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Terrestrial ecosystems are an important carbon store, and this carbon is vulnerable to 
microbial degradation with climate warming. After 30 years of experimental warming, 
carbon stocks in a temperate mixed deciduous forest were observed to be reduced by 
30% in the heated plots relative to the controls. In addition, soil respiration was seasonal, 
as was the warming treatment effect. We therefore hypothesized that long-term warming 
will have higher expressions of genes related to carbohydrate and lipid metabolism due 
to increased utilization of recalcitrant carbon pools compared to controls. Because of the 
seasonal effect of soil respiration and the warming treatment, we further hypothesized 
that these patterns will be seasonal. We used RNA sequencing to show how the microbial 
community responds to long-term warming (~30 years) in Harvard Forest, MA. Total RNA 
was extracted from mineral and organic soil types from two treatment plots (+5°C heated 
and ambient control), at two time points (June and October) and sequenced using Illumina 
NextSeq technology. Treatment had a larger effect size on KEGG annotated transcripts 
than on CAZymes, while soil types more strongly affected CAZymes than KEGG annotated 
transcripts, though effect sizes overall were small. Although, warming showed a small 
effect on overall CAZymes expression, several carbohydrate-associated enzymes showed 
increased expression in heated soils (~68% of all differentially expressed transcripts). 
Further, exploratory analysis using an unconstrained method showed increased 
abundances of enzymes related to polysaccharide and lipid metabolism and decomposition 
in heated soils. Compared to long-term warming, we detected a relatively small effect of 
seasonal variation on community gene expression. Together, these results indicate that 
the higher carbohydrate degrading potential of bacteria in heated plots can possibly 
accelerate a self-reinforcing carbon cycle-temperature feedback in a warming climate.
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INTRODUCTION

Terrestrial ecosystems play a vital role in the global carbon 
(C) cycle as soils are estimated to store twice as much C as 
the atmosphere and all vegetation combined (Schimel, 1995; 
Scharlemann et  al., 2014). Soil C-dynamics is however tightly 
coupled to temperature changes making C sinks vulnerable to 
global warming. Studies have shown that warming-induced 
increases in soil respiration have the potential to convert soil 
from a C-sink to a C-source triggering a self-reinforcing C 
cycle-temperature feedback (Friedlingstein et  al., 2006; Allison 
and Treseder, 2011; Tucker et al., 2013). Microbes play a pivotal 
role in soil C processes, acting to process incoming C to form 
stable soil organic matter (SOM) pools (Baldrian et  al., 2012; 
Lladó et  al., 2017) as well as acting to destabilize stored soil 
organic carbon (Bradford et  al., 2008; Feng et  al., 2008; Pisani 
et  al., 2015). Increasing temperature as a result of climate 
change has significantly affected the microbial communities 
and microbial functions (Castro et  al., 2010; Gray et  al., 2011; 
Sheik et  al., 2011; Zhou et  al., 2012). However, we  do not yet 
understand the microbial mechanisms driving warming-induced 
soil C losses well enough to predict these dynamics in a 
warming climate.

One challenge in identifying the mechanisms associated with 
microbial-driven soil C loss is the inherent variability in short- 
vs. long-term responses to warming. There is growing evidence 
that with long-term warming, there is a gradual decrease in 
warming effects on soil respiration (Luo et  al., 2001, Melillo 
et  al., 2002, 2017; Kirschbaum, 2004; Romero-Olivares et  al., 
2017). For example, in an ongoing soil warming experiment 
at the Harvard Forest in central Massachusetts, soils that are 
warmed 5°C above ambient temperatures fluctuated from being 
initially higher (Phase I; 1–10  years), then invariant (Phase 
II; 11–17  years), then higher (Phase III; 18–23  years) and 
currently approximately equal to (Phase IV) in respiration 
compared to control plots (Melillo et  al., 2002, 2017). Such 
time-dependent variations can be  due to acclimation of soil 
microorganisms to the increased temperature changes (Bradford 
et  al., 2019; Dacal et  al., 2019) and/or functional shifts in 
microbial community associated with decomposition of labile 
and recalcitrant C-pools based on their relative availability 
(Hartley et al., 2009; Schindlbacher et al., 2015; Pold et al., 2016).

Our recent work in Harvard Forest suggests that chronic 
warming has led bacteria to play an increasing role in SOM 
turnover (Frey et  al., 2008; DeAngelis et  al., 2015). Around 
26  years of simulated warming was associated with sustained 
reduction in fungal biomass but not bacterial biomass (Frey et al., 
2008; DeAngelis et  al., 2015). We  observed warming-accelerated 
respiration despite declining quality and quantity of SOM (Bradford 
et al., 2008; Pold et al., 2015, 2017). Periods of soil carbon decay 
were punctuated by periods of change in the microbial communities 
(Melillo et al., 2017), though the bacterial community composition 
did not appear to have changed substantially. Because two-thirds 
of soil respiration is induced by microbial activities (Melillo et al., 
2002, 2011), we predicted that changes in microbial gene expression, 
as measured by meta-transcriptomics, could potentially detect 
the microbial mechanism of warming accelerated soil C loss 

observed in these forests. Further, studies have shown that short-
term warming induces stress responses in bacteria triggering 
metabolic adjustments in protein productions (García-Descalzo 
et al., 2014) and growth vs. maintenance trade-offs by modifying 
their carbon use efficiency (CUE; Rodríguez-Verdugo et al., 2014, 
Pold et  al., 2020). Taken together, these studies indicate the 
importance of studying the functional shifts in microbial 
communities experiencing long-term chronic warming. Inquiries 
as such can provide important insights on precise functional 
processes that dominate the energetic budgets of accelerated soil 
C loss in the face of climate change.

Along with long-term warming, annual temperature 
fluctuations due to seasonal variations in temperate forests 
can significantly alter the soil microbial community composition 
(Habekost et  al., 2008; Cao et  al., 2011) and the C allocation 
to soil microbes (Žifčáková et  al., 2017). Few studies have 
looked into how seasonal variation in C allocation and microbial 
community composition can impact soil C dynamics (Lladó 
et al., 2017). Chronic soil warming was shown to have seasonal 
effects on soil moisture, respiration, and net nitrogen (N) 
mineralization (Contosta et  al., 2011), suggesting that there is 
likely a seasonal component to chronic warming-accelerated 
soil carbohydrate degradation. Based on microarray analysis 
of soils from a grassland warming experiment, warming-
associated gene expression was altered globally in warming 
treatments, with C degradation genes altered significantly with 
soil moisture (Xue et al., 2016). However, the relative importance 
of seasonality and its ultimate impact on microbially-accelerated 
soil C-dynamics in temperate forests is still largely unknown.

