryptophan catabolites, i.e., indole-3-acetic acid (IAA; Elsden 
et  al., 1976; Smith and Macfarlane, 1996; Finegold et  al., 2002; 
Russell et  al., 2013; Roager and Licht, 2018), indole-3-lactic 
acid (ILA; Aragozzini et al., 1979; Smith and Macfarlane, 1996; 
Russell et  al., 2013; Honoré et  al., 2016; Cervantes-Barragan 
et  al., 2017; Dodd et  al., 2017; Roager and Licht, 2018), and 
indole-3-propionic acid (IPA; Elsden et  al., 1976; Wikoff et  al., 
2009; Williams et al., 2014; Dodd et al., 2017; Wlodarska et al., 
2017; Roager and Licht, 2018), interact with xenobiotic receptors 
(i.e., aryl hydrocarbon receptor, AHR, and pregnane X receptor, 
PXR; Roager and Licht, 2018). The AHR is a ligand-activated 
transcriptional factor widely expressed in immune cells that 
attenuates autoimmune responses and ensures gastrointestinal 
tissue health (Figure  1A). The ligand-specific activation of the 
AHR signaling pathway is immunomodulatory to the host. 
Microbial tryptophan catabolites regulate the production of 
pro-inflammatory cytokines (i.e., INF-γ and IL-2) in TH1 cells 
and anti-inflammatory cytokines (i.e., IL-10) in TH2 cells 
(Mangge et  al., 2014; Alexeev et  al., 2016; Lanis et  al., 2017; 
Gao et al., 2018; Krishnan et al., 2018). Microbial AHR ligands 
modulate intestinal barrier function and the resistance against 
enteric pathogens (Liu et  al., 2018). Indole-3-acetamide (IAM) 
and indole-3-butyric acid (IBA) are precursors of IAA (Figure 1B; 
Agus et  al., 2018). Indole-3-aldehyde (IAld), IAA, IAM, and 
ILA activate ILC3 through AHR signaling, producing IL-22 
to induce resistance against mucosal candidiasis (Zelante et al., 
2013; Zhang et  al., 2019). IBA, the metabolic product of 
Clostridia species (Lombard and Dowell, 1983), occurs in 
human urine (Tonelli et al., 1982) and plasma. IBA cooccurred 
with the incidence of inflammatory bowel syndrome (IBS) in 
schizophrenic patients (Cai et al., 2012). A potential mechanism 
to control inflammation by IBA and IAA is competitive inhibition 
of phospholipase A2 (Dileep et  al., 2013). ILA reprograms 
intraepithelial CD4+T cells in immunoregulatory CD4+CD8αα

+ 
(Cervantes-Barragan et  al., 2017). In vitro studies in gram-
positive and gram-negative bacterial cell cultures (Bacillus 
subtilis, Pseudomonas aeruginosa, Salmonella enterica, and 
Staphylococcus aureus) demonstrated biofilm formation inhibition 
by anthranilate (ATA; Li et  al., 2017). The interaction between 
microbial metabolites and the neonates’ immune system 
emphasizes their role in the epithelial barrier function and 
reveals their importance in the signaling cascade of the immune 
systems’ local and systemic response.

The quantitative profiling of circulating acute-phase proteins 
(APPs) monitors the systemic inflammatory response (Vidova 
et  al., 2019). APPs are not transportable across the placental 
barrier and represent a surrogate for the neonate’s innate 
immune system’s activation. C-reactive protein (CRP) and 
serum amyloid A (SAA) are synthesized in hepatocytes 
(Figure  1A) after stimulation by cytokines (i.e., IL-6, IL-1, 
IL-8, and TNF-α; Heinrich et al., 1990). In healthy individuals, 

