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Research on the gut microbiome may help with increasing our understanding of primate
health with species’ ecology, evolution, and behavior. In particular, microbiome-related
information has the potential to clarify ecology issues, providing knowledge in support of
wild primates conservation and their associated habitats. Indri (Indri indri) is the largest
extant living lemur of Madagascar. This species is classified as “critically endangered”
by the IUCN Red List of Threatened Species, representing one of the world’s 25 most
endangered primates. Indris diet is mainly folivorous, but these primates frequently and
voluntarily engage in geophagy. Indris have never been successfully bred under human
care, suggesting that some behavioral and/or ecological factors are still not considered
from the ex situ conservation protocols. Here, we explored gut microbiome composition
of 18 indris belonging to 5 different family groups. The most represented phyla were
Proteobacteria 40.1 4+ 9.5%, Bacteroidetes 28.7 + 2.8%, Synergistetes 16.7 + 4.5%,
and Firmicutes 11.1 £ 1.9%. Further, our results revealed that bacterial alpha and beta
diversity were influenced by indri family group and sex. In addition, we investigated the
chemical composition of geophagic soil to explore the possible ecological value of sail
as a nutrient supply. The quite acidic pH and high levels of secondary oxide-hydroxides
of the sails could play a role in the folivorous diet’s gut detoxification activity. In addition,
the high contents of iron and manganese found the soils could act as micronutrients in
the indris’ diet. Nevertheless, the concentration of a few elements (i.e., calcium, sulfur,
boron, nickel, sodium, and chromium) was higher in non-geophagic than in geophagic
soils. In conclusion, the data presented herein provide a baseline for outlining some
possible drivers responsible for the gut microbiome diversity in indris, thus laying the
foundations for developing further strategies involved in indris’ conservation.

Keywords: gut microbiome, soil quality, non-human primate, animal ecology, endangered species, geophagy,
forest ecology
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INTRODUCTION

Studies on human and animal microbiome have provided
compelling evidence that gut microbial diversity is fundamental
in shaping metabolic and regulatory networks involved in the
maintenance of host healthy status, as well as in a spectrum
of disease states (Shreiner et al., 2015; Sandri et al., 2020).
Indeed, the mammalian gut microbiome plays a crucial role
in host physiology, supporting vitamin synthesis, helping in
complex carbohydrates digestion, toxins metabolism, pathogens
antagonism, and immune system modulation (Cresci and
Bawden, 2015). Factors influencing the differences in mammalian
gut microbiome are debated: host behaviors and environments,
biogeography, and host genetic effects (e.g., gastrointestinal tract
morphology) are of great importance (Lankau et al, 2012;
Moeller et al., 2013; Amato et al., 2016). Previous studies showed
that frequent social networks are positively associated with
high similarity in gut microbial diversity (Tung et al., 2015;
Perofsky et al., 2019). Vertical transmission from parent to
offspring is the first driver for gut microbiome development, but
horizontal transmission from the environment provides a crucial
microbial colonization route. Even if microbial transmission due
to sociality has traditionally been viewed as a risk for pathogen
exposure, it may also be essential to host health. Therefore,
it can avoid bottleneck-induced extinctions that could occur
when the transmission of microorganisms is strict from parent
to offspring. Indeed, it can allow the acquisition of beneficial
microbes, particularly those that might not be gained through
vertical transmission (Lombardo, 2008; Amaral et al., 2017).
Moeller et al. (2013) underlined that gut microbial populations’
social inheritance might be fundamental for preserving microbial
diversity over evolutionary time scales.

The lemurs harbored species-specific and/or populations
specific microbiomes, which are mainly influenced by their
dietary specificity, even on a seasonal basis (Fogel, 2015; Greene
et al,, 2020). Globally, host habitat is one of the most important
factors for gut microbiome modulation, and recently, increasing
attention has been devoted to the soil. Indeed, a recent study
(Grieneisen et al., 2019) on the gut microbiome of terrestrially
living baboons showed that bare soil exceeds 15 times the
predictive ability of host genetics in shaping the gut microbiome.
Studies in mice (Li et al., 2016; Zhou et al., 2018) confirmed that
the effect of soil on gut microbiome composition is comparable
to that exerted by diet. Therefore, these studies suggest that
contact/ingestion of soil components is beneficial for a healthy
gut microbiome.