In this study, we applied techniques in meta-transcriptomics 
to identify changes in bacterial structure and function when 
exposed to both seasonal fluctuations and long-term simulated 
warming in Harvard Forest, MA. We  first compared the 
magnitude of seasonal vs. long-term effects of warming on 
the active bacterial communities to understand long-term 
changes in C-energetics in this forest. Second, we  identified 
metabolic pathways that showed a prominent “warming effect” 
to understand processes that facilitated the observed warming 
responses in these communities over time. Specifically, we tested 
the hypothesis that accelerated mineralization of recalcitrant 
C pools is due to a shift in the microbial community structure 
and functional potential. Finally, we  used quantitative gene 
expression data to generate new hypotheses about the mechanistic 
nature of microbial adaptation of warming that extends beyond 
the expected increased utilization of soil carbon pools. Meta-
transcriptomic data is limited to providing a relative account 
of the active transcripts, which can lead the libraries to 
be  dominated by metabolic pathways shared by most cells 
instead of representing unique expression pathways characteristic 
of the given environmental conditions (Gifford et  al., 2011). 
To overcome this, we employed the use of an internal standard 
to estimate the absolute number of transcripts in our samples 
compared to the number of transcripts sequenced (Gifford 
et  al., 2011; Satinsky et  al., 2013). Because of the previously 
observed changes in soil bacterial and fungal abundances, 
absolute measures of transcripts can help elucidate how gene 
expression might be  linked to chronic warming.
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MATERIALS AND METHODS

Study Site and Sample Collection
Soils for this study were collected from the Prospect Hill 
warming site at the Harvard Forest Long Term Ecological 
Research Site in Petersham, Massachusetts, United  States 
(42.54°N, 72.18°W). The Prospect Hill experimental site has 
been studied as part of a long-term warming experiment in 
this forest for over 25  years. The soils at this site have been 
heated 5°C above ambient soil temperatures since 1991 using 
buried resistance cables to 10 cm depth (Peterjohn et al., 1994). 
The experimental design consists of six replicated 6  m by 6  m 
plots in a randomized block design. Each block contains a 
heated plot, a control plot with cables that are not heated and 
an additional control plot with no underground cables. The 
soil has a distinguishable upper organic horizon layer and a 
deeper mineral layer. Extensive information regarding geographic 
location, soil conditions, and physical attributes, carbon dioxide 
fluxes, microbial community structures have been previously 
published (Melillo et  al., 2011; DeAngelis et  al., 2015; Pold 
et  al., 2017). To study the effect of long-term warming and 
short-term seasonal fluctuations on soil microbial communities, 
we  collected a total of 32 soil samples from the Prospect Hill 
study site that were collected from two treatment plots [heated 
and control (with cables turned off)], two soil types (organic 
and mineral) and two time points [3rd June 2014 (T2) and 
28th October 2014 (T6)]. At T2, the average temperature of 
the heated and control plots was 20.37 and 15.87°C and at 
T6, it was 17.53 and 11.97°C, respectively. Each site or treatment 
had four soil replicates. Sample cores (9–10  cm deep) were 
collected using one-half inch diameter stainless steel corer (top 
~1  cm: organic soil; bottom 1–10  cm: mineral soil), sterilized 
with 70% ethanol and alternating between heated and control 
plots to reduce collection biases. Soil cores were separated 
into mineral and organic horizons, followed by homogenization 
by hand, after which soil samples were separately flash frozen 
using a dry ice ethanol bath within about 10 min of collection. 
Frozen soil samples were transported back to the lab, where 
they were kept at −80°C until RNA extraction.

RNA Extractions and Purifications
For all 32 samples, total RNA was extracted from about ~2  g 
of soil using Mo-Bio RNA PowerSoil Total RNA isolation kit 
(MoBio, Carlsbad CA, United States) following the manufacturer’s 
protocol with slight modifications. Soil samples were 
added  to  the tubes after Bead Solution, SR1, SR2, and 
phenol:chloroform:isoamyl alcohol to reduce contamination 
with RNases. The RNA was incubated at 65°C for 5  min, 
while vortexing every minute to allow for better solubilization 
of RNA. Samples were frequently pushed through the capture 
columns using a syringe barrel, ensuring the flow rate did 
not exceed one drop per second, as suggested in the 
troubleshooting guide. DNA was removed from extracted RNA 
using the MoBio DNase Max Kit (formerly the RTS DNase 
kit; MoBio, Carlsbad CA, United States) according to instructions. 
RNA was quantified using the Qubit RNA BR assay kit 

(Thermo  Fischer Scientific Inc., Waltham, MA, United  States) 
in a Qubit 2.0 Fluorometer (Invitrogen, Waltham MA, 
United  States) before being stored at −80°C. Prior to RNA 
extraction, we added a known amount of internal RNA standard 
(~0.5% of estimated RNA yield; Satinsky et  al., 2013) to each 
of our samples to calculate the absolute number of transcripts 
present per unit mass of soil (i.e., count gm−1). The RNA 
standard was synthesized in vitro using methods described in 
Appendix 1 following protocols in Gifford et  al. (2011).

cDNA Library and Quantification
Purified RNA (10–100 ng) from above was used in construction 
of cDNA library using NEBNext® Ultra™ Directional RNA 
Library Prep Kit for Illumina (New England BioLabs, Ipswich 
MA, United States) for all 32 samples following manufacturer’s 
protocol with fragmentation time of 8 min and 12 PCR cycles. 
Each library was generated using a unique 8  bp multiplex 
barcode provided in an accessory kit (NEBNext Multiplex 
Oligos for Illumina). Following library construction, each sample 
was quantified using the Quant-iT PicoGreen double-stranded 
DNA (dsDNA) assay kit (Invitrogen, Waltham MA, 
United  States), according to the product instructions. Library 
size distribution was determined using a BioAnayzer 2100 
(Agilent Technologies, Santa Clara CA, United  States) with 
DNA HighSensitivity chips and reagents (Agilent Technologies, 
Santa Clara CA, United  States). The region average from the 
bioanalyzer results were then used to quantify the concentrations 
of individual libraries with the help of a qPCR based assay 
using NEBNext® Library Quant Kit for Illumina (New England 
BioLabs, Ipswich MA, United  States). Following quantification, 
all libraries were diluted to 4  nM using 0.1 TE buffer and 
four of these libraries were pooled together in equimolar 
concentrations to run as a single sample in the Illumina 
NextSeq  500 sequencing platform (Illumina, San Diego CA, 
United  States). A total of eight runs were done for all 32 
samples. For sequencing, we  used Illumina NextSeq  500/550 
High Output v2 kit (300 cycles) that generated paired-end 
150  bp reads (Illumina, San Diego CA, United  States).