Abbreviations: A1AT, Alpha-1-antitrypsin; A1AG1, Alpha-1-acid glycoprotein 1; 
A1AG2, Alpha-1-acid glycoprotein 2; AAT, Aromatic amino acid transferase; 
acdA, Acyl-CoA dehydrogenase; AFMID, Kynurenine formamidase; AHR, Aryl-
hydrocarbon receptor; AO1, Indole acetaldehyde oxidase; APP, Acute-phase protein; 
ArAT, Aromatic amino acid aminotransferase; ATA, Anthranilate; BCA, Bicinchoninic 
acid; CD, Cesarean delivery; CELSPAC-TNG, Central European Longitudinal 
Studies of Parents and Children – The Next Generation; CRP, C-reactive protein; 
DBS, Dried blood specimens; ECH2, Enoyl-CoA hydratase 2; fldH, Phenyl lactate 
dehydrogenase; fldBC, Phenyl lactate dehydratase; FoxP3, Forkhead-box-protein 
3; HIAA, Hydroxy-indole acetic acid; HMDB, Human Metabolome Database; 
IAA, Indole-3-acetic acid; IaaH, Indole acetamide hydrolase; IaaO, Indole-3-acetic 
acid oxidase; IAld, Indole-3-aldehyde; IAM, Indole-3-acetamide; IBA, Indole-3-
butyric acid; IBS, Inflammatory bowel syndrome; IDO, Indoleamine-2,3-dioxygenase; 
ILA, Indole-3-lactic acid; IL-1, Interleukin-1; IL-2, Interleukin-2; IL-6, Interleukin-6; 
IL-8, Interleukin-8; IL-10, Interleukin 10; IL-22, Interleukin 22; ILC3, Innate 
lymphoid cells 3; INFγ, Interferon-γ; IPA, Indole-3-propionic acid; KAT, Kynurenine 
amino transferase; KYN, Kynurenine; KYNU, Kynureninase; LC, Liquid 
chromatography; MAO, Monoamine oxygenase; MS, Mass spectrometry; NAT, 
N-acetyl-tryptophan; NAT1, Arylamine N-acetyltransferase 1; PCD, Pyruvate 
decarboxylase; porB/C, Pyruvate ferredoxin oxidoreductase B and C; PXR, Pregnane 
X receptor; SAA, Serum amyloid A; SRM, Selected reaction monitoring; TDO, 
Tryptophan-2,3-dioxygenase; TGF β, Transforming growth factor; TH1, t helper 
type 1 cells; TH2, t helper type 2 cells; TLR4, Toll like receptor 4; TMO, 
tryptophan-2-monooxygenase; TNFα, Tumor necrosis factor α; TrD, Tryptophan 
decarboxylase; TRP, Tryptophan; UHPLC, Ultra-high-performance liquid 
chromatography; VD, Vaginal delivery; QQQ, Triple quadrupole.
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circulating SAA1, SAA2, and CRP levels are low but increase 
between 10-fold and 1,000-fold during the acute phase of 
inflammation (Clyne and Olshaker, 1999; Haran et  al., 2013; 
Buck et al., 2016). SAA1 is arguably a more reliable inflammation 
marker than CRP as SAA levels rise earlier, more rapidly, 
and have higher amplitude (Arnon et  al., 2007). SAA4 is a 
constitutive apolipoprotein with a stable blood concentration 
during the acute phase of inflammation (Yamada et  al., 1997; 
Buck et al., 2016). The initial microbial colonization influenced 
by the mode of delivery induces measurable perturbations 
in APPs. Higher concentrations of SAA1 and CRP were 
reported in VD compared to CD neonates (Marchini et  al., 
2000). Blood levels of A1AT, A1AG1, and A1AG2 increase 
by several folds in response to inflammation 
(Hochepied et  al., 2003; Janciauskiene et  al., 2011).

In this study, we  profiled nine tryptophan catabolites (i.e., 
ATA, IAA, IAM, IAld, IBA, ILA, IPA, kynurenine—KYN, and 
N-acetyl tryptophan—NAT) and seven APPs (i.e., A1AT, A1AG1, 
A1AG2, SAA1, SAA1/2, SAA4, and CRP) in a DBS punch 
(3 mm or 1/8″, equivalent to 3 μl of blood). We  analyzed 134 
neonatal DBSs from a birth cohort study: Central European 
Longitudinal Studies of Parents and Children – The Next 
Generation (CELSPAC-TNG) to explore early-life 
immunomodulation attributed to the metabolism of the human 
gut microbiota. We  explored the delivery mode’s influence on 
tryptophan catabolite and acute-phase protein profile.

MATERIALS AND METHODS

Study Design
DBS samples from 134 neonates (20 delivered via cesarean 
section and 114 delivered vaginally) collected under IRB approval 
were part of the CELSPAC-TNG study at Faculty Hospital 
Brno (Ethical Committee CELSPAC/EK/4/2016, in 2016–2017). 
Characteristics of individual neonates, including gestational age, 
delivery mode, sex, birth weight, birth length, Apgar score, 
DBS sampling, and anamnesis, are shown in 
Supplementary Table S-1. The study subjects were female 
(n = 56) and male (n = 78), with an average birth weight of 
3,494 g and an average birth length of 50.5 cm 
(Supplementary Tables S-1 and S-2). We  show the average, 
minimal, and maximal values for birth length, weight, gestation 
age, Apgar score, and the delay from the birth to DBS sampling 
for VD and CD neonates separately in Supplementary Table S-2. 
For DBS sampling, a small amount of capillary blood from 
the heel prick was soaked into Whatman 903 filter paper and 
allowed to dry at room temperature for 3 h. DBS punches 
(1/8″ or 3 mm) were stored in the freezer at −80°C until analysis.

Chemicals and Reagents
Isotopically labeled peptides used as internal standards for 
protein quantification were from JPT Technologies (Berlin, 
Germany). Sequences are listed in Supplementary Table S-3. 

A B

FIGURE 1 | (A) The interaction network of microbial tryptophan catabolites and acute-phase proteins mediating the anti-inflammatory and immune-supportive 
function. (B) Microbial and human co-metabolism. Created with BioRender.com.
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The protein assay protocol was adapted from the previous 
study (Vidova et  al., 2019). Isotopically labelled [13C6] indole-
3-acetic acid (cat. #0317333), purity >97%, was from OlChemIm 
s.r.o. (Olomouc, Czech  Republic). Isotopically labeled [13C11] 
[15N2] L-tryptophan (cat. #574597), purity ≥98%, was from 
Sigma-Aldrich (St. Louis, United  States). Isotopically labeled 
[2D4] L-kynurenine (cat. #DLM-7842-PK), purity of 95%, was 
from Cambridge Isotope Laboratories, Inc. (Tewksbury, 
Massachusetts, United  States). Isotopically labeled [13C6] 
anthranilic acid (cat. #PR-24225), purity 99%, was from Sigma-
Aldrich (St. Louis, Massachusetts, USA). The chemical standard 
of L-tryptophan (cat. #51145; TraceCERT®), N-acetyl-tryptophan 
(cat. #PHR1177), indole-3-acetate (cat. #45533), purity 98%, 
serotonin (cat. #14927), purity ≥ 98%, anthranilic acid (cat. 
#10680), purity ≥ 99.5%, L-kynurenine (cat. #K8625), 
purity ≥ 98%, were from Sigma-Aldrich (St. Louis, Massachusetts, 
USA). The chemical standard indole-3-carboxaldehyde (cat. 
#A15330), purity 99%, was from Alfa Aesar (Haverhill, 
Massachusetts, United  States). The chemical standard indole-
lactic-3- acid (≥97%; cat. #SC-255130), purity ≥ 97%, was from 
Santa Cruz Biotechnology (Dallas, Texas, USA). Indole-3-butyric 
acid standard (≥99.0%; cat. #57310) was from Sigma-Aldrich 
(St. Louis, Massachusetts, United States). Liquid chromatography–
mass spectrometry (LC–MS) grade acetonitrile (cat. 
#0013687802BS) and isopropanol (cat. #0016267802BS) were 
from Biosolv (Valkenswaard, Netherlands). Formic acid for 
mass spectrometry (cat. #94318) and ammonium bicarbonate 
BioUltra ≥99.5% (cat. #09830) were from Sigma-Aldrich (St. 
Louis, MO). BCA protein assay kit (cat. #23227) was from 
Thermo Fisher Scientist (Waltham, MA). Deionized water was 
produced using Millipore Simplicity 185 ultrapure water system 
(Merck Millipore corp., Billerica, MA).