Indri indri is the largest extant living lemur (Figure 1 and
Supplementary Video 1). It is mainly arboreal and is the only
lemur that communicates using songs. Indris songs mediate
both intra- and inter-group communication (Torti et al., 2013)
and relay information regarding individual features (ie., sex
and age) (De Gregorio et al, 2019, 2021). This species has
never successfully been kept in a controlled environment and
it is considered one of the Malagasy most critically endangered
lemurs according to the IUCN Red List of Threatened Species
(King et al., 2020), representing one of the world’s 25 most
endangered primates (Torti et al., 2019). This species is also

listed in Appendix I of CITES (Heinen and Mehta, 1999). Indris
are territorial, socially primates living in small family groups
(Pollock, 1979; Bonadonna et al., 2019), generally consisting
of an adult male and female with their related offspring (2-6
individuals) (Torti et al., 2013; Gamba et al., 2016).

Non-human primates are characterized by many dietary
specializations (Campbell, 2017). In particular, the ability to
consume leaves is typical of new world monkeys (e.g., howler
monkeys), old world monkeys (e.g., colobines), apes (e.g.,
gorillas), and also prosimians (e.g., indris, bamboo lemurs, and
sportive lemurs). Indri is the most specialized folivorous among
lemurs and, as such, has the highest degree of morphological
specialization for leaves’ consumption and digestion. Leaves
contain carbohydrates, including cellulose and hemicellulose,
and secondary metabolites, including toxic ones such as tannins
and phenolics (Norconk et al., 2009). Indris are characterized
by the typical morphology and anatomical specializations
of folivorous primates, such as hypertrophic salivary glands,
voluminous stomachs, sacculated caeca, and looped colons that
facilitate efficient fermentation of leaf matter (Greene et al,
2020). The species shows a preference for immature leaves (72%)
with a reduced emphasis on fruit seeds/whole fruits (16%) and
flowers (7%) (Powzyk, 1997). Leaves and fruit seeds could contain
toxic compounds varying in percentage depending on the season,
maturity, etc. (Pebsworth et al., 2019). In addition, indris perform
geophagy by consuming soil intentionally (Britt et al., 2002;
Borruso et al., 2021). Some evidence suggests that geophagy is an
adaptive behavior to protect from ingested toxic compounds and
mineral supplementation as it facilitates consumption of plants
binding toxic plant secondary compounds (PSCs) (Pebsworth
et al, 2019). As a result of metabolic activity, plants with
relevant antioxidant properties produce primary and secondary
compounds. Nevertheless, several metabolites are universally
distributed in many plant species; some are unique to individual
plant cultivars and fill essential functions (Geilfus, 2019).

Studies regarding geophagy across non-human primates
revealed that they eat items high in PSCs. Furthermore, they
consume soil more often than sympatric populations, suggesting
a decrease in gastrointestinal distress caused by PSCs. Geophagy
can help the utilization of dietary resources high in PSCs,
expanding the range of dietary components (Overdorft, 1993;
Bocian, 1997; Powzyk and Mowry, 2003; Dew, 2005; Pebsworth
et al.,, 2019). In addition to dietary toxins, mineral deficiencies,
diarrhea, and altered gut pH were reported to cause geophagy
(Krishnamani and Mahaney, 2000; Ferrari et al., 2008; Young
et al, 2011). As these processes are not necessarily mutually
exclusive, geophagy can play different functions, such as rare
element supplementation, detoxification, and protection (Davies
and Baillie, 1988; Huffman et al, 1997; Krishnamani and
Mahaney, 2000; Pebsworth et al., 2019). Interestingly, geophagic
soil could also be a reservoir for microbial species affecting indris’
gut microbiome (Borruso et al.,, 2021). The highly specialized
diet, physiology, and morphology of indri’s gut may contribute
to their susceptibility in a human-controlled environment. This
is in analogy for what has been described for other endangered
folivorous primate whose breeding was unsuccessful (Hale et al.,
2018, 2019).
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FIGURE 1 | Distribution of the territories occupied by the indri family groups sampled (main figure, d) and composition of each single group. Both adult and
youngster indris, both sexes, feed on leaves (a,b) and perform geophagic behavior, eating soil in specific sites (c).
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Understanding the drivers of the gut indris microbiome and
their relationship to the soil could be essential for planning
strategies to conserve, monitor, and promote their health.
Whether the gut microbiome facilitates the use of these hard-
to-digest food items, it would be crucial to characterize the
bacterial gut microbiome’s shaping factors. Therefore, our work
aimed to analyze: (1) the gut microbiome composition of wild
indris belonging to five different familiar groups in Maromizaha,
eastern Madagascar; (2) the potential drivers affecting host-
microbial diversity, including sex, family group, and age class
(3) the chemical composition of geophagic and non-geophagic
soil, to unravel the possible adaptive ecological value as
nutrient supply.

