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Panax notoginseng, an important Chinese medicinal herb, can be mainly cultivated
in two planting patterns, cropland planting (DT) and understory planting (LX). We
speculate that the rhizosphere microbiome may vary in DT and LX and may play
an important role in promoting the growth and health of P. notoginseng. In the
present study, culture-independent Illumina HiSeq was employed to investigate the
rhizosphere bacteria and fungi under DT and LX planting patterns. Predominant
phyla include Proteobacteria, Acidobacteria, Actinobacteria, Gemmatimonadetes, and
Ascomycota in the two planting patterns. DT has higher alpha diversity index
than LX. The predominant LX-core genera include Bradyrhizobium, Streptomyces,
and Actinomadura, and the predominant DT-core genera include Sphingomonas,
Variovorax, and Novosphingobium. Total relative abundance of the disease-suppression
phylum (Proteobacteria, Firmicutes, and Actinobacteria) and the potential plant growth-
promoting rhizobacteria (PGPR) were both significantly higher in LX than in DT. We
also identified over-presented microbial functional traits mediating plant–microbe and
microbe–microbe interactions, nutrition acquisition, and plant growth promotion in
P. notoginseng rhizosphere. Our findings provide a valuable reference for studying
beneficial microbes and pathogens of P. notoginseng planted in DT and LX.

Keywords: Panax notoginseng, rhizosphere microbiome, microbial diversity, metagenome, planting patterns

INTRODUCTION

Panax notoginseng (P. notoginseng) is an important Chinese medicinal plant commonly known
as Sanqi or Tianqi. It belongs to the family Araliaceae (Guo et al., 2010). There is a
very high global demand for this species due to its antihypertensive, antithrombotic, anti-
atherosclerotic, anti-tumor, anti-oxidant, and hepatoprotective activities (Zhou et al., 2009; Yang
et al., 2015; Dong et al., 2019; Li et al., 2019; Liu et al., 2019; Zhang et al., 2019a; Tang
et al., 2020). Recently, more than 4 million hectares of land are cultivated annually in China
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for this species (Shoyama et al., 1997; Deborah et al., 2005; Wei
et al., 2015). After 1–3 years of cropping, root rot is prevalent in
this species (Sun et al., 2015; Yang et al., 2015; Zhang et al., 2019b).

Currently, it is grown only in southern China, typically around
Wenshan City of Yunnan Province and Baise Ccity of Guangxi
Province (Guo et al., 2010). Besides the root rot and limited
suitable cropland, the loss of genetic diversity, and degeneration
of germplasm associated with P. notoginseng also hamper its
sustainable supply in the global market (Zhou et al., 2005).

Studies have revealed several factors, which limit its cropping,
like the alteration of its soil microbiota (Dong et al., 2016; Fan
et al., 2016; Miao et al., 2016; Tan et al., 2017a), autotoxicity
caused by allelochemicals (Sun et al., 2008; Yang et al., 2015),
and enhanced soil salinization and acidification as well as loss
of nutrients from the soil (Liu et al., 2013). To mitigate these
problems, biological control, chemical control, and crop rotation
have been found effective (Klose et al., 2006; Song et al., 2014;
Wang et al., 2016).

Cultivation of Chinese medicinal herbs as understory plants
provides a healthy microenvironment for their optimum growth
(Yan et al., 2016). It also limits the costs associated with labor,
fertilizer application, and shading (Zhou et al., 2016). The
microbiome of the rhizosphere influences plant growth (Kwak
et al., 2018; Xu J. et al., 2018). The structure and composition
of the rhizosphere microbiome are, in turn, determined by host
species, location, planting pattern, and growth period (Peiffer
et al., 2013; Edwards et al., 2015; Jin et al., 2017; Fan et al., 2019).
The advent of high-throughput sequencing (HTS) technology
provides an effective platform to decipher the structures and
functions of the rhizosphere microbiome (Xu J. et al., 2018; Xiao
et al., 2019). The whole-genome shotgun sequencing has been
applied to study the rhizobiome of multiple crops such as rice,
millet, corn, wheat, sugarcane, Populus, and grapevine (Daniel,
2005; Knief et al., 2012; Edwards et al., 2015; Fan et al., 2016;
Knight et al., 2018; Kwak et al., 2018; Xu J. et al., 2018).