Metabolite Extraction
The complete DBS sample processing flowchart is shown in 
Supplementary Figure S-3. Based on material availability, one 
or two 3-mm DBS punches (equivalent to 3 μl and 6 μl of 
whole blood, respectively) were reconstituted in 150 μl of 50 mM 
ammonium bicarbonate buffer in an orbital shaker (1,600 rpm, 
60 min). We removed a volume of 5 μl for BCA (section Protein 
Extraction and Processing Protocol, and Mass Spectrometry 
Assays) and dried the remaining sample in a vacuum concentrator 
centrifuge (Savant SPD121 P SpeedVac, Thermo Fisher). A 
volume of 400 μl of 80% isopropanol (v/v) was added to a 
dry sample and vortexed at 200 rpm for 20 min. The sample 
was briefly centrifuged, supernatant quantitatively transferred 
into a 96-well plate, and dried in the SpeedVac. Dry extracts 
were redissolved in 10 μl 5% isopropanol (v/v) containing 
isotopically labeled standards: 200 nM [13C6] indole-3-acetate, 
2000 nM [2H5] L-kynurenine, 20,000 nM [13C11][15N2] 
L-tryptophan, 50 nM [2H5][15N2] indole-3-acetamide, 200 nM 
[13C6] anthranilate (Supplementary Table S-4). Several solvents, 
i.e., 80% isopropanol, 100% isopropanol, 50% isopropanol, 80% 
acetonitrile, and 100% acetonitrile, were tested for optimal 
extraction recoveries of metabolites from DBS (n = 3). The 
optimal extraction solvent was 80% isopropanol (data not shown).

Protein Extraction and Processing 
Protocol, and Mass Spectrometry Assays
DBS proteins were extracted, processed, and analyzed by 
UHPLC–MS as described previously (Vidova et  al., 2019). 
In brief, the DBS extract’s total protein content was determined 
using BCA (cat. #23227, Thermo Fisher, Waltham, MA) in 
extracts diluted 100-fold with 50 mM ammonium bicarbonate 
buffer. A dilution series (31.25–2000 μg/ml) of bovine serum 
albumin standard in 50 mM ammonium bicarbonate buffer 
was used to generate a 7-point calibration curve. 
Spectrophotometric absorbance was measured at 562 nm. 
Mass spectrometry protein assays were performed in 30 μl 
of DBS extract mixed with 10 μl of the internal standard 
solution in 5% of acetonitrile, containing isotopically labeled 
standard peptides (Supplementary Table S-3) and with 3 μl 
of trypsin (1 μg/μl). Samples were incubated (17 h at 37°C, 
orbital shaking), and the enzymatic proteolysis was quenched 
by adding 200 μl of 2% formic acid in water (pH < 3). Tryptic 
peptides were purified and desalted, applying solid phase 
extraction (Oasis PRIME HLB 96-well plate, 30 mg, Waters, 
Milford, MA). The solid-phase extraction protocol: the sample 
loaded onto the cartridge, washed with 300 μl of 2% formic 
acid in water (pH < 3), eluted with 50% acetonitrile with 2% 
formic acid (pH < 3), and the eluate dried in the SpeedVac. 
Before UHPLC–MS analysis, peptides were reconstituted in 
50 μl of 5% acetonitrile with 0.1% formic acid. Processed 
DBS samples were injected (5 μl) on the UHPLC-QQQ system 
(Infinity 1,260 and 6495B from Agilent Technologies, 
United States). We utilized a reversed-phase analytical column 
(C18 Peptide CSH; 1.7 μm, 2.1 mm i.d. × 100 mm; cat. 
#186006937, Waters, Milford, MA) and the previously described 
method (Vidova et  al., 2019).