MATERIALS AND METHODS

Fecal and Soil Samples Collection

Fecal and soil samples were collected in a very narrow
temporal window (between December 4th and 6th, 2018)
to avoid confounding potential seasonal effects. Individual
fecal samples were obtained from 18 indris (fecal material)
belonging to 5 different social family groups (Table 1 and
Figure 1) (latitude 18°57’S and 19°00’S, longitude 48°26'E and
48°31'E, Madagascar). The samples were collected immediately
after defecation, when only one animal, recognized using
natural marks (Torti et al., 2013), was present. This procedure
was essential to avoid individual misidentification during the
sampling process (Bonadonna et al., 2019). Approximately 5 g
of fecal samples were collected from each of the 18 individuals

(Table 1) following the procedure described in Borruso et al.
(2021).

Each sample was classified according to the following
categories: sex, family group, and age class (Adult > 6 years and
Juvenile < 6 years) (Table 1 and Figure 1). In addition, soil
samples were collected from seven geophagic and seven non-
geophagic (control) sites. All the geophagic sites were at the
bases of trees uprooted by wind or rainfall, with the lower soil
horizons exposed. We noted the location (waypoint) during soil-
eating events, and we followed behaviors before and after the
geophagy event. Control sites were selected from areas with the
same characteristics (slope, vegetation, etc.) and located at less
than 20 m from geophagic sites after removing the superficial soil
layer to sample the same soil layer of the geophagic sites. The
presence of the superficial layer together with debris proved that
the groups have never used the control locations to consume soil.
All samples were maintained in a portable cooler with ice packs
before arrival at the lab.

Soil Characterization

Soil samples were air-dried, milled, and sieved at 2 mm for
soil analysis in agreement with Soil Science Society of America
(SSSA) methods (Sparks et al., 1996). Briefly, pH was determined
in water (1:2.5, m/V), total carbon (C), and total nitrogen
(N) using an elemental analyzer (CHNS-O Elemental Analyzer
1110, Thermo Scientific GmbH, Germany). Pseudo total element
concentrations were determined after acid mineralization with
aqua regia and hydrogen peroxide in an Ethos TC microwave
lab station (Milestone, Italy) using an inductively coupled plasma
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TABLE 1 | Description of each indri individual including sex, class age (Adult, >6 years; Juvenile, <6 years; NA*, not available) and family group, bacterial observed

richness, and bacterial Shannon index values.

Samples ID Sex Class age Family group Observed richness Shannon
L Female Adult 1MZ 44 2.87
M Female Juvenile 1MZ 41 2.55
02 Male Adult 1MZ 43 2.11
R Female Juvenile 2MZ 44 2.55
N2 NA* Juvenile 2Mz 44 2.76
P Male Adult 2MZ 46 2.67
Q Female Adult 2MZ 47 2.90
G Female Juvenile 3MZ 35 2.55
H Male Juvenile 3MZ 37 1.95
| Female Adult 3MZ 35 2.41
C Female Adult 4AMZ 38 2.70
E2 Male Adult amMZ 45 2.40
K Female Adult 6MZ 47 2.75
S Male Adult Mz 39 2.59
A2 Female Adult 8mz 55 2.94
B2 Male Juvenile 8Mz 58 2.69
D2 Male Adult 8MZ 55 2.62
F2 Male Adult 8Mz 58 2.89

optical emission spectrometer (ICP-OES, Ametek Spectro, Arcos,
Germany). Available metals were determined by ICP-OES after
extraction for 2 h with 1 mol L~ ! ammonium nitrate (NH4,NO3)
solution (1:2.5, m/V).