The studies on the rhizosphere microbiome of P. notoginseng
are scarce, and a comparative evaluation of the rhizobiome
composition in main cropland and understory cultivation is
lacking. This study was therefore carried out to decipher the
microbiome variations between the understory plantations and
main croplands of P. notoginseng using a high-throughput
metagenomic approach in the Wenshan City of Yunnan Province
and the Baise City of Guangxi Province. This study holds the
promise to link the better efficiency of P. notoginseng in the
understory plantations with its specific rhizosphere microbiome
when compared with the main cropland. We used a metagenomic
approach to reveal the rhizosphere microbiome of P. notoginseng
in the Wenshan City of Yunnan Province and the Baise City of
Guangxi Province.

MATERIALS AND METHODS

Sample Collection
For sampling, we chose four farms where P. notoginseng was
grown for the first time since 2015. These four farms were located
in Wenshan City (WS) (Yunnan Province, China) and Baise City

(BS) (Guangxi Province, China) (Figure 1 and Supplementary
Figure 1). In order to ensure the consistency of sampling time,
samples were collected from four farms through four groups at
the same day. Meanwhile, sampling 1–5-year-old P. notoginseng
also weakens the influence on microbial community caused
by the growth period. We used the protocol developed by
Bulgarelli et al. (2015) to collect the rhizosphere soil and the
corresponding bulk soil samples. From each plant, three to five
fine roots (approximately 0.5–1-mm diameter, 3–5-cm length)
from a depth of 5–15 cm were collected. The soil closely attached
to the roots was washed using PBS buffer. The washed soil from
the same plant was then pooled in a 50-ml Falcon tube and
constitutes the rhizosphere soil. Similarly, corresponding bulk
soil was collected, approximately 10–20 cm underground and 0.5
m away from the P. notoginseng clusters, from each farm and
pooled together into a 50-ml Falcon tube as one sample. The
rhizosphere soil and the corresponding bulk soil were stored at
4◦C until subsequent DNA extraction.

In total, 122 rhizosphere soil samples and 13 bulk soil samples
were harvested from Wenshan City (WS) and Baise City (BS).
Around 57 samples were harvested from WS, with 26 understory
(LX) rhizosphere soil samples (WSLX) and three understory
bulk soil samples (WSLXCK), 25 cropland (DT) rhizosphere
soil samples (WSDT), and three cropland bulk soil samples
(WSDTCK). Similarly, 78 samples were harvested from BS,
with 44 understory (LX) rhizosphere soil samples (BSLX), three
understory bulk soil samples, 27 cropland (DT) rhizosphere
soil samples (BSDT), and four cropland bulk soil samples
(BSDTCK). The details of the sampling sites are presented in
Supplementary Table 1.

DNA Extraction and Sequencing
We used EZNA soil DNA extraction kit (OMEGA Bio-Tek,
Inc., Norcross, GA, United States) for extracting DNA from
the collected samples. The quality of the extracted DNA
was assessed through an agarose gel (1%) electrophoresis
and NanoPhotometer R© spectrophotometer (IMPLEN, CA,
United States). The concentration was measured through Qubit R©

DNA Assay kit using Qubit R© 2.0 Fluorometer (Life Technologies,
CA, United States). A total of 700 ng of DNA was used for library
preparation. Sequencing libraries were generated using NEB R©

Ultra DNA Library Prep kit for Illumina R© (NEB, United States),
following the manufacturer’s recommendations. The index codes
were added to attribute sequences to each sample.

Briefly, DNA was purified using AMPure XP system (Beckman
Coulter, Beverly, United States). Subsequent to the adenylation
of 3′ ends of the DNA fragments, the NEBNext Adaptor with
a hairpin loop structure was ligated. Next, electrophoresis was
used to select DNA fragments of 350–400-bp size range. Then
3 µl of USER enzyme (NEB, United States) was used with size-
selected and adaptor-ligated DNA fragments at 37◦C for 15 min,
followed by 5 min at 95◦C before PCR. PCR was performed
with Phusion High-Fidelity DNA Polymerase, universal PCR
primers, and index (X) primer. Finally, PCR products were
purified (AMPure XP system), and library quality was assessed
on the Agilent Bioanalyzer 2100 system. The clustering of
the index-coded samples was performed on a cBot Cluster

Frontiers in Microbiology | www.frontiersin.org 2 June 2021 | Volume 12 | Article 673512

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-673512 June 3, 2021 Time: 17:20 # 3

Kui et al. Rhizosphere Microbiome of P. notoginseng

10

20

30

40

50

80 100 120
long

la
t

province
Guangxi

Others

Yunnan

FIGURE 1 | Geographic distribution of sampling sites across the main producing areas of Panax. notoginseng.