Mass Spectrometry Metabolite Profiling
Extracted DBS were analyzed in triplicate. Samples were injected 
(2 μl) on the UHPLC-QQQ system equipped with a reverse-
phase analytical column (Acquity UHPLC CSH™ C18 Column; 
1.7 μm, 2.1 mm x 100 mm; cat. #186005297, Waters, Milford, 
MA) thermostated to 40°C. The mobile phase consisted of 
buffer A (water with 0.1% formic acid) and buffer B (acetonitrile/
water; 95:5 with 0.1% formic acid). The gradient elution program 
(0–14 min) was: 0.0 min 5% B, 5 min 10% B, 10 min 95% B, 
11.99 95% B, 12.0 5% B, and 14 min 5% B. The mobile phase 
flow was 0.3 ml/min. A standard-flow Jet Stream electrospray 
source operated in positive SRM ion mode with a capillary 
voltage of 3.5 kV. Additional parameters were: gas flow rate 
15 l/min at 160°C, sheath gas pressure 25 PSI at 250°C, and 
nozzle voltage 500 V. SRM libraries were generated using 
Optimizer software (Agilent Technologies) on standard solutions 
of individual metabolites. For the metabolite identification, 2–4 
SRM qualifier transitions were monitored per metabolite 
(Supplementary Table S-5), and a best-performing SRM 
transition was used for the quantification 
(Supplementary Figure S-1). Peak integration and visual 
inspection were performed in Skyline software (version 20.1.0.155; 
MacCoss Lab, Univ. of Washington).
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Method Validation
Protein assay validation was reported previously 
(Vidova et al., 2019). Metabolite profiling assays were validated 
using matrix-matched calibration curves to determine the 
linearity range, coefficient of determination (R2), the limit of 
detection (LOD), and the limit of quantification (LOQ; 
Supplementary Figure S-2). LOD and LOQ were established 
for isotopically labeled standards [2H5] [15N] indole-3-acetamide, 
[13C6] indole-3-acetate, [2D4] L-kynurenine, [13C11] [15N2] 
L-tryptophan, and [13C6] anthranilic acid in pooled DBS extracts. 
The dilution series was measured in triplicate. Low concentrations 
were measured in sextuplicate to determine the standard 
deviation to establish LOD and LOQ [1] in 
Supplementary Table S-4. The linearity range was from 1 to 
1,200 nM for [2H5] [15N] indole-3-acetamide, from 15 to 40,000 nM 
for [13C6] indole-3-acetate, from 25 to 7,500 nM for [2D4] 
L-kynurenine, from 7.5 to 75,000 nM for [13C11] [15N2] 
L-tryptophan, and from 1 to 880 nM for [13C6] anthranilic acid 
(Supplementary Table S-6).

Metabolite Quantification
Concentrations of indole-3-acetamide, indole-3-acetic acid, 
L-kynurenine, L-tryptophan, and anthranilic acid were 
determined in DBS extracts using internal standardization with 
isotopically labeled standards [2H5] [15N] indole-3-acetamide, 
[13C6] indole-3-acetate, [2D4] L-kynurenine), [13C11] [15N2] 
L-tryptophan, and [13C6] anthranilic acid, at the concentrations 
of 50, 200, 2000, 20,000, and 200 nM, respectively. The calculation 
uses the concentration of the isotopically labeled standard in 
the DBS sample and integrated peak areas of the isotopically 
labeled standard and corresponding metabolite (Equation 1). 
The concentration of indole-3-aldehyde, indole-3-propionic acid, 
indole-3-butyric acid, indole-3-lactic acid, and N-acetyl 
tryptophan was corrected with the response factor (Equation 
2), determined in a conventional manner (Vidova 
and Spacil, 2017; Equation 3).

 cmet CIS
AIS

xAmet=







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=






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Statistical Analysis
For metabolites, the median concentration (n = 3) was used. 
Metabolite and protein concentrations were log-transformed 
before statistical analysis, and values below LOQ and LOD 
were substituted with √2/2 *LOQ and √2/2 *LOD, respectively. 
Only analytes with <25% substitution were used for the overall 
statistical analysis as continuous quantitative variables (Antweiler, 
2015; Hazra and Gogtay, 2017) Due to a high percentage of 
values below LOQ, IAM (>68%), IPA (>73%), SAA1(>76%), 
and CRP (>98%) were used only as additional categorical 
variables with two categories  - “below LOD” and “above LOD”; 
the latter further divided into “below LOD,” “below LOQ,” 
“above LOQ” for visualization purposes.

The Chi-square test was used to test the normality of 
distributions of logarithmically transformed values. Unpaired 
one-sided t test with Welch correction was used to test significant 
differences between various groups of samples. The resulting 
values of p were adjusted for multiple hypotheses testing using 
the Benjamini–Hochberg procedure. Results were considered 
significant at FDR ≤ 0.05. Pearson correlation coefficients (with 
values of p adjusted by Benjamini–Hochberg procedure) were 
used to describe correlation among metabolites and proteins. 
Hierarchical clustering with complete-linkage method on 
Euclidean distance was applied to hierarchically cluster samples 
(neonates) and distance derived from Pearson correlation to 
cluster the analytes. Categorical anamnestic data for neonates 
and their mothers and additional categorical variables (IAM, 
IPA, SAA1, and CRP) were used to test differences in metabolite 
and protein levels and correlations between various groups. 
All statistical analyses were performed in R version 4.0.0 (R 
core team, 2020) using additional R packages ggplot2 (Wickham, 
2009), nortest (Tests for Normality [R package nortest version 
1.0-4], 2021; normality testing), gplots (Various R Programming 
Tools for Plotting Data [R package gplots version 3.0.4], 2021), 
heatmap3 (Zhao et  al., 2014; hierarchal clustering and heat 
map), corrplot (Visualization of a Correlation Matrix [R package 
corrplot version 0.84], 2021; correlation matrix plot), and 
beeswarm (CRAN, 2021 – Package beeswarm, 9 AD; boxplots).