DNA Extraction and NGS Sequencing

Total DNA was isolated and extracted from indri fecal samples
with DNeasy PowerSoil Kit (QIAGEN, Hilden, Germany) with
slight modifications. Briefly, the lysis step was enhanced using a
bead-beater (FastPrep 24G, MP Biomedicals, France), in which
the “Powerbead” tubes containing the pellets (250 mg of fecal
sample) and 800 pL of CD1 solution were subjected to two
cycles of bead-beating at a speed of 4 m/s for 60 s with 45 s
pause between cycles. The final elution volume was 100 wL in
water. DNA was checked for purity (absorbance ratio 260/280
and 260/230) by spectrophotometry using NanoDrop (Fisher
Scientific, 13 Schwerte, Germany) and quantified with the
fluorometer Qubit® 2.0 (Invitrogen, Italy). Next, the DNA
concentration of each sample was normalized to 1 ng pL™L.
The PCR was performed amplifying the V3-V4 region of
the 16S rRNA gene (~460 bp) with the primers Pro341F (5'-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTAC
GGGNBGCASCAG-3') and Pro805R (5'-GTCTCGTGGGCTCG
GAGATGTGTATAAGAGACAGGACTACNVGGGTATCTAAT
CC-3") (Takahashi et al, 2014), using Platinum Taq DNA
Polymerase High Fidelity (Thermo Fisher Scientific, Italy). The
thermal cycling protocol consisted of the following conditions:
initial denaturation at 94°C for 1/, followed by 25 cycles of
denaturation at 94°C for 30", annealing at 55°C for 30", and
extension 65°C for 45”, ending with 1 cycle at 68°C for 7'.
Further, PCR samples were sent to BMR-Genomics Ltd., that
according to the standard protocols carried out the other
steps of the workflow and finally sequenced the libraries using

a MiSq platform (300 x 2 bp) (Illumina Inc., San Diego,
CA, United States).

The raw reads obtained are publicly available at the Sequence
Read Archive (SRA) under the accession number: PRJNA701813.

Bioinformatic Analysis

Sequencing data analysis was performed using DADA2 1.14.0
(Callahan et al, 2016) running on R 3.6.2 (R Core Team,
2021). The forward and reverse reads were trimmed to
remove low-quality nucleotides and primers sequences using
the filterAndTrim function with the following parameters:
truncLen = ¢(290, 220), trimLeft = ¢(50, 55), and maxN = 0,
truncQ = 2. The amplicon sequence variants were inferred
using the DADA?2 core sample inference algorithm with default
parameters. Forward and reverse reads were merged and reads
with mismatches were removed. Chimeras were identified using
the removeBimeraDenovo function and removed. Further, the
SILVA database release 132 (Quast et al., 2013) was used for the
taxonomic assignment. Finally, the AVSs table was rarefied to
25,181 reads per sample.

Statistical Analysis

Statistical analyses were carried out using Phyloseq 1.32
(McMurdie and Holmes, 2013) and Vegan 2.5 (Dixon, 2003)
packages. The differences between the geophagic and non-
geophagic control soil composition were tested via Mann-
Whitney U-test. Alpha diversity was explored considering the
Shannon index and Observed richness calculated from the
rarefied AVSs table (25,181 reads). Both indices values were
checked for normality using the Shapiro-Wilk test. The possible
effects of sex, age class, and family group on alpha diversity
indices were evaluated with a Linear Model (ANOVA type III).
Beta dispersion was calculated to test if the groups, classified
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FIGURE 2 | Visualization of (A) a research guide recording the location of a geophagic site (GPS waypoint); (B) an indri (Indri indri) performing geophagic behavior,
eating soil in a specific site; (C) a geophagic site under a fallen tree; (D) soil horizon eaten in the geophagic site; (E) a control site with the upper surface untouched;
and (F) enlargement of the soil sampled in the control site, under the surface, in the horizon normally eaten by indri. Soil is collected free of debris (grass, leaves,

stones, roots).

according to sex, age class, and family group, had the same
centroids and heterogeneity. Permutational multivariate analysis
of variance (PERMANOVA) was applied to test the possible
effect of sex, age class, and family group on the bacterial
communities. In addition, the Constrained Analysis of Principal
Coordinates (CAP) based on Bray Curtis was used to generate the
ordination plots.

Linear discriminant analysis effect size (LEfSe) algorithm
(LDA score > 2 and p-value < 0.05) was applied to detect
the biomarker taxa for each category (Segata et al., 2011). We
excluded from the LEfSe analysis the family groups with less than
three individuals (i.e., 4MZ and 6MZ).