Sequence Data Processing and Annotation
Base scores and adapter trimming were performed in BaseSpace 
(Illumina, San Diego CA, United  States), where individual 
samples were binned based on the multiplex barcode prefix. 
Initial quality checks of sequences were performed in FastQC 
(Andrews, 2010) following trimming of low quality sequences 
(Q  <  33) using Trimmomatic (v 0.27; Bolger et  al., 2014). 
Illumina specific adapter sequences were also removed. Following 
quality check, paired end reads were merged using FLASH 
2.0 (Fast Length Adjustments of Short Reads) with default 
settings except fragment length was set to 150  bp (Magoč and 
Salzberg, 2011). rRNA sequences were identified and removed 
from the merged reads using SortmeRNA (Kopylova et  al., 
2012) using their eight prepackaged rRNA databases [SILVA 
SSU Ref NR v. 119 (bac 16S; arc 16S; euk 18S); SILVA LSU 
Ref v. 119 (bac 23S; arc 23S; euk 28S); RFAM (5S; 5.8S)]. 
Remaining non-rRNA sequences were then blasted against the 
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NCBI non-redundant protein database to identify putative 
mRNA sequences using DIAMOND (Buchfink et  al., 2015). 
Matches with e-value less than or equal to 1e−5 were retained 
for further analyses. Putative mRNAs were then taxonomically 
and functionally annotated in MEGAN (parameters: minimum 
bit score, 50; minimum support, 1; top percent 10; Huson 
et  al., 2007). Functional annotation of mRNAs was done using 
the KEGG classification systems in MEGAN.

Carbohydrate-Active Enzyme Annotation
To understand the effect of warming on microbial decomposition 
and metabolism, we  used putative mRNA transcripts from 
above to annotate them based on the carbohydrate-active enzyme 
(CAZy) database that includes enzymes that degrade, modify 
and create glycosidic bonds. Putative mRNA reads were first 
translated into six reading frames using Transeq program within 
EMBOSS 6.4.0 package (Rice et al., 2000). The resulting amino 
acid sequences were then queried against a CAZy database 
(Lombard et  al., 2014) obtained from the dbCAN program 
(Yin et  al., 2012) using HMMER (Finn et  al., 2011; v. 3.1b2). 
Only matches with e-value less than or equal to 1e−5 were 
used in further analyses.

Taxonomic Composition of the RNA 
Transcripts
To identify changes in bacterial community composition in 
response to long-term warming and short-term seasonal 
fluctuations, we  determined the relative abundance of taxa in 
all samples in two different ways. First, the putative rRNA 
sequences identified by SortmeRNA (Kopylova et  al., 2012) 
from above were aligned to the default Silva 128 SSU Ref 
Nr99 reference database using the phylogeny assignment program 
MATAM (Pericard et  al., 2018). This program uses an RDP 
classifier (Wang et  al., 2007) for assignment of taxa. Second, 
the putative mRNA reads identified by DIAMOND (Buchfink 
et  al., 2015) from above were taxonomically annotated in 
MEGAN software package (Huson et  al., 2007) using the least 
common ancestor (LCA) algorithm.

Statistical Data Analyses
All analyses were performed in the statistical platform R 
(v  3.6.2; R Core Team, 2013). One of the samples had poor 
sequencing success (<1,000 sequences) and was removed from 
further analyses. To account for differences in sampling depths, 
each sample. KEGG and CAZy annotated transcripts and 
MATAM assigned phylum abundances were visualized by 
non-metric multidimensional scaling (nMDS) ordination using 
Bray-Curtis dissimilarity matrix using the vegan library in 
R (Dixon, 2003; 1,000 iteration for a two-dimensional solution –  
final stress KEGG: 0.123; CAZy: 0.0856; Phylum: 0.20). Sample 
clustering was analyzed for significance using a three-factor 
multivariate PERMANOVA with 1,000 permutations following 
square-root transformation of all transcripts. The model had 
three fixed factors and their interactions – treatment (heated 
and control); horizon (organic and mineral), and time-points 
(T2 and T6). Cohen’s d estimation was used to test the effect 

of treatment (H vs.  C), horizon (O vs. M), and time points 
(T2 vs. T6) on transcript and phylum abundances. To account 
for differences across samples, all abundances were normalized 
to the number of reads per million annotated mRNA in 
each sample. Three-way ANOVA was used to test the 
treatment, horizon, and time-points on RNA yields and 
annotated transcripts. Assumptions of normality were validated 
and Levene’s Test for equality of variance were tested with 
no significant variation observed. Differential expression of 
KEGG annotated metabolic genes between heated and control 
plots were calculated using edgeR in R (Robinson et  al., 
2010). In order to further elucidate the association between 
differential expressions of metabolic genes and observed 
metabolic enzymes activities in the soil microbiome, weighted 
gene correlation network analyses were done in R (Langfelder 
and Horvath, 2008). The enzyme activity data was obtained 
from Pold et  al. (2017), as these samples were collected at 
the same time and at the same study site. Additionally, 
we  used total oxygen, water content, dry and wet weight 
of the sediments reported in the same study to identify 
any correlation between gene expressions and physical 
properties of the soil. Metabolic gene list was obtained from 
transcripts annotated under the “metabolism” category in 
KEGG. Minimum number of genes in each module was set 
to 25 and a 0.7 threshold was used to merge similar modules.

RESULTS

Sequence Quality and Data Set 
Description
An average of 111  M high quality sequence reads per 
sample were obtained with a range from 14 to 200  M 
reads for individual samples (Table  1). Since, we  did not 
use rRNA depletion during our library construction, rRNA 
reads made up an average of 91.03% of our total sequences 
(71.7–95%). Putative mRNA sequences identified from the 
NCBI non-redundant protein database accounted for 1.18% 
or 1.5 M sequences across samples (0.01–7.38%; 0.1–1.2 M). 
One sample (T2, Control, and Organic) showed an unusually 
high percentage (81.68%, 12  M) of putative mRNA reads 
for a non rRNA depleted sample. Hence, it was omitted 
from all subsequent analyses. We  found no significant 
differences in the yield of putative mRNA sequences 
between  our treatments (heated vs. control), time points 
(T2 vs. T6), and soil types (Organic vs. Mineral; See 
Supplementary Data: Appendix 2A).

The internal standard copy number averaged at 15,000 across 
samples (75–63,000), which is within the expected range 
(0.01–0.04%; Satinsky et  al., 2013; Table  1). Based on the 
recovered internal standard sequences, the sequence depth was 
estimated to vary from 2 × 10−27–8 × 10−27, which is significantly 
lower than the previously reported values from aquatic systems 
(~1.5  ×  10−10; Gifford et  al., 2011). To our knowledge, this is 
the first study that estimated sequence depth with the use of 
internal standards in a soil microbial study system. No significant 
differences were found in the number of internal standard 
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sequences between our treatments (heated vs. control), 
time  points (T2 vs. T6), and soil type (Organic vs. Mineral; 
See Supplementary Data: Appendix 2B). However, since the 
number of internal sequences in four samples were very small 
(75–148; Table  1), we  did not include total transcript 
measurements in subsequent analyses.