RESULTS

Tryptophan and Kynurenine Catabolites 
and Acute-Phase Proteins in Neonatal 
Dried Blood Specimens
We profiled TRP, ATA, IAA, IAM, IAld, IBA, ILA, IPA, KYN, 
and NAT levels in 134 neonatal DBS collected on the second 
day of life (Table  1 and Figure  2A). ATA, IAA, ILA, IPA, 
KYN, and TRP blood levels were consistent with previous 
reports in the Human Metabolome Database (2021; HMDB); 
IAld, IAM, and IBA neonatal levels were newly established 
(Table  1). IPA, IAM, and SAA1 levels were frequently <LOQ, 
CRP levels <LOD (see Supplementary Figures S-4, S-5). The 
median SAA1/2, A1AT, A1AG1, A1AG2, and SAA4 blood 
levels are in Figure 3A and Table 2. SAA1 blood levels quantified 
in 33 neonates were elevated (>10 mg/l) in 13 VD neonates.

No significant differences were observed in metabolite 
(Figure  2B) and APP levels (Figure  3B) between CD (n = 20) 
and VD (n = 114) groups and respective to clinical conditions in 
mothers and neonates (Supplementary Figures S-4, S-5). SAA1/2, 
SAA4, and A1AG1 showed statistically significantly higher levels 
(p < 0.0001) in sample groups with CRP > LOD compared to samples 
with CRP < LOD. The same difference was observed in the sample 
groups with SAA1 above and below LOD 
(Supplementary Figure S-6). The heatmap of protein and metabolite 
concentrations with rows and columns ordered based on 
unsupervised clustering of the analytes (Pearson correlation-based 
distance, main clusters A, B, C) and the DBS samples (Euclidean 
distance, main clusters D, E) is shown in Supplementary Figure S-4. 
Cluster A represents APPs (however, A1AT shows a weak correlation 
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TABLE 1 | The lowest, the highest, and median concentrations of tryptophan and kynurenine catabolites in DBS.

Metabolite Acronym PubChem CID # samples >LOQ Median 
concentration 

(mg/L of blood)

The lowest 
concentration 

(mg/L of blood)

The highest 
concentration 

(mg/L of blood)

HMDB entries 
(mg/L)

References

Anthranilate ATA 5,459,842 134 0.0189 0.0086 0.0470 0.0041 +/− 0.0014 
[adults (>18 years)]

Duranton et al., 2012

Indole-3-acetic acid IAA 802 134 0.6739 0.2121 3.8892 0.4992 +/− 0.2996 
[adults (>18 years)]

Duranton et al., 2012

Indole-3-aldehyde IAld 10,256 134 0.5527 0.2138 2.5499 Expected but not 
quantified

-

Indole-3-acetamide IAM 397 42 0.0057 0.0010 0.0341 Expected but not 
quantified

-

Indole-3-butyric acid IBA 8,617 96 0.0703 0.0170 0.4377 Detected but not 
quantified

Cai et al., 2012

Indole-3-lactic acid ILA 92,904 127 0.3641 0.1262 2.7153 0.57 (0.10–1.03) 
[adults (>18 years)]

Magos, 1987

Indole-3-propionic acid IPA 3,744 35 0.0072 0.0012 0.0676 0.091 (0.055–0.21) 
[adults (>18 years)]

Danaceau et al., 2003

Kynurenine KYN 846 134 17.0882 7.3402 30.5551 1.23 (1.02–1.47) 
[neonates  
(0–30 days)]

Herberth et al., 2015

N-Acetyltryptophan NAT 700,653 108 0.0173 0.0030 0.1382 Not quantified in 
blood

-

Tryptophan TRP 6,305 134 2.1699 0.7715 5.7512 3.676–11.23 
[neonates  
(0–30 days)]

Human Metabolome 
Database, 2021
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with other APPs), IBA, IAA, and IAld fall into cluster B, and 
cluster C consists of KYN, ATA, TRP, NAT, and ILA. Clusters 
D and E split DBS samples into two different groups – cluster 
E is characterized primarily with higher APP (except A1AT) and 
metabolites levels. Mothers’ and neonates’ anamnestic data added 
into the picture show no parameter related to clusters D or E. 
Additional categorical variables CRP, SAA1, IPA, and IAM showed 
in the figure indicate that cluster E is connected with higher 
CRP and SAA1 levels. Similar and even more apparent trends 
in neonates’ clustering are visible in cluster analysis based on 
proteins only (Supplementary Figure S-5). The APPs SAA1/2, 
SAA1, CRP, A1AG1, and A1AG2 are elevated in the blood (cluster 
D in Supplementary Figure S-5). High A1AT levels are observed 

both in cluster D and cluster E (Supplementary Figure S-5). In 
cluster E, there are low levels of other APPs. Elevated A1AT 
levels are caused by infection and also contraception, pregnancy, 
thyroid infection, or stress. In neonates, increased A1AT levels 
in cluster E can be  associated with stress factors acting during 
delivery. However, neonates’ anamnestic data did not show any 
relation to the clusters.

The Correlation Between Metabolite and 
Acute-Phase Protein Blood Levels
The overall metabolites and proteins correlation matrix plot 
is shown in Figure 4. A negative Pearson’s correlation (p < 0.05) 

A

B

FIGURE 2 | Boxplots of metabolite levels were determined in 134 neonatal DBS (A) and grouped according to the delivery mode (VD, vaginal delivery, CD, 
cesarean delivery; B). Sample concentrations >LOQ marked with black dots. Y-axis is in log-scale.
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A

B

FIGURE 3 | Boxplots of acute-phase protein levels were determined in 134 neonatal DBS (A) and grouped according to the delivery mode (VD, vaginal delivery, 
CD, cesarean delivery; B). Sample concentrations >LOQ marked with black dots. Y-axis is in log-scale.
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TABLE 2 | The lowest, the highest, and median levels of acute-phase proteins in DBS.