RESULTS

Geophagy Site Characterization

Indris were observed to eat soil in sites at the bases of trees
uprooted by wind and/or by rainfall, with the lower soil horizons
exposed (Figure 2 and Supplementary Video 1). Geophagic and
non-geophagic soil samples were characterized by an acidic pH

and rich content in total C and N. With regards to the pseudo-
total metals, soil samples showed poor content in Calcium (Ca),
Phosphorus (P), Sulfur (S), and higher content in Iron (Fe).
Manganese (Mn) and Fe were the most extractable in ammonium
nitrate in the case of available metals (Supplementary Table 1).

Some differences were found between geophagic and non-
geophagic sites. Specifically, the concentration of Ca, S, sodium
(Na), chromium (Cr), boron (B), and available Nickel (Ni)
resulted in being higher in non-geophagic than in geophagic
soil samples (p-value < 0.01) (Figure 3). On the other hand,
for all the other parameters, including pH, total C, total N,
the remaining pseudo-total elements, and metals extractable in
ammonium nitrate, no statistically significant differences were
observed (Supplementary Table 1).

Bacterial Taxonomic Community
Composition

After quality checking and filtering, 645,297 reads (including
non-bacterial reads) were generated from the MiSeq run.
The reads assigned as Bacteria were 616,269 resulting in
131 amplicon sequence variants (Supplementary Tables 2, 3).
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FIGURE 3 | Boxplots representing the chemical parameters resulted statistically different (p-value < 0.05) between the geophagic and non-geophagic soils.
*Available metal.

Rarefaction curves showed that all the samples nearly reached
the plateau (Supplementary Figure 1). All the samples
were identified at phylum level: Proteobacteria 40.1 £+ 9.5%,
Bacteroidetes 28.7 = 2.8%, Synergistetes 16.7 & 4.5%, Firmicutes
11.1 £+ 1.9%, Verrucomicrobia 2.0 £ 1.2%, Actinobacteria
1.2 + 0.6%, and Cyanobacteria 0.2 + 0.3% (Figure 4A). At
family level the most abundant groups were: Succinivibrionaceae
39.6 + 11.6%, Prevotellaceae 26.4 £ 3.2%, Synergistaceae
16.7 £ 4.5%, Ruminococcaceae 6.6 = 2.7%, Acidaminococcaceae
3.3 £ 1.2%, and Puniceicoccaceae 2.0 = 1.2% (Figure 4B). At
a finer taxonomic level, the prevalent genera identified were:
Anaerobiospirillum 39.3 + 11.9% and Prevotellaceae NK3B31
group 19.8 + 3.8%, Cloacibacillus 8.2% =+ 7.2%, Ruminococcus
1, 50 £ 2.8%, Jonquetella 4.24% =+ 2.8%, Pyramidobacter
4.0 £ 2.8%, Phascolarctobacterium 2.6 &= 1.2%, and Cerasicoccus
2.0 £ 1.2% (Figure 4C).

Effect of Family Group, Sex, and Age

Class on Indri Bacterial Diversity

Considering all the individuals, the mean Shannon diversity
was 2.61 £ 0.26, whereas the Observed richnesss value was
45 + 7. The values for each individual are reported in Table 1.
Shannon diversity and Observed richness data resulted to be
normally distributed (Shapiro-Wilk normality test: Observed

richness, W = 0.92, p-value = 0.14; Shannon diversity, W = 0.91,
p-value = 0.07).

The Linear Model revealed that Observed richness was
influenced by family group (F = 17.69, p-value = 0.0002), whereas
Shannon diversity was affected by both family group (F = 4.37,
p-value = 0.02) and sex (F = 10.02, p-value = 0.01). In particular,
females showed higher alpha diversity values if compared to
males. Finally, no significant effect was detected according to the
age class (Supplementary Table 4).

Beta-dispersion of bacterial communities revealed that the
samples had homogeneous dispersion (Sex, F = 1.24 and
p-value = 0.31; family group, F = 1.21 and p-value = 0.43; age
class F = 0.002 and p-value = 0.98). PERMANOVA analysis
showed that sex (F = 7.43, p-value = 0.001) and family group
(F = 7.4707, p-value = 0.001) resulted to significantly affect the
bacterial communities’s beta-diversity, differently from age class
(F = 0.89, p-value = 0.51). Further, CAP analysis, confirming the
results obtained with the PERMANONVA, found that among
all the tested possible drivers, sex, and family group influenced
the bacterial community’s structure (com ~ family group + Sex;
F =5.94 p-value = 0.001) (Figure 5).