Global Gene Expression
An average of 1.16  M putative mRNA sequence reads was 
obtained per sample (~0.15% of the total reads; Table  1), 
which included reads that had a significant match to the 
NCBI non-redundant protein database (Table  1). Across all 
samples, 58.40% of the putative mRNA sequences were 
functionally annotated to the KEGG database and about 
5.24% of the reads could be  attributed to CAZy classes 
(~85,000 reads per sample). Similar to previous analyses, 
we  found no significant difference in the proportion of 
annotated reads between our treatments (heated vs. control), 
time points (T2 vs. T6), and soil type (Organic vs. Mineral; 
See Supplementary Data: Appendices 2C,D). We  mapped 
rarefied read abundances to metabolic pathways in the KEGG 
database in MEGAN to explore the metabolic range of 
transcripts in our study. We  found nearly complete coverage 

for major metabolic pathways, suggesting sufficient sequencing 
depths in our samples (See Supplementary Data: Appendix 3).

KEGG Annotated Transcripts
Overall, analysis of global gene expression as viewed by 
KEGG pathway annotation suggests a small but detectable 
warming treatment effect. Treatment (H vs. C) had the 
highest effect size as indicated by Cohen’s d effect size 
estimation, followed by horizon and season (Table  2). 
PERMANOVA analyses showed a significant effect of horizon 
(M vs. O) with no interaction between treatment, horizon, 
and time-point (Table  3). nMDS ordination showed no 
overall partitioning of the samples by treatment (H vs. C) 
or by time-points (T2 vs. T6; Figure  1A). Abundances of 
transcripts belonging to major KEGG categories (Figure 2A) 
and “Metabolism” and “Carbohydrate metabolism” divisions 
(Figure  2B) showed no observable variation between 
heated  vs. control plots. However, when we  mapped 
abundances of individual transcripts annotated within the 
“Metabolism” division in iPATH (Letunic et  al., 2008), 
we  detected a positive warming effect in major pathways 
(increased abundances in heated plots) involved in fatty  acid 
metabolism, glutathione metabolism, and nucleotide metabolism 

TABLE 1 | Sequencing output – RNA sequencing results with percentages of rRNA, mRNA, and number of internal standard reads recovered from each sample.

Site Time points Treatments Soil types Replicates Total reads rRNA (%) mRNA reads mRNA 
(%)

Internal standard 
reads

Prospect Hill T2 (3rd June) Heated Organic 1 122,445,353 92.37 776,829 0.63 40,167 (0.033)
2 119,068,820 95.49 874,119 0.73 27,342 (0.023)
3 121,681,637 91.97 1,062,698 0.87 37,597 (0.031)
4 110,749,650 93.5 1,004,683 0.91 27,443 (0.025)

Mineral 1 200,636,302 93.87 1,600,486 0.80 37,076 (0.0001)
2 106,671,365 86.34 751,973 0.70 148 (0.000)
3 150,911,448 93.17 1,429,743 0.95 11,675 (0.078)
4 14,366,071 95.32 100,969 0.70 799 (0.006)

Control Organic 1 174,072,328 95.01 1,266,671 0.73 21,913 (0.013)
2 84,722,020 87.73 2,720,341 3.21 36,926 (0.043)
3 96,103,877 93.01 834,364 0.87 37,048 (0.039)
4 103,877,062 92.61 819,071 0.79 3,577 (0.003)

Mineral 1 118,169,425 78.73 1,650,805 1.40 135 (0.000)
2 126,980,438 92.86 1,026,399 0.81 32,620 (0.026)
3 117,483,686 88.15 1,608,598 1.37 341 (0.000)
4 51,771,336 18.32 12,438,133 24.03 1,661 (0.003)

T6 (28th October) Heated Organic 1 88,248,858 88.54 1,013,469 1.15 1804 (0.002)
2 74,353,265 92.62 508,318 0.68 13,097 (0.018)
3 115,840,435 85.7 1,206,587 0.01 12,966 (0.011)
4 113,836,625 93.63 1,028,287 0.90 30,889 (0.027)

Mineral 1 101,565,281 71.70 1,523,539 1.50 79 (0.00)
2 49,534,972 93.07 290,162 0.59 5,536 (0.011)
3 121,535,724 93.15 1,405,430 1.16 3,405 (0.003)
4 102,602,888 93.93 775,689 0.76 1911 (0.001)

Control Organic 1 193,899,095 93.39 1,673,111 0.86 25,323 (0.013)
2 131,247,689 92.39 2,352,189 1.79 63,261 (0.048)
3 49,240,403 93.07 297,382 0.60 7,448 (0.015)
4 119,163,187 94.39 967,338 0.81 32,103 (0.027)

Mineral 1 93,916,386 82.69 1,498,979 1.60 75 (0.00)
2 153,163,875 94.59 1,130,284 7.38 30,679 (0.020)
3 142,257,923 95.44 877,431 0.62 11,868 (0.008)
4 96,556,916 93.40 816,565 0.85 8,982 (0.009)

In the internal standard read column, values within () indicates % of internal standards sequence to the total number of putative mRNA transcripts.
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(See  Supplementary Data: Appendix 4). Therefore, 
we conducted edge R analyses to look at pair-wise comparison 
of differential gene expression between heated and control 
plots (Figure  2C). Most differentially expressed genes in 
these pairwise comparisons were unique, and genes commonly 
expressed across samples made up only 0.6–2.4% of the 
annotated transcripts (See Supplementary Data: Appendix 5), 
which was consistent with our ordination analyses (See 
Supplementary Data: Appendix 4A). Most metabolic genes 
annotated by KEGG pathways showed a lower relative 
abundance in the heated plots compared to the controls 

(Figure  2C). Warming-induced enrichment of transcripts 
were only observed in the organic horizon. Murein 
DD-endopeptidase, mannitol-specific ICC component, tRNA 
synthetase, Galactofuranosyl synthetase, Acetyl  CoA, and 
Fatty Acid Synthase are few enzymes that showed increased 
abundances in the heated plots. Most of these enzymes are 
related either to carbohydrate or fatty acid metabolism 
pathways indicating differences in microbial C dynamics 
between heated and control plots. Relatively few transcripts 
that were abundant in control plots were related to lipid 
and/or carbohydrate metabolism (Figure  2C).