Protein UniProt entry Surrogate peptide # samples >LOQ Median concentration 
(mg/L of blood)

The lowest 
concentration (mg/L of 

blood)

The highest 
concentration (mg/L of 

blood)

SAA1 PODJI8 FFGHGAEDSLADQAANEWGR 33 8.1 <LOQ 73.6
SAA1/2 PODJI8/PODJI9 SFFSFLGEAFDGAR 120 30.9 <LOQ 644.9
SAA4 P35542 FRPDGLPK 134 8.7 2.8 20.4
CRP P02741 ESDTSYVSLK 2 N/A <LOQ 7.2
A1AT-1 P01009-1 AVLTIDEK 134 189.8 43.2 1016.1
A1AG1 P02763 NWGLSVYADKPETTK 134 105.0 37.3 302.7
A1AG2 P19652 SDVMYTDWK 107 32.0 <LOQ 98.0

FIG
U

R
E

 4 | M
etabolites and acute-phase proteins correlation in D

B
S

. Values 
of P

earson correlation coefficients are color-coded. The statistical significance 
is m

arked w
ith *** for p <

 0.001, ** for p <
 0.01 and * for p <

 0.05.
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with APP levels in neonatal DBS to explore potential correlations 
or patterns specific to the delivery mode (CS and VD). 
We  developed a protocol for simultaneous APP quantification 
and microbial catabolites profiling in neonatal DBS. IAA levels 
profiled in DBS were reported previously (Dénes et  al., 2012; 
Freeman et  al., 2018). However, we  are the first to report 
neonatal IAld, IBA, and IAM levels.

The Mode of Delivery, Circulating 
Metabolite Profile, and Protein Levels
The circulating profile of tryptophan and kynurenine catabolites 
and APPs was compared in CD (n = 20) and VD (n = 114) 
neonates. Microbial enzymes (i.e., TMO/TrD, NAT1, IaaH, and 
IaaO) characterize VD neonates’ metabolic profiles. On the 
other hand, AraT, fldH, AAT, and AO1 primarily determined 

A

B

FIGURE 5 | Metabolic profile of VD and CD neonates. Correlated metabolites (p < 0.01 and/or p < 0.001) in VD neonates (A) and CD neonates (B) are marked in 
bold. Nonsignificant correlations are marked in gray. The microbial catabolites with significant correlations are highlighted in dark blue. The host metabolism products 
are marked in black. ArAT, aromatic amino acid aminotransferase, AAT, aromatic amino acid transferase, acdA, acyl-CoA dehydrogenase, AFMID, kynurenine 
formamidase, AO1, indole acetaldehyde oxidase, ECH2, enoyl-CoA hydratase-2, fldH, phenyl lactate dehydrogenase, fldBC, phenyl lactate dehydratase, IDO, 
indoleamine-2,3-dioxygenase, IaaH, indole acetamide hydrolase, IaaO, indole-3-acetic acid oxidase, KYNU, kynureninase, KAT, kynurenine amino transferase, MAO, 
monoamine oxygenase, NAT1, arylamine N-acetyltransferase 1, porB,C, pyruvate ferredoxin oxidoreductase B and C, PCD, pyruvate decarboxylase, TDO, 
tryptophan-2,3-dioxygenase, TMO, tryptophan-2-monooxygenase, TrD, tryptophan decarboxylase.
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the CD neonates’ metabolite profile. High SAA1 levels (>10 mg/l) 
were observed in 13 VD neonates. However, the overall difference 
between VD and CD groups was not statistically significant. 
The microbial colonization and immune system response develop 
rapidly on the second day of life (Martin et  al., 2010). Shao 
et al. compared the microbial diversity in CD and VD neonates 
and found substantial differences between the first and the 
fourth day of life (Shao et  al., 2019).

Supportive Role of Acute-Phase Proteins 
to the Immune System
We attempted to link metabolite and protein profiles in DBS 
to clinical anamnestic data. Each APP has a unique role in 
shaping an infant’s immune system, and there is a cross-talk 
between quantified metabolites and APPs. Once the inflammation 
signal passes through IL-6 and IL-1 to APP production in 
hepatocytes, these proteins trigger a systemic response to 
modulate the immune system (Ackermann, 2017; Zachary, 
2017). A1AT inhibits the production of TNF-α and the 
metalloprotease in macrophages and regulates CD14 and TLR4 
expression to reduce pro-inflammatory stimuli (i.e., IL-1 and 
IL-6) and upregulate anti-inflammatory cytokines (i.e., IL-10, 
TGF-ß; Breit et  al., 1985; Bergin et  al., 2012; Baraldo et  al., 
2015; Cosio et  al., 2016). In murine and human studies, A1AT 
modulates dendritic cells and increases FoxP3+ T-regulatory 
cells (Marcondes et al., 2014; Berger et al., 2018). Inflammatory 
cytokines (i.e., IL-6, IL-1, and TNF) primarily regulate APPs 
production in hepatocytes (Ackermann, 2017; Zachary, 2017). 
Pro-inflammatory cytokines stimulate an essential IDO1 pathway 
in macrophages (Alberati-Giani et  al., 1996; Prendergast et  al., 
2011). TRP and KYN are the rate-limiting substrates for the 
IDO1 enzyme (Zhang et  al., 2019).