Linear discriminant analysis effect size algorithm found
15 ASVs biomarkers for the group 1MZ, 17 ASVs with
2MZ, 11 ASVs with 3MZ, and 25 with 8MZ (Supplementary
Table 5). At phylotype level, Proteobacteria, mainly with the
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genus Desulfovibrio, characterized the group 2MZ, whereas
Actinobacteria with Atopobium and Firmicutes with Tyzzerella 3
were biomarkers of 3MZ (Figure 6A). Further, Bacteroidetes with
Prevotellaceae UCG001 and Verrucomicrobia with Cerasicoccus
were more abundant in the group 8MZ (Figure 6A).

Concerning sex, four AVSs biomarkers were found for females
and two AVSs males (Supplementary Table 6). Moreover,
Firmicutes and Synergistetes with the genera Cloacibacillus
and Jonquetella were more abundant in females; differently,
Verrucomicrobia with the genus Cerasicoccus and Proteobacteria
with the genus Anaerobiospirillum were mainly present in
males (Figure 6B).

DISCUSSION

Indris Gut Microbiome Diversity
Although in different proportions, the most abundant phyla
found in indris gut (i.e., Proteobacteria, Bacteroides, and

Firmicutes) are consistent with those found in other studies
involving primates (Aivelo et al., 2016). On the other hand, the
relative abundance of Proteobacteria found in our study was
almost five times higher than that found in other lemurs species,
such as Lemur catta (Umanets et al., 2018), Eulemur rufifrons,
and E. rubriventer (Bennett et al., 2016; Table 2). Nevertheless,
Greene et al. (2020) investigating wild indris’ gut microbiome
diversity found a higher abundance of Proteobacteria compared
to the other three lemur species (i.e., L. catta, E. rufifrons, and
E. rubriventer) (Bennett et al., 2016; Umanets et al., 2018), but
still lower than what we found in our work (Table 2). With this
regard, the high relative abundance of Proteobacteria present in
our samples and found in Greene et al. (2020) could represent
the typical composition of the gut microbiome of healthy
individuals. Differently, in humans, an increased prevalence of
Proteobacteria has been observed as a potential signature of
dysbiosis (Illiano et al., 2020). Specifically, altered homeostasis,
caused by environmental or host factors, such as a low-fiber diet
and acute or chronic inflammation, could be a selection driver
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FIGURE 5 | Constrained analysis of principal coordinate ordination plot on bacterial communities of indris fecal samples.

and cause dysbiosis with an increased number of Proteobacteria
in the gut. For what concerns the indris, their diet is based on
fiber due to its folivores’ habitus, with usual consumption of
soil as integration. Plant leaves and soil could most likely be an
important source of Proteobacteria; in fact, plant leaves, and soil
contain about 62 and 36.5% of Proteobacteria, respectively (Shin
et al., 2015). Proteobacteria could play a key role in cinnamates
degradation and hydroxycinnamates and hydroxycinnamic acids
utilization for energy recovery (Greene et al,, 2020). Further,
indris might rely primarily on Proteobacteria, and secondly on
Bacteroidetes and Firmicutes (e.g., Prevotella and Ruminobacter)
for fiber digestion (Biddle et al., 2013). Indeed, Firmicutes
members such as Lachnospiraceae and Ruminococcaceae, with
some Bacteroidetes, have known fiber fermenting abilities.
Interestingly, they have been associated with the production
of the appreciated colonocyte nutrient butyrate (Biddle et al.,
2013; Meehan and Beiko, 2014). The presence of functionally
redundant taxa might support functional stability during
ordinary life and possible life disturbance (Vital et al., 2017).
Regarding the factors driving microbial diversity, this study
showed the crucial role of social groups in shaping the indris
microbiome for the first time. Differences among social groups
may be related to feeding and social interactions like grooming,
which provide close contact between subjects of the same group
(Bennett et al., 2016; Raulo et al., 2018). These mechanisms
were identified as relevant factors influencing the microbiome
composition of baboons and chimpanzees (Degnan et al., 2012;
Tung et al, 2015). A study that analyzed the dynamics of

the composition of 10 wild groups in the Maromizaha NAP,
comprising the groups sampled in this work, found evidence
of only one immigrant female and one immigrant male out
of 68 indris over 12 years (Rolle et al,, 2021 in press). This
very low rate of intergroup mobility limits the number of social
partners that indri can have in their lives and, consequently,
the intergroup transmission of microorganisms and parasites.
In addition, sex was another factor that significantly influenced
the microbiome alpha and beta-diversity. Particularly, the higher
bacterial Shannon diversity found in females than males could
be due to the sex hormones that play a crucial role in sex
dimorphism (Haro et al., 2016). Moreover, females showed
a higher abundance of Cloacibacillus and Jonquetella, both
belonging to the novel phylum Synergistetes, that inhabits
the mammalian gastrointestinal tract typically (Jumas-Bilak
et al, 2007; Looft et al, 2013). Differently, males had a
higher abundance of bacteria from the Anaerobiospirillum
genus. This difference can be explained by the fact that
females and males differ in nutritional and energetic demands
for growth, development, and reproduction. Moreover, sex-
specific traits influence the ecological structure of the gut
microbiome, maintaining sex differences in physiology and
behavior throughout life (Jasarevic et al., 2016).

Geophagy in Indris

Typical Oxisols with a reddish color characterized geophagic
and non-geophagic sampling sites. Some inherent characteristics
of the Oxisols, such as the quite acidic pH, the richness of
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TABLE 2 | Percentage of the three top bacterial phyla found in this study and other studies.

Lemurs species References

Firmicutes (%)

Bacteroidetes (%) Proteobacteria (%)

Umanets et al., 2018

Bennett et al., 2016

Greene et al., 2020
This study

Lemur catta
Eulemur rufifrons and E. rubriventer
I indri

I. indri

51.67 £ 0.11 15.81 £0.11 521 +£0.11
43.3 £ 0.064 30.3 £ 0.053 7.4 4+ 0.031
19.70 47.70 20.50
111+19 28.7+£28 401 +£9.5

secondary oxide-hydroxides and highly weathered clays, seem
more important for geophagy than the content in pseudo-
total or available elements (Végen et al., 2006; Borruso et al.,
2021). According to the adaptive hypothesis of geophagy, the
soil ingested by indri could play a crucial role in micronutrient
supplementation and detoxification (i.e., adsorption functions
via oxyhydroxides and clays) (Pebsworth et al., 2019). Indeed,
indris are folivorous, consuming mainly immature leaves rich
in potentially toxic compounds such as tannins, terpenes, and
cyanogenic glycosides derived (Hemingway, 1998); thus, the
geophagic soil could be involved in the plants toxin adsorption
derived from the diet (de Souza et al., 2002; Pebsworth et al.,
2019).

However, the reason behind the selection of one site instead of
another one remains unclear. The choice of the sites characterized
by the exposition of lower soil horizons could be a strategy to limit
the energy expended in obtaining soil from the intact ground.

Nevertheless, some elements (i.e., Ca, S, Na, Cr, B, and available
Ni) were present at lower concentrations in geophagic than in
non-geophagic soil. Although we cannot directly explain these
differences, they could indicate that other soil quality traits could
orientate the selection of a specific soil.

In conclusion, studies on different species suggested that
geophagic sites are required to maintain individual and
population health (Pebsworth et al., 2019). Accordingly,
preserving the geophagic sites is crucial in wildlife
conservation policy.

Microbial Ecology and Indri Conservation

Microbial ecology offers valuable perspectives to investigate
primate health and improve conservation efforts. Understanding
the drivers affecting the microbiome associated with the host
(e.g., indri) is critical for conservation biology. It is well known
that the microbial gut communities profoundly affect host health,
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nutrition, physiology, and immune systems (Sandri et al., 2020).
For instance, our study is fundamental to document the typical
composition of healthy individuals considering sex and group
influence (Amato et al, 2020). Therefore, many studies have
been conducted on the human microbiome where microbial
biomarkers of health have been shown, such as the presence of
Faecalibacterium prausnitzii (Manor et al., 2020). The acquisition
of new information about animal gut microbiomes can help
identify biomarkers for animal health. In addition, microbial
gut communities are sensitive to environmental alterations
and their diversity seems to be correlated with habitat quality
and, thus, with possible health implications (Scotti et al,
2017). The application of gut microbiome analyses to wildlife
conservation of endangered species is currently in its infancy
but holds enormous potential. To date, no conservation policy
or legislation includes microbiome assessments. Integrating a
new understanding of the patterns of microbial diversity and
early signs of impending microbial disruption offer valuable
tools for informing conservation strategies and monitoring and
promoting primate health (Stumpf et al, 2016). The present
study represents a first insight toward understanding the overall
diversity and ecology of indris microbiome in different familiar
groups and a sex-dependent baseline that can be tracked over
time as a component of efforts to help animal conservation.
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