Carbohydrate-Active Transcripts (CAZys)
To understand the dynamics of microbial C biotransformation 
in our sample, we  annotated our transcripts using the CAZy 
database. About 5.24% of the filtered reads were attributed to 
CAZy classes (~85,000 reads per sample) and 316 distinct CAZy 
classes were identified. Similar to KEGG annotations, nMDS 
revealed no significant partitioning of samples based on treatment 
(H vs. C) or time-point (T2 vs. T6; Figure  1B). PERMANOVA 
analyses revealed a significant effect of horizon (M vs. O) with 
no interaction between treatment, horizon, and time-point 
(Table  3). Based on Cohen’s d effect size estimations, soil type 
had the largest effect on CAZy abundances followed by treatment 
and time-points (Table 2). Transcripts belonging to the six major 
enzyme classes showed no observable variation in abundances 
between heated vs. control plots (Figure  3A). However, edge R 
analyses revealed significant differences in their abundances 
between heated and control plots, most of which belonged to 
glycoside hydrolases (GH) enzyme class that hydrolyses glycosidic 
bonds in complex carbohydrates (Figure 3B). The top 150 most 
abundant CAZy families showed similar abundances across all 
samples (See Supplementary Data: Appendix 6). Further, similar 
to KEGG annotations, differentially expressed transcripts across 
samples were predominantly unique with only ~2.8% of annotated 
transcripts seen in more than one treatment conditions (See 
Supplementary Data: Appendix 7). Both these trends are perhaps 
not surprising, given that we did not observe significant clustering 
of transcripts in our ordination analyses (Table  3; Appendix 4).

In the spring time-point (T2), the two most abundant enzyme 
classes were GH and Polysaccharide Lyase (PL), with all 
transcripts showing a higher abundance in heated plots compared 
to control in both organic and mineral horizons (Figure  3B). 
In the autumn time-point (T6), the most abundant enzyme 
classes were GH and Auxiliary activities (AA) that includes 
mono-oxygenase and lignolytic enzymes (Figure  3B). In T6, 
the organic horizon showed an increased abundance of most 
GH and AA transcripts (80%) in heated plots, whereas in the 
mineral horizon the same transcripts were depleted in the 
heated compared to the control plots, resulting in 56.6% of 
the transcripts showing opposite patterns between the two soil 
layers (Figure  3B). Specifically, CAZymes belonging to GH 
families 3, 7, 11, 15, and 38, associated with complex carbohydrate 
metabolism targeting structural polysaccharides such as starch, 
cellulose, and glycogen and PL 11 associated with metabolism 
of cell wall derived polysaccharides showed higher abundances 
in heated plots in the organic soil. Mineral horizon had a 

TABLE 2 | Effect size calculation – effect size estimation (η2) on transcripts 
annotated by KEGG and carbohydrate-active enzyme (CAZy) databases and 
phylum abundances annotated by MATAM.

Factors KEGG (Metabolism) CAZy (All) OTUs

Treatment (Heated vs. Control) 4.26 4.28 3.67
Soil types (Organic vs. Mineral) 2.80 10.30 11.49
Time points (T2 vs. T6) 1.30 1.70 1.41

TABLE 3 | Multivariate analyses – three-factor multivariate PERMANOVA 
analyses based on Bray-Curtis similarity of KEGG transcripts, CAZy transcripts, 
and phylum abundances.

Source df MS Value of p

KEGG

Treatment (Heated vs. Control) 1 156.82 0.392

Soil types (Organic vs. Mineral) 1 472.85 0.002*
Time points (T2 vs. T6) 1 104.71 0.929
Treatment × Soil types 1 136.18 0.561
Treatment × Time points 1 202.58 1.2902
Soil types × Time points 1 115.05 0.797
Treatment × Soil types × Time 
points

1 116.15 0.779

Residual 23 157.01
Total 30

CAZy

Treatment (Heated vs. Control) 1 692.9 0.061
Soil types (Organic vs. Mineral) 1 1649.3 0.004*
Time points (T2 vs. T6) 1 184.06 0.791
Treatment × Soil types 1 456.89 0.183
Treatment × Time points 1 355.39 0.294
Soil types × Time points 1 475.75 0.152
Treatment × Soil types × Times 
points

1 180.41 0.809

Residual 23 312.83
Total 30

Phylum abundances

Treatment (Heated vs. Control) 1 304.34 0.3436
Soil types (Organic vs. Mineral) 1 953.16 0.0082*
Time points (T2 vs. T6) 1 117.66 0.8923
Treatment × Soil types 1 147.47 0.9807
Treatment × Time points 1 231.75 0.5343
Soil types × Time points 1 64.225 0.9807
Treatment × Soil types × Time 
points

1 310.91 0.3315

Residual 22 279.53
Total 29

*Indicates significant value of p at α = 0.05.
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less pronounced warming effect with most transcripts showing 
smaller fold changes (T6) and decreased abundances (T2) in 
the heated plots. Warming induced enrichment of GH 65 that 
is related to starch and dextrin metabolism was observed across 
all mineral soil samples.

Taxonomic Survey Using Protein Coding 
and rRNA Genes
Based on rRNA taxonomic classification, we  detected 35 phyla 
across 30 samples, with only eight appearing in every sample. 
On average, reads assigned to these eight phyla made up  80% 

of the total prokaryotes found in each sample. They were 
Acidobacteria, Actinobacteria, Bacteroidetes, Crenarchaeota, 
Euryarchaeota, Firmicutes, Proteobacteria, and Verrucomicrobia. 
The most highly represented phyla were Acidobacteria, averaging 
17.8% of each community (See Supplementary Data: Appendix 8). 
Treatment effects (p  <  0.05) were found for three phyla in 
organic horizon – Actinobacteria (p0  =  0.014, F0  =  7.9, d0  =  1.4) 
were enriched with chronic warming, while Crenarchaeota 
(p0 = 0.021, F0 = 6.7, d0 = −1.3), and Planctomycetes (p0 = 0.064, 
F0  =  1.5, d0  =  −0.61) were depleted in heated compared to 
control soils (p is the probability of a given F-statistic arising 
from a null F-distribution, F is the F-statistic, and d is the 
Cohen’s d effect size of heat-treatment). All values reported are 
for treatment effect in organic soil; no phyla were found to 
have a significant treatment effect in mineral soil. Shannon’s 
diversity decreased significantly from 2.07 to 1.98 on average 
with heat-treatment only in the organic soil samples (p = 0.024). 
Similar to functional annotation, PERMANOVA analyses revealed 
a significant effect of horizon (M vs. O) with no significant 
interaction between treatment, horizon, and time-point (Table 1). 
Cohen’s d effect size estimations on phylum abundances showed 
highest effect of soil type (i.e., O vs. M) followed by treatment 
and time-points (Table  2). nMDS revealed no significant 
partitioning of samples based on treatment (H vs. C) or time-
point (T2 vs. T6; Figure  1C).