KYN pathway is one of the main degradation routes for 
dietary tryptophan (Figure  1B). IDO converts TRP to KYN, 
a crucial metabolite in maintaining immune homeostasis (Ding 
et al., 2020; Wyatt and Greathouse, 2021). In humans is encoded 
by the IDO1 gene expressed in immune cells (i.e., monocytes, 
macrophages, and dendritic cells), necessary in antigen 
presentation (Nikolaus et  al., 2017). As investigated in this 
study, IDO expression regulates T-cell differentiation to avoid 
tissue damage and oxidative stress (Le Floc’h et  al., 2011). 
KYN metabolites can cross the blood–brain barrier further 
and act as neuroprotectants (Roth et  al., 2021; Wyatt and 
Greathouse, 2021). KYN enters the brain from the blood 
circulation via the amino acid transporter, taken up by astrocytes 
and microglial cells (Atilla and Basak, 2015).

The Interaction Between Catabolites of 
Tryptophan and Acute-Phase Proteins
TRP, an essential amino acid in human nutrition, cannot 
be  produced in mammalian cells (Atilla and Basak, 2015). 
The indole catabolites of TRP mediate the immune system 
development and homeostasis via various mechanisms of 
action. Our results suggest a cross-talk between metabolites 
and APPs observed as diverse correlations between metabolites 
and APPs relative to the mode of delivery. For instance, a 

stronger negative correlation between A1AG2/ATA was observed 
in CD compared to VD neonates. The APP and metabolite 
pair, A1AG2 and ATA, both carry out supportive functions 
essential for developing the neonatal immune system. The 
metabolites such as ATA and KYN have an epigenetic effect 
in the methylation and glycosylation of hypothalamic neuronal 
peptide coding genes and neuronal differentiation-related loci 
(increase in H3K4 methylation and H2AS40 O-GlcNAcylation). 
By increasing methylation and histone modification, gene 
expression is stabilized, and DNA mutation is avoided 
(Hayakawa et  al., 2019).

TRP catabolites are AhR and/or PXR ligands assuring 
in their function the healthy development of the neonate 
(Li et  al., 2021). The paramount importance is establishing 
the gut barrier and blood–brain barrier (BBB) function in 
early life development. The aryl hydrocarbon receptor is a 
ligand-receptor transcription factor (TF) activated by TRP 
and its metabolites. The TF is expressed by many immune 
system cells such as macrophages, dendritic cells, NK cells, 
B lymphocytes, and subtypes of T cells as Th17 and Treg 
cells (Ambrosio et  al., 2019). PXR is also expressed in many 
cells, most widely in the liver, intestines, kidneys, and 
intestinal epithelial cells. The ligand-activated TF is activated 
by naturally occurring steroids and synthetic glucocorticoids. 
Furthermore, the PXR receptor controls various physiological 
processes and the metabolism of lipids, glucose, and bile 
acids (Illés et  al., 2020).

IPA was shown to fortify the intestinal barrier by engaging 
the PXR. IPA is produced by gut microbiota from dietary 
TRP, which accumulates the host serum (Danaceau et al., 2003; 
Dodd et al., 2017). IPA activates PXR and induces downregulation 
of the toll-like receptors, mainly TLR4, and its downstream 
signaling pathway. In the murine intestine, IPA downregulated 
enterocytes-mediated inflammatory cytokine TNFα and 
upregulated junctional protein markers (Venkatesh et al., 2014). 
The essential gene for IPA, synthesized by aromatic amino 
acid metabolism in the gut by the bacterium Clostridium 
sporogenes, is fldC with a broad impact on human immune 
cells (Dodd et  al., 2017). The authors observed a different 
spectrum of adaptive immune response in ΔfldC mutant. The 
fldC mutant showed higher circulating myeloid cells, including 
neutrophils and Ly6C+ monocytes and increased antigen-
experienced effector/memory T cells. In addition, secretory 
IgA levels were increased in fldC mutant mice (Dodd et  al., 
2017). IPA plays an essential role in intestinal barrier regulation, 
also crucial in the physiological development of neonates 
after delivery.

IPA has further also radical scavenging activity and has 
neuronal properties (Kaufmann, 2018). It inhibits β-amyloid 
fibril formation and can act as a neuroprotectant against various 
oxidants (Bendheim et al., 2002). IPA also has chemical chaperone 
activity and suppresses endoplasmic reticulum stress-induced 
neuronal cell death (Mimori et al., 2019). Further PXR agonists 
are IAM and IAA. This interaction through the PXR leads to 
the inhibition of NF-κB signaling pathway (Illés et  al., 2020). 
Therefore, PXR has anti-inflammatory properties 
(Zhou et  al., 2006; Okamura et  al., 2020).
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We observed significant correlations indicating metabolites 
conversion from TRP to NAT, IAld, KYN, and ATA via 
microbial TMO/TrD and NAT in VD neonates. The profiled 
metabolites show the importance of a gut–brain axis in the 
systemic response and intestinal homeostasis regulation. For 
example, NAT is a substance P-receptor antagonist (Fernandes 
et  al., 2018) and a neuroprotective agent (Sirianni et  al., 
2015). IAld, as an AHR agonist, stimulates the production 
of IL-22 (Zelante et al., 2013). The cytokine IL-22, produced 
in the liver, kidneys, pancreas, skin, and intestine, induces 
tissue regeneration and supports antimicrobial molecules’ 
production, helping develop a defense line against tissue 
damage and microbial infection (Dudakov et  al., 2015). The 
mucosal immune homeostasis was recently investigated in 
a murine model of autoimmune inflammation. IAld 
administered in the gut alleviated hepatic inflammation and 
fibrosis by modulating the intestinal microbiota by activating 
the AhR-IL-22-axis to restore mucosal integrity (D’Onofrio 
et  al., 2021). It agrees with the finding that microbial-
produced IAld further provides mucosal protection from 
inflammation in the host innate immune system, where the 
cytokine IL-22 via AhR receptor promoted IL-18 expression. 
Both the innate and the adaptive immune system are involved 
(Borghi et al., 2019). Furthermore, IAld attenuates the increase 
in epithelial permeability caused by stimulation with a 
pro-inflammatory cytokine TNFα in a dose-dependent manner 
(Scott et  al., 2020). IAld regulates gut barrier integrity 
through tight junctions (e.g., zonulin and occludin) and 
adherens junctions, which are essential for regulating intestinal 
permeability (Zihni et  al., 2016; Scott et  al., 2020).