Generation System using HiSeq 4000 PE Cluster kit (Illumia), as
per the manufacturer’s instructions. Totally, 135 DNA libraries
were sequenced on an Illumina Hiseq 4000 platform and
1,222.690 Gb of raw data was obtained, including 51 rhizosphere
soil and six bulk soil samples in WS and 71 rhizosphere soil and
seven bulk soil samples in BS.

Data Analysis
The DNA from the rhizosphere and their corresponding bulk
soil samples of P. notoginseng were sequenced at Novogene—
Tianjing, China (Quince et al., 2017). We used SOAPnuke
v2.0 to remove the adaptor sequences and low-quality reads
harboring >10% N bases or < 40% bases with scores exceeding
38 (Chen et al., 2018). These cleaned reads were then aligned
to the P. notoginseng reference genome released by Zhang et al.
(2017) using Bowtie2 v2.3.1 (Langmead and Salzberg, 2012). The
mapped reads were classified according to the farm, bulk soil, and
rhizosphere soil (Supplementary Table 2).

The assemblies were generated using Megahit v1.1.3 with
the default parameters (Li et al., 2016). Subsequently, the
MetaGeneMark_v1_mod implemented in Prodigal v2.6.3 was

used to predict the genes on the contigs (Zhu et al., 2010). All
the genes of length ≥ 100 bp were retained for downstream
analysis. With the assistance of the Mmseq2 software and
the Linclust algorithm, all the predicted genes were combined
together and then clustered into a non-redundant geneset, using
the similarity threshold at 95% (Steinegger and Soding, 2017). For
the taxonomic and functional information of the unigenes, their
protein sequences were aligned against the NCBI non-redundant
database and Kegg Orthology (KO) database, using DIAMOND
at an E-value threshold of 1e−5 (Buchfink et al., 2015). Moreover,
the cleaned reads were aligned against the geneset to obtain
the abundance profiles (read count matrix) usingBowtie2 v2.3.1
(Langmead and Salzberg, 2012).

Comparative Analysis Across Different
Planting Patterns
We used a DESeq2 v1.30.1-based negative binomial generalized
linear model to statistically assess the differences in the
abundance profiles of genera, phyla, and KOs across the
understory (LX) and main cropland (DT) planting patterns. First,
the read count matrix was normalized through the DESeqVS
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method (Love et al., 2014; Tang et al., 2015), followed by a
comparative analysis to detect LX-enriched genera, DT-enriched
genera, and enriched KOs using DESeq2. We used the criteria
that if taxa or a KO is present in more than 75% of the samples,
in each of the different planting patterns, they were considered as
core taxa or core KOs (Xu J. et al., 2018). For visually assessing
the relative abundance of the enriched taxa and the functional
traits in the rhizosphere, we used the Pheatmap R package. To
clearly demonstrate the differences among the core taxa and
their functional traits in different planting patterns, the relative
abundance was calculated based on the number of mapped reads.

Weighted Gene Co-expression Network
Analysis
Weighted gene co-expression network analysis (WGCNA) was
performed in prokaryotes and fungi, respectively. Classified
prokaryote samples were divided into eight groups according
to planting location and pattern, including WSLX, WSDT,
BSLX, BSDT, WSLXCK, WSDTCK, BSLXCK, and BSDTCK.
Fungi samples also follow this classification criteria. Construction
of weighted co-expressed networks and identification of co-
expression modules were carried out using the “WGCNA” R
package with default parameters, the input file is the count
table (Supplementary Table 3). In order to ensure a scale-free
network, the power of β = 11 (scale-free R2 = 0.8) was selected as
the soft thresholding, and MEDissThres was set as 0.25 to merge
similar modules. After that, nodes were screened by the criteria
MM > 0.87 for pink module in prokaryotes and MM > 0.02 for
turquoise module in fungi. Then the nodes were inputted into
Cytoscape to visualize the co-expression network, and the nodes
and hub genera were identified (Su et al., 2014).

RESULTS

Taxonomic Profile of Panax notoginseng
Rhizosphere Microbiome
The shotgun metagenome sequencing generated approximately
30 million 150-bp paired-end reads for each sample, accounting
for more than 607.7 Gbp raw sequences. After the removal of low-
quality sequences (Supplementary Table 2), the de novo assembly
was performed through Megahit 1.1.3. A total of 149,436,529
contigs were obtained in the final assembly, constituting a total
length of 103.6 Gb. Approximately 193 million metagenes were
predicted from the contigs using MetaGeneMark_v1_mod. These
metagenes were then clustered into approximately 164 million
non-redundant genes (unigenes). In total, 164,264,054 unigenes
were generated in our study and used for downstream analysis.

Taxonomic annotations were assigned to 62.4% of the
unigenes, among which 99.55% were classified into 165
prokaryotic phyla (including bacteria and archaea) and
0.43% into 31 eukaryotic phyla (Supplementary Figure 2).
A negligible fraction (0.014%) of the annotated unigenes
were classified as viral, indicating potential annotation biases
that resulted in the underestimation of eukaryotic and viral
communities (Leach et al., 2017). We focused our study on the

comparative analysis of the prokaryotic and fungal rhizosphere
microbiomes in the two planting patterns (DT and LX). The
dominant prokaryotic (bacterial and archaeal) phyla found
in the P. notoginseng rhizosphere and bulk soil included
Proteobacteria (34.5%), Acidobacteria (28.6%), Actinobacteria
(10.5%), Gemmatimonadetes (5.3%), and Verrucomicrobia
(4.2%). These together constituted about 83.1% of the prokaryotic
unigenes (Figure 2A and Supplementary Table 3-1). Fungal
unigenes were primarily associated with the phyla Ascomycota
(57.8%), Mucoromycota (22.1%), and Basidiomycota (17.8%),
which together accounted for 97.7% of the fungal unigenes
(Figure 2B and Supplementary Table 3-2).

Estimation of the Microbial Diversity
The alpha diversity (α-diversity) analysis was estimated based
on the Shannon index. We observed a significant difference
in α-diversity between different planting patterns (DT and LX)
in P. notoginseng rhizosphere. DT showed a higher α-diversity
than LX, except for the fungal taxa in WS. A similar trend was
shown by α-diversity of bulk soil microbial community, but little
significant difference in α-diversity was observed between the
rhizosphere and bulk soil samples, except for the fungal taxa at
BSDT (Figures 2C,D).

Furthermore, the principal coordinate analysis (PCoA) based
on the Bray–Curtis distance (β-diversity) revealed that the
planting pattern was the principal factor in shaping the
composition of the microbial communities (Figures 3A,B).
Moreover, no significant variation among the microbial taxa
between the rhizosphere and the bulk soil samples was revealed
by the β-diversity analysis (Figures 3A,B). These results were
corroborated by the permutation multivariate analysis of variance
(PERMANOVA), which was according to the Bray–Curtis
distance metric. PERMANOVA showed a significant variation
in prokaryotic taxa (25.7%, P = 0.001) and fungal taxa (34.5%,
P = 0.001) between LX and DT (Supplementary Table 4). The
planting location appeared as the second-largest source to shape
the microbial community difference (Supplementary Table 4).

The enrichment analysis of the microbial phyla, based
on their relative abundance, revealed that 58 prokaryotic
phyla and seven fungal phyla were enriched in the LX
rhizosphere microbiome, whereas 73 prokaryotic phyla and
one fungal phylum were enriched in the DT rhizosphere
microbiome (corrected P-value < 0.05, DESeq2, Supplementary
Table 5-1). Moreover, no significant variation in the relative
abundance of prokaryotic or fungal phyla was observed between
the rhizosphere and bulk soil microbial phyla (corrected
P-value ≥ 0.05, DESeq2, Supplementary Table 5-2). Similarly,
the enrichment analysis of the microbial genera revealed 902
prokaryotic genera and 251 fungal genera as enriched in
the LX rhizosphere microbiome, whereas 1,087 prokaryotic
genera and 27 fungal genera were enriched in the DT
rhizosphere microbiome (corrected P-value < 0.05, DESeq2,
Supplementary Table 6-1). These enriched genera belonged to
the main prokaryotic phyla like Proteobacteria, Acidobacteria,
Actinobacteria, and Verrucomicrobia and the main fungal
phyla like Ascomycota and Mucoromycota (Figures 2A,B
and Supplementary Tables 5, 6). In comparison with the
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FIGURE 2 | Taxonomic distribution and diversity comparisons in P. notoginseng rhizosphere (n = 122) and bulk soil (n = 13) microbiomes across different sites. (A,B)
Phyla-level distributions of prokaryotes and fungi in the bulk soil and rhizosphere samples based on metagenomic data. (C,D) Alpha diversity comparison between
the bulk soil and rhizosphere samples from each location based on the Shannon index using the metagenomic data; *P < 0.05; **P < 0.01; ***P < 0.001. One-sided
t-test; center value represents the median of the Shannon index. WSDT, rhizosphere soil of cropland planting in Wenshan city; WSDTCK, bulk soil of cropland
planting in Wenshan City; WSLX, rhizosphere soil of understory planting in Wenshan City; WSLXCK, bulk soil of understory planting in Wenshan City; BSDT,
rhizosphere soil of cropland planting in Baise City; BSDTCK, bulk soil of cropland planting in Baise City; BSLX, rhizosphere soil of understory planting in Baise City;
BSLXCK, bulk soil of understory planting in Baise City.

bulk soil microbiome, the rhizosphere microbiome contained
only two enriched prokaryotic genera, Nitrosopumilus and
Wenzhouxiangella along with depletion of three prokaryotic
genera and two fungal genera (corrected P-value < 0.05, DESeq2,
Supplementary Table 6-2).

Core Genera Evaluation
Using the aforementioned criteria, the core genera (genera
present in more than 75% of all samples and with enriched
relative abundance) in the P. notoginseng rhizosphere of
LX and DT planting patterns were evaluated. Around 875
prokaryotic and 203 fungal genera were found as core genera in
LX-rhizosphere and 1,051 prokaryotic and 17 fungal genera as
core genera in DT-rhizosphere of P. notoginseng (Figures 4A,B
and Supplementary Table 6). The core rhizosphere genera
were mainly affiliated with the prokaryotic phyla Proteobacteria,
Actinobacteria, and Acidobacteria as well as with the fungal phyla
Ascomycota and Mucoromycota (Figure 4C). Bradyrhizobium,

Burkholderia, and Paraburkholderia have higher relative
abundance (corrected P-value < 0.05, DESq2) (Figures 4C,D
and Supplementary Figure 5), and were over-represented in
Proteobacteria. At the same time, both LX and DT core genera
contain some inhibitors and pathogenic microbiomes, which
may interfere with the quality and growth of P. notoginseng.

Characteristic Analysis of Core
Rhizosphere Microbiome of Panax
Notoginseng in the Different Planting
Patterns
Mann–Whitney U test revealed that the total relative abundance
of the core rhizosphere microbiome phyla varied significantly
between LX and DT planting patterns. We observed that the
multiple disease-suppression prokaryotes were highly abundant
in LX than DT (P < 0.05), among which Proteobacteria,
Firmicutes, and Actinobacteria were important in disease
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FIGURE 3 | (A,B) Principal coordinate analysis (PCoA) of prokaryote and fungi based on the Bray–Curtis distance between the bulk soil (n = 13) and rhizosphere soil
(n = 122) for each location using the metagenomic data. WS, Wenshan City; BS, Baise City; DT, cropland planting rhizosphere soil; DTCK, cropland planting bulk
soil; LX, understory planting rhizosphere soil; LXCK, understory planting bulk soil.

suppression (Mendes et al., 2011; Figure 5A). Furthermore, 21
potential plant growth-promoting rhizobacteria (PGPR) genera
were identified, among which eight genera were related to the
nitrogen cycle (Nelson et al., 2016; Supplementary Table 6),
10 genera were plant growth regulators, and 10 genera were
the biological control agents (Figures 6A–C). The total relative
abundance of these PGPR genera was found higher in LX than
DT (Figure 6D).

However, the pathogenic fungal phyla like Basidiomycota,
Mucoromycota, and Ascomycota were also significantly higher
in LX than in DT (P < 0.05) (Figure 5B). The potential plant
pathogen genera like Fusarium, Colletotrichum, and Rhizoctonia
were higher in LX than in DT (P < 0.05, MW test) (Figure 6D;
Fravel et al., 2003). Besides the pathogenic nature, the genera
Fusarium has several members, which are non-pathogenic and
may act as potential biocontrol agents that could control fungal
pathogens (Nel et al., 2006). Similarly, Colletotrichum has also
been proposed as a means to promote plant growth through
hormone production and phosphorus absorption under abiotic
stress (Hiruma et al., 2016; Figure 6D).

The Correlations of Microbiomes
Analyzed by Weighted Gene
Co-expression Network Analysis
The correlations of microbiomes under different planting
patterns are shown in Figure 7. For fungi, the difference of
gray and turquoise module could be seen under different
planting patterns or location. However, as the number
of genera is small, there are fewer modules displayed in
fungi (Figure 7B), and we mainly focused on prokaryotes
(Figures 7A,C,D). For the prokaryotic community, seven
modules were generated; the modules represented distinct
differences under different planting patterns (WSLX vs. WSDT,
BSLX vs. BSDT). BSDT had a significant positive correlation
with most modules: green (P = 7E-06, r = 0.38), brown
(P = 4E-07, r = 0.42), pink (P = 2E-07, r = 0.43), and yellow

(P = 0.02, r = 0.19) modules (Figure 7A). Comparing the
rhizosphere soil and bulk soil modules, a similar correlation
was shown. Besides, the modules were also varied in location
(WSLXCK vs. BSLXCK, WSDTCK vs. BSDTCK). The results
are consistent with the trend of PERMANOVA’s analysis, which
revealed that planting pattern is the main factor to shape the
structure of P. notoginseng rhizosphere microbes, and second
is the location.

According to the correlation results, genera from the pink
module in prokaryotes and the turquoise module in fungi
were extracted to generate networks (Figure 8). Nodes were
screened by the criteria MM > 0.87 for the pink module
and MM > 0.02 for the turquoise module. The results
are shown in Figure 8. Ten hub genera were obtained in
prokaryotes (Figure 8A, red color) and four hub genera
in fungi (Figure 8B, red color). For prokaryotes, there are
two genera, Azospirillum and Gluconacetobacter, that were
highly correlated in the pink module. It is worth noting
that they are also identified as PGPR’s taxa and had higher
relative abundance in LX than in DT in previous analysis.
Besides, two genera (Trichoderma and Metarhizium) related
to biological control agent, and two genera (Fusarium and
Colletotrichum) related to plant pathogen were highly correlated
in the turquoise module of fungi. Similarly, these four genera
had higher relative abundance in LX than in DT. It may
indicate that the semi-nature planting patterns (LX) evolve
a closer interaction microenvironment, which can provide us
with significant reference to selectively manage microbiome in
agricultural production.

Core Functional Traits in the Different
Planting Patterns of Panax Notoginseng
Rhizosphere
The unigene sets of the P. notoginseng rhizosphere were 4-
and 18-fold larger than that of the human gut and the global
Tara oceanic microbiomes, respectively (Sunagawa et al., 2015),
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but it had the same order as the global citrus rhizosphere
microbiome (Xu J. et al., 2018). More than 35% of (58 of
164 million) the unigenes were annotated by blast against the
KEGG Orthology (KO) database, and 16,396 KOs were assigned
to the annotated unigenes (Supplementary Table 7-1). These
KOs were mainly associated with 41 KEGG (level 2) pathways.
The carbohydrate metabolism and energy metabolism had a

higher relative abundance across the different planting patterns
(Figure 9A). Finally, 9,585 of 15,725 (60.9%) and 9,557 of
15,757 (60.6%) KOs were identified in at least 75% of the
LX-planting and DT-planting soil microbiomes, respectively.
A pairwise comparative analysis using DESq2 revealed that
5,002 and 4,929 KOs were enriched in LX-planting and DT-
planting soil microbiomes, respectively. The core functional
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characteristics of P. notoginseng rhizosphere microorganisms in
different planting patterns were determined, which showed that
3,990 KOs were enriched in LX and 3,973 KOs in DT (corrected
P-value < 0.05, DESeq2) (Figures 9B–D and Supplementary
Tables 7-1, 7-2).

The core functional characteristics involved in plant–microbe
and microbe–microbe interactions were very likely to reflect the
structural traits of microbiomes harboring the P. notoginseng
rhizosphere. MW test to compare the core KO numbers
between DT and LX revealed differences in several core
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functions. For example, bacterial secretion systems, bacterial
chemotaxis, and flagellar assembly were over-presented in
LX (Figure 10A) (P < 0.05, MW test), whereas bacterial
toxins, and two-component systems were over-presented in
DT (Figure 10A and Supplementary Figure 3) (P < 0.05,
MW test). Quorum sensing and biofilm formation had little
significance (Figure 9A) (P ≥ 0.05, MW test). The antimicrobial
resistance and antibiotic synthesis were more enriched in
LX than in DT (Figure 10B). For example, KOs associated
with the biosynthesis of the vancomycin group of antibiotics,
biosynthesis of 12-, 14-, and 16-member macrolides, biosynthesis
of ansamycins, and biosynthesis of enediyne antibiotics were
significantly higher in LX than in DT (P < 0.05, MW test).
These observations suggested that more intimate host–microbe

and microbe–microbe interactions occur in the LX-planting than
in the DT-planting pattern.

ABC transporters, which were mainly responsible for the
transport of urea, ions, amino acids, monosaccharides, and
oligosaccharides into microbial cells, were significantly more
enriched in LX than in DT (Supplementary Figure 4)
(P < 0.05, MW test). Metabolism of amino acids like
glycine, serine, threonine, valine, leucine, isoleucine, lysine,
and phenylalanine was significantly higher in LX than in DT
(Supplementary Figure 5), whereas the KOs corresponding
to alanine, aspartate, and glutamate metabolism were over-
represented in DT (Supplementary Figure 6). The xenobiotics
biodegradation-related KOs showed less difference between
LX and DT (Supplementary Figure 6) (P ≥ 0.05, MW
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test). However, the dioxin degradation-related KOs were more
enriched in DT, indicating that DT faces the problem of
frequent pesticide application. The KOs corresponding to lysine,
arginine, phenylalanine, tyrosine, and tryptophan biosynthesis
was significantly higher in DT than in LX (P < 0.05, MW
test) (Supplementary Figure 7), whereas the carbon fixation
pathways in prokaryotes were significantly higher in LX than in
DT (P < 0.05, MW test) (Supplementary Figure 8). A lesser
number of KOs affiliated with peptidases were enriched in the LX
rhizosphere microbiome (P ≥ 0.05, MW test) (Supplementary
Figure 9). The transcription factors also showed a significant
difference between DT and LX rhizosphere microbiomes. For
example, the LuxR, AraC, GntR, MerR, TetR, AcrR, and LysR
families of transcriptional regulators were more over-represented
in LX than in DT (P < 0.05, MW test) (Supplementary
Figure 10). Notably, such regulators were typically associated
with metabolism, transport, quorum sensing, motility, stress
response, and pathogenesis, which confirmed that a more
intimate relationship of plant–microbe and microbe–microbe
interactions appeared in LX than in DT.

DISCUSSION

Microorganisms dwelling in the rhizosphere of plants play an
important role in their growth and development. The plants and
the microbes interact with each other and influence the growth
of each other. P. notoginseng is an important Chinese medicinal
plant with high global demand, such that its demand supersedes
the production. Furthermore, several factors like root rot after
few years of replanting (Sun et al., 2015), less suitable cropland,
depletion of genetic diversity, and germplasm degeneration limit
its production (Zhou et al., 2005). It is, therefore, imperative
to evaluate the factors that could enhance the survival and
growth of this species. This species is grown as an understory
crop besides the main cropland species. It was observed that
the understory Chinese medicinal plants experience a healthy
microenvironment for their optimum growth (Yan et al., 2016).
The studies on the rhizobial microbiome of P. notoginseng
are scarce, and a comparative evaluation of the rhizobiome
composition in the main cropland and understory cultivation
is lacking. We, therefore, were interested in evaluating the
microbiome variations based on the planting pattern, i.e., main
cropland (DT) and understory planting (LX), in the Wenshan
City of Yunnan Province and the Baise City of Guangxi Province,
using a high-throughput metagenomics approach.

We found that the predominant taxa in the host rhizosphere
microbiome were mainly prokaryotes, and eukaryotes accounted
for a small fraction of the sequences. This finding was
corroborated by Xu J. et al. (2018). The low proportion of
eukaryotic taxa in the rhizosphere of P. notoginseng could be
attributed to the unavailability of reference genomes for most
eukaryotes (Bulgarelli et al., 2015). Approximately, 60% of the
unigenes were assigned to known taxa. Taxonomic annotation at
the phylum level indicates that Proteobacteria, Acidobacteria, and
Actinobacteria were dominant in the rhizosphere. Similar results
were obtained by several studies (Peiffer et al., 2013; Bulgarelli

et al., 2015; Edwards et al., 2015; Jin et al., 2017; Xu J. et al., 2018;
Xu L. et al., 2018; Fan et al., 2019). Generally, a plant will harbor
specific microbial communities in its rhizosphere from the soil
reservoir to facilitate growth.

The same as the citrus, little significant difference had been
revealed between P. notoginseng rhizosphere and bulk samples
(Xu J. et al., 2018). It may be that the threshold distance rendering
the microbiomes between the rhizosphere and bulk soil distinct
is species dependent upon this distance, the microbiomes of
rhizosphere and bulk samples are more or less homogenous in
the case of P. notoginseng. Various studies have reported that the
microbial communities existing in the soil microbial reservoir
can be influenced by factors such as plant genotype, location,
planting pattern, and growth period (Peiffer et al., 2013; Edwards
et al., 2015; Jin et al., 2017; Fan et al., 2019). Our study revealed
that the planting pattern, DT or LX, was the major factor in
determining the rhizosphere microbiome profile. Both alpha
and beta diversities of P. notoginseng rhizosphere microbiomes
in DT and LX planting patterns were significantly different.
Location was the second major factor. This suggests that the
planting patterns shaped the unique rhizosphere microbiomes in
P. notoginseng.

The rhizosphere microbiome profile not only influences the
growth of the host plants but also may be a potential bioindicator
to reflect the health status of the soil. This is established by
several studies concerning the microbial communities of crops
such as maize, bananas, P. quinquefolius, and P. notoginseng
(Fu et al., 2017; Tan et al., 2017b; Jiang et al., 2019). Dong
et al. (2016) revealed that the death rate of P. notoginseng and
the fungal diversity had a significantly negative correlation. In
our study, LX enriches more core fungal genera than DT (203
vs. 17), and the total relative abundance of the core genera
that were associated with disease suppression were significantly
higher in LX than in DT, such as the genera belonging to the
phyla Proteobacteria, Firmicutes, and Actinobacteria (Mendes
et al., 2011). Several genera like Azospirillum, Bradyrhizobium,
Burkholderia, and Streptomyces, which are potentially beneficial
(Bevivino et al., 1998; Bhattacharyya and Jha, 2012), were also
significantly higher in LX than in DT. Besides, although multiple
genera associated with plant pathogens were also found to
be significantly higher in LX than in DT such as Fusarium,
Colletotrichum, and Blumeria, the non-pathogenic Fusarium may
act as a potential biocontrol agent against fungal pathogens (Nel
et al., 2006). Additionally, Colletotrichum has been proposed
to promote plant growth through hormone production and
phosphorus absorption under abiotic stress (Hiruma et al., 2016).
These findings seem to evidently support that LX can create
a better healthy environment, but the phenomenon still needs
further and more studies to confirm.

The functional traits of the rhizosphere microbiome are
closely associated with the life activities of the microorganism’s
host–microbe and microbe–microbe interactions (Xu J.
et al., 2018). The core functional traits involved in nutrient
mobilization were over-represented in DT and LX (Figure 6D),
suggesting that microbiomes need access to nutrients to form
the surrounding soil, i.e., plant root exudates and humus (Peiffer
et al., 2013). The rhizosphere enrichment of bacterial secretion
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systems, chemotaxis, flagella, assembly, antimicrobial resistance,
and antibiotic synthesis genes are largely depended on the
coevolution of host–microbe and microbe–microbe interactions,
indicating that plants will positively harbor beneficial microbes
to the rhizosphere. Interestingly, we observed more core
antimicrobial resistance and antibiotic synthesis genes in LX than
in DT, which indicate that the long-term use of farm chemicals in
DT may cause the decrease in fungi.
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