We annotated our putative mRNA in MEGAN using the 
LCA method to compare the differences in taxonomic 
assignments from rRNA and protein coding reads. mRNA 
taxonomic classification yielded similar results to rRNA 
community composition where the top three most abundant 
phyla were Actinobacteria, Acidobacteria, and Proteobacteria 
(Figure  4), although, the most highly represented phylum was 
Actinobacteria, averaging 18.9% of each community (See 
Supplementary Data: Appendices 8, 9). The relative abundances 
of these three dominant phyla did not show a significant 
difference across treatment, horizon, and time points. A total 
of 10 bacterial phyla appeared in all 30 samples that made 
up more than 81% of the total transcripts that were assigned 
a taxonomic classification. Treatment effects of p < 0.05 (compared 
to a null F-distribution) were found only in Bacteroidetes 
(p0  =  0.052, F0  =  4.529, d0  =  1.06) that showed depletion in 
heated plots compared to controls (Figure 4). Similar to rRNA 
annotation, no phyla showed a significant treatment effect in 
mineral soils. Shannon’s diversity was 1.99  in organic and 
1.92  in mineral.

Weighted Gene Correlation Network 
Analyses
Weighted gene correlation network analyse (WGCNA) identified 
a total of 34 module eigen genes (ME), with skyblue (60 genes) 
and green yellow (169 genes) modules showing significant 
positive association with trait data (average module-trait p < 0.05; 
Figure 5). The co-expressed genes in these modules were found 
to be  associated with important activities such as degradation 
of starch and complex carbohydrates, heat shock responses, 
and cellular respiration. Notably, enzymes related to the four 

A

B

C

FIGURE 1 | Non-metric multidimensional scaling (nMDS) of the RNA-Seq 
data – (A) based on KEGG transcripts; (B) CAZy transcripts and (C) Phyla 
abundances. KEGG and Phyla abundances are clustered by soil types 
[organic (O) vs. mineral (M)] and treatments [Heated (H) vs. Control (C); KEGG 
and Phyla] and CAZy transcripts are clustered by soil types, treatments, and 
time points (T2 and T6). Correlations with grouped samples were calculated 
by a three-factor multivariate PERMANOVA analyses based on Bray-Curtis 
similarity that revealed significant differences between soil types (organic vs. 
mineral) but no differences between time points (T2 vs. T6) or treatments 
(heated vs. control) in all three groups.
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A

B

C

FIGURE 2 | KEGG annotations – (A) heat map showing the mean relative abundances of major KEGG categories in annotated transcripts across all eight 
treatment groups (H-Heated; C-Control).  The dendrogram clusters the categories by common expression patterns using a two-way hierarchical clustering 
using the complete linkage method; (B) Mean relative abundances of transcripts annotated in KEGG metabolism category (Top Panel) and KEGG 

(Continued)

https://www.frontiersin.org/journals/microbiology
www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Roy Chowdhury et al. Warming Induced Responses in Bacteria

Frontiers in Microbiology | www.frontiersin.org 9 August 2021 | Volume 12 | Article 666558

hydrolytic (BG, BX, CBH, and NAG) and two oxidative enzymes 
(PO and HPO) measured in these soils included heat-resistant 
alpha-amylase (Vaseekaran et  al., 2010); oxalate and hexediote 

decarboxylases; aminopeptidase, phosphorylase, and glutathione-
independent formaldehyde dehydrogenase. However, transcripts 
annotated within any of these six enzyme classes included in 

FIGURE 2 | carbohydrate metabolism division (Bottom Panel); (C) Genes that are differentially expressed between heated and control plots in organic and 
mineral horizons in T2 and T6 time points. Edge R analyses was done on KEGG transcripts that were annotated as genes involved in metabolism. Differential 
expression is measured as log of the fold change ratio (FC). So, a log2FC of +2 means twice the abundance of the gene in heated plots compared to control, 
while a log2FC of −2 indicates twice the abundance of the gene in control plots compared to heated. All differential expression is measured at FDR 5%. Note 
that +ve and −ve FC ratios are relative to the specific heated and control plots that are used in the pair-wise comparisons.

A B

FIGURE 3 | Carbohydrate active enzymes annotations – (A) mean relative abundances of transcripts annotated in the six enzyme classes according to the CAZy 
database. CAZy family codes: GT, glycosyltranferases; GH, glycoside hydrolases; CE, carbohydrate esterases; PL, polysaccharise lyases; CBM, carbohydrate 
binding modules; and AA, axillary activities (oxidative enzymes); (B) Stacked plot comparing the differential expression of individual CAZy annotated genes between 
heated and control plots within the two most abundant enzyme classes in organic and mineral horizons in T2 and T6 time points. Differential expression is measured 
as log of the FC. So, a log2FC of +2 means twice the abundance of the gene in heated plots compared to control, while a log2FC of −2 indicates twice the 
abundance of the gene in control plots compared to heated. All differential expression is measured at FDR 5%. Note that +ve and −ve FC ratios are relative to the 
specific heated and control plots that are used in the pair-wise comparisons.
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our trait data (Pold et  al., 2017) did not show any significant 
enrichment in either modules. Absence of such direct correlations 
indicates a complex link between gene expression and consequent 
phenotypic and physiological outcomes that necessitates 
additional screening of these processes in soil communities.

DISCUSSION

Forests are significant global C sinks (Pan et  al., 2011; Zhu 
et  al., 2019), and understanding their ecology helps to manage 
and predict C cycling processes and their associated feedback 
to global climate. Microbial decomposition of soil organic 
matter is expected to increase in response to warming. The 
rates and mechanisms of these microbial driven soil C losses 
are, however, not fully understood. In this study, we  used 
transcriptome (functional) data to identify changes in the 
structure and function of soil microbial communities in response 
to 30  years of simulated warming. Previously, we  observed 
increased total soil carbon loss (Melillo et al., 2017; Pold et al., 
2017), and evidence of increased microbial activity and an 
increasing role of bacteria in soil C degradation (Pold et  al., 
2015, 2017). However, meta-transcriptomes revealed an overall 
small effect of chronic warming on bacterial gene transcript 
abundances (Figure  2; Table  3). Although, we  did not see a 