For CD neonates, the enriched enzymes are TMO/TrD 
and AAT, fldH, and AO1, producing KYN, ILA, IAld, and 
IAA. The different enriched enzymes and pathways show 
that other routes are taken on the second day of life in 
CD and VD neonates, visible and emphasized in the correlation 
matrix plots for VD and CD neonates, showing markedly 
different patterns. The function of ILA was investigated in 
the gnotobiotic mice model, and it was found that ILA 
reprograms intraepithelial lymphocytes (IELs, CD4+T cells) 
into double-positive IELs (CD8aa+CD4+) with 
immunoregulatory function (Cervantes-Barragan et al., 2017). 
Moreover, ILA from breastmilk was identified as an anti-
inflammatory metabolite. ILA requires the interaction with 
TLR4 and the AHR receptor to interfere with its transcription 
of the inflammatory cytokine IL-8 that causes excessive 
inflammation in the premature intestine (Meng et al., 2020). 
In vivo and in vitro results showed pleiotropic protective 
effects on immature enterocytes, including anti-inflammatory, 
antiviral, and developmental regulatory potential in a region-
dependent and age-dependent manner. The further 
transcriptomic analysis showed that ILA has a regulatory 
effect on the STAT1 pathway. The STAT1 pathway plays 
an essential role in IL-1β-induced inflammation 
(Huang et  al., 2021).

ATA is a product of dietary tryptophan and has anti-
inflammatory properties on Na+/dicarboxylate cotransporters, 
NaDC1, and NaCT (Pajor and Sun, 2013). IAA levels positively 

correlate with intestinal IL-22 levels, through which antimicrobial 
proteins are targeted, and mucosal inflammation is downregulated 
(Laurans et  al., 2018; Natividad et  al., 2018). In addition, IAA 
has a protective effect against lipopolysaccharide (LPS)-induced 
inflammatory response and free radical generation in 
macrophages. IAA significantly ameliorated LPS-induced 
expression of interleukin-1β (IL-1β), interleukin-6 (IL-6), and 
monocyte chemoattractant protein-1 (MCP-1) as well as 
generation of reactive oxidative species (ROS) and nitric oxide 
(NO). LPS-triggered nuclear translocation of nuclear factor 
kappa B (NF-κB) p65 was mitigated by IAA treatment 
(Ji et  al., 2020). In a previous study, Ji et  al. showed in mice 
that IAA mitigates high-fat diet-induced evaluation in fasting 
blood glucose and total plasma cholesterol, low-density 
lipoprotein cholesterol, and glutamic pyruvic transaminase 
activity. IAA supports the liver function linked with mitigated 
total triglycerides and cholesterol concentration and upregulation 
of genes involved in lipogenesis. Furthermore, IAA was shown 
to protect against reactive oxygen species and attenuate the 
inflammatory response in the liver of mice exposed to a high-fat 
diet (Ji et  al., 2019).

Overall, we profiled microbial metabolites of the kynurenine 
and tryptophan pathway and acute-phase proteins in 3 μl 
of dried blood, and we  first reported neonatal IAld, IBA, 
and IAM levels. We  observed divergent metabolic profiles 
in VD and CD neonates. The different colonization of the 
initial microbial metabolites could be  caused by distinct 
microbial tryptophan degradation routes in VD and CD. In 
VD, the enriched pathways could lead to higher NAT, KYN, 
and ATA metabolite levels. In CD neonates, the enriched 
bacterial enzymes could lead to higher KYN, IAld, ILA, 
and IAA levels. Despite the diverse TRP catabolism, our 
results point to indole catabolites’ distinct profile on the 
second day of life in VD and CD neonates, demonstrated 
through different TRP metabolites, independently of unique 
postnatal microbial colonization at VD and CD (Sanidad 
and Zeng, 2020).

We quantified in our study indole catabolites in both delivery 
modalities (vaginal and cesarean delivery) but found no significant 
differences in both groups. However, this study’s limitations 
are the small number of CD neonates relative to VD and a 
single-point sampling. Correlations between metabolites and 
proteins in CD neonates require validation in a more extensive 
follow-up cohort study. In summary, we attempted to elucidate 
the mechanism of the immunomodulatory function of microbial 
metabolites. A further potential distinction will develop in the 
infant’s microbiome composition and metabolite profile over 
time. Our findings suggest the supportive role of human gut 
microbiota in developing and maintaining immune 
system homeostasis.
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