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Characterization of the bacterial composition and functional repertoires of microbiome
samples is the most common application of metagenomics. Although deep whole-
metagenome shotgun sequencing (WMS) provides high taxonomic resolution, it is
generally cost-prohibitive for large longitudinal investigations. Until now, 16S rRNA
gene amplicon sequencing (16S) has been the most widely used approach and
usually cooperates with WMS to achieve cost-efficiency. However, the accuracy of
16S results and its consistency with WMS data have not been fully elaborated,
especially by complicated microbiomes with defined compositional information. Here,
we constructed two complex artificial microbiomes, which comprised more than 60
human gut bacterial species with even or varied abundance. Utilizing real fecal samples
and mock communities, we provided solid evidence demonstrating that 16S results
were of poor consistency with WMS data, and its accuracy was not satisfactory. In
contrast, shallow whole-metagenome shotgun sequencing (shallow WMS, S-WMS) with
a sequencing depth of 1 Gb provided outputs that highly resembled WMS data at both
genus and species levels and presented much higher accuracy taxonomic assignments
and functional predictions than 16S, thereby representing a better and cost-efficient
alternative to 16S for large-scale microbiome studies.

Keywords: shallow whole-metagenome shotgun sequencing, 16S rRNA gene amplicon sequencing,
metagenomics, mock microbiomes, consistency, accuracy

INTRODUCTION

The booming metagenomics enables direct cell-free