significant warming effect in major KEGG and CAZy classes 
(Figures  2, 3), several transcripts of enzymes related to 
carbohydrate, fatty acid, and lipid metabolism exhibited higher 
abundances in heated plots, primarily in the organic horizon 
(Figures  2C, 3C). These results are consistent with previous 
studies that showed an increased concentration of lipids (Pold 
et  al., 2017) and overall decline in the quality and quantity 
of SOM with 3 decades of warming in these forests (Bradford 
et al., 2008; Pold et al., 2015, 2017). Pold et al. (2016) reported 
“warming effect” on similar carbohydrate-degrading enzyme 
genes relative abundances as seen in this study, but in mineral 
horizons in soils collected in Phase III when respiration was 
slightly higher in the heated plots (Melillo et  al., 2017). They 
suggested an incomplete degradation and subsequent 
translocation of SOM from organic into the mineral horizon. 
Earlier depletion of labile C in the organic layer might have 
led to functional adjustments in these communities that are 
now able to access more recalcitrant SOM. This can subsequently 
result in complete or near-complete degradation of organic 
matter within the top layer, accounting for the “warming effect” 
in organic horizon observed here on soils collected in Phase 
IV (respiration similar or equal between plots; Melillo et  al., 
2017). Previously, it has been observed that compared to mineral 
horizon, organic soil exhibits greater shifts in structural and 
functional potential in response to environmental pressures 

FIGURE 4 | Taxonomic classifications – community composition of heated and control samples using taxonomic assignments from both rRNA and mRNA reads 
in Organic horizon. “+” indicates enrichment and “*” depletion of phylum in heated compared to control plots. rRNA and mRNA reads were annotated using MATAM 
and MEGAN programs, respectively. Composition is computed using relative abundance and all assignments are given at the phylum level besides those for 
proteobacteria, which are at the class level. Note that assignments to eukaryotic phyla occur only for mRNA (as rRNA assignments are performed based on 
alignments for the 16S sequence, which occurs only in prokaryotes). Only phyla/classes occurring at >3% on average are shown and are otherwise grouped into 
“Other.” Only for rRNA assignments did phyla in Archaea exceed the 3% threshold for being graphed; no Archaea cleared 0.1% abundance in the mRNA samples.
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(Cardenas et al., 2015; DeAngelis et al., 2015). Further, changes 
in SOM quality and quantity impacts the functional diversity 
in soil microbes to a greater extent compared to taxonomic 
diversity (Baldrian et al., 2012; Uroz et al., 2013). Taken together, 
the observed functional shifts in organic layer communities 
toward increased carbohydrate and lipid degrading potential 
not only supports our initial hypotheses of increased degradation 
of organic matter in the heated plots, but also provides evidence 
of a more responsive organic soil type to long-term warming.

Microbial C-dynamics appear to be dominated by different 
metabolic processes during different seasons and soil layers 
(See Supplementary Data: Appendices 5, 7), as evidenced 
by the fact that across both time points and horizons, the 
shifts in these transcript abundances are mostly unique. 
These differences in microbial processes can be  due to 
variations in soil microclimatic parameters leading to transient 
changes in resource availability driven by diurnal, seasonal, 
and annual changes in these forests (Luo and Zhou, 2006; 

FIGURE 5 | Co-weighted network analyses – module-trait associations between KEGG annotated transcript abundances and enzyme concentrations and physical 
soil parameters. Each row corresponds to a module eigen gene and each column represents a trait. The top number indicates the correlation (|cor|) between the 
eigen gene value and the individual trait and the bottom number indicates the p-value. The colors from green to red indicate positive or negative correlation, 
respectively. Enzyme codes – BG, β-glucosidase; BX, β-xylosidase; CBH, cellobiohydrolase; HPO, peroxidase; NAG, β-N-acetyl-glucosaminidase; PO, phenol 
oxidase; dry, dry weight of samples; and wet, wet weight of samples. Trait data are taken from Pold et al. (2017).
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Edwards et  al., 2007; Blankinship et  al., 2011; Contosta 
et  al., 2011; Zhang et  al., 2011). Peng et  al. (2018) found 
that changes in microclimatic parameters were the primary 
drivers of loss in soil organic carbon in a grassland ecosystem 
in the Qinghai-Tibet Plateau. Additionally, WGCNA analyses 
indicated a complex relationship between gene abundances 
and community function, where although several transcripts 
showed strong association to soil enzyme activities, no direct 
correlation was observed (Figure  5). This decoupling can 
be the result of microclimatic and temporal variability between 
samples, although, the broad substrate specificity of the 
KEGG enzymes cannot be  ignored as a possible explanation 
for the same. Therefore, additional annual and seasonal time 
points should be  sampled to further test whether the same 
processes dominate the microbial C-cycling consistently over 
time. Nevertheless, such spatial and temporal heterogeneity 
in microbial C-cycling genes can affect the functional capacities 
of soil overtime and is crucial to understand and predict 
warming-induced C losses in a warming climate.

While changes in gene expression based on chronic warming 
were not large, long-term warming caused a substantial decrease 
in microbial biomass (Frey et al., 2008; DeAngelis et al., 2015) 
and changes in abundance of certain microbial populations 
(DeAngelis et al., 2015; Pold et al., 2016). In this study, we used 
both mRNA and rRNA to identify changes in bacterial 
communities in response to warming (Figure  4). Our results 
showed that mRNA and rRNA annotations provided similar 
estimates of the dominant phyla, except that Actinobacteria 
were overrepresented in the mRNA sequences, possibly 
suggesting their increased metabolic activity relative to other 
groups. mRNA annotations were not able to classify the broad 
diversity that the rRNA was able to capture especially for 
rarer phyla such as Crenarcheota, Firmicutus, and 
Deltaproteobacteria. Cohen’s d values for mRNA and rRNA 
varied between soil types, which might be  due to differences 
in annotation techniques used in either case (See 
Supplementary Data: Appendices 7, 8). Our data therefore 
suggests that compared to rRNA classification, taxonomic 
annotation of protein coding reads can only provide a cursory 
estimate of the abundant soil bacterial communities.

By separately analyzing rRNA vs. mRNA, we  were able 
to detect changes in function that are separate from changes 
in community structure. Consistent with previous studies 
(DeAngelis et  al., 2015; Pold et  al., 2016), we  observed 
relatively small changes in community structure with warming 
(Figure  1C), though both methods are biased toward over-
representing bacteria. Actinobacteria increased, while the 
phyla Crenarchaeota, Planctomycetes, and Bacteroidetes 
decreased in relative abundance in the heated plots compared 
to controls (Figure  4). Changes in phyla abundance were 
only observed in the organic horizon, with a significant 
decrease in diversity in the heated plots. The three phyla 
depleted with long-term warming were all Gram-negative, 
and the enriched Actinobacteria were Gram-positive, 
supporting the previous observation of community shifts 
toward Gram-positive in the heated plots (Frey et  al., 2008). 
The increased abundances of Actinobacteria might indicate 

a greater role of this taxa in driving the carbohydrate and 
lipid degradation in the heated plots. Although, we  did not 
observe any differences in ligninolytic enzyme activities in 
our functional data, several members of Actinobacteria are 
associated with production of bacterial laccases that are 
important enzymes in lignin degradation (de Gonzalo et  al., 
2016). As such, their increase in the heated plots might 
imply a shift toward communities that are able to access 
more recalcitrant SOM, such as lignin and lignin-derived 
SOM, as labile C pools continue to deplete in response to 
warming. Members of Actinobacteria are generally over-
represented in genomic databases; but, the consistent 
enrichment of Actinobacteria in heated plots in the present 
and other warming studies (Castro et  al., 2010; Sheik et  al., 
2011; Shade et  al., 2012) might indicate a greater tolerance 
to warming and its associated changes in soil physical 
parameters (Barnard et  al., 2013).

Long-term warming in these forests has resulted in a 
decrease of fungal biomass with no substantial change in 
bacterial biomass in response to warming (Frey et  al., 2008; 
DeAngelis et  al., 2015). Enzyme activities were observed to 
be the same per gram of soil but decreased per unit biomass 
because of warming-induced decline in microbial biomass 
(Pold et al., 2017). Further, long-term warming also decreases 
soil moisture by lowering the soil water holding capacity 
(Rustad et  al., 2001; Werner et  al., 2020), which in turn 
can drive changes in microbial biomass and enzyme 
productions. While gene expression on a per gram soil basis 
may show small changes, as we  present here, these changes 
are probably occurring against a backdrop of a smaller or 
less abundant microbial community in the heated plots. The 
use of internal standards was an attempt to distinguish 
between increased functional capacity vs. functional shifts 
in microbial communities by measuring absolute transcript 
copy numbers (Conant et  al., 2011). However, we  were 
unable to estimate the absolute transcript copy numbers as 
four of the 32 samples showed no recovery of internal 
standards (Table  1). This could be  due to differences in 
sequencing artifacts, which can be  avoided in the future 
by either increasing technical replicates or using a combination 
of multiple internal standards to increase robustness (van 
de Peppel et  al., 2003). Nonetheless, measuring absolute 
transcript copy number in future functional studies will 
be valuable to estimate not only the role of under-represented 
but crucial metabolic pathways (Gifford et  al., 2011), but 
also to evaluate the role of resilience and/or adaptation in 
functional potential of these communities in response to 
chronic long-term warming. To our knowledge, this is the 
first report on the application of internal standards to measure 
absolute transcript abundances in soil systems. Further 
refinement would be  needed to determine if this method 
is applicable to soil systems.

Seasonal variation in abiotic factors, such as temperature 
and moisture content, can both directly and indirectly impact 
soil C dynamics (Benbi et  al., 2014; Lladó et  al., 2017; 
Žifčáková et al., 2017) and changes in soil microbial community 
(Habekost et  al., 2008; Cao et  al., 2011). We  therefore 
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predicted a seasonal impact on warming-accelerated microbial 
decomposition. We  chose two time points, T2 (June) and 
T6 (October), based on Pold et al. (2017) that demonstrated 
a strong seasonal trend in extracellular enzyme activities, 
with most enzymes peaking during T2 and showing a decline 
or a 2nd peak during T6. Contrary to our expectations, 
we  detected little effect of season on community response 
and community structure. In fact, the seasonal effect was 
the smallest factor driving global gene expression, 
carbohydrate-associated gene expression, and taxonomic 
marker transcripts (Table 2). Our results are consistent with 
another meta-transcriptome study from the same site that 
found no seasonal variation in community structure across 
six different time points (Rodríguez-Reillo, 2019). Previous 
studies have reported increased respiration and enzyme 
activities in summer (highest temperature), with lower 
microbial decomposition rates in spring and winter (lowest 
temperature; Contosta et  al., 2011; Žifčáková et  al., 2017). 
Winter communities decomposed more recalcitrant substrates 
such as lignin and cellulose, as compared to summer 
communities (Koranda et  al., 2013; Žifčáková et  al., 2017). 
To our knowledge, studies on seasonal variations on microbial 
gene expression (meta-transcriptome) are still lacking. The 
absence of a seasonal effect in this study is possibly due 
to the collection of soils at time points that were experiencing 
similar temperatures at the time of sampling (Pold et  al., 
2017). Further, seasonal variation in microbial activity is 
related to availability of different C-sources (Contosta et  al., 
2011), which can decrease under long-term warming due 
to depletion of labile C and reduction in microbial biomass 
(Frey et  al., 2008). This, however, cannot explain the lack 
of seasonal variation in control plots. Furthermore, Žifčáková 
et  al. (2017) indicated that there is temporal variation in 
bacterial vs. fungal gene expression related to decomposition 
of recalcitrant C-pools. Comparing the bacterial gene 
expression from this study with fungal gene expression 
(Romero-Olivares et al., 2019) across these time points might 
reveal seasonal patterns in microbial functions that are 
otherwise obscured. Additionally, extrapolating seasonal trends 
from gene expression measured at a single time point is 
perhaps not feasible given the observed diurnal variations 
in abiotic and biotic factors in temperate ecosystems (Zhang 
et al., 2011). In the future, gene expression should be measured 
and compared recurrently over extended periods to understand 
and capture changes in microbial functional potential in 
response to long-term chronic warming. Although, analyses 
of such vast sequencing data are technologically challenging, 
understanding, and capturing the nuances in microbial 
processes will help us better predict microbial driven C 
cycle-temperature feedbacks in the future.

CONCLUSION

In this study, we did a comparative meta-transcriptome analysis 
to understand the consequences of long-term warming on 
terrestrial soil bacterial communities and the related effects 

on soil C dynamics. Although, the warming effect on overall 
gene expressions was small, we  did see increased expression 
of several enzymes involved in carbohydrate and lipid metabolism 
in heated plots, providing support to our main hypothesis of 
warming-induced acceleration of recalcitrant C-pool. Our results 
also show a strong effect of soil type on carbohydrate-associated 
gene expression, with greater warming effect on microbial 
transcription in the top organic horizon. We  did not find any 
substantial changes in microbial community structure in response 
to warming. Both community structure and function showed 
no seasonal variation in our data. The meta-transcriptome 
approach allowed us to identify unique metabolic processes 
that controlled microbial decomposition and in turn soil C 
fluxes in different soil types in response to long-term warming. 
The lack of an overall seasonal gene expression pattern in this 
study highlights the need for comparing microbial functional 
profiles over an extended period of time to understand the 
contribution of these mechanisms to soil C-cycling in a 
chronically warmed forest. Information as such will substantially 
increase our predictive power to model correlated changes in 
microbial functions and temperature fluctuations in a 
warming climate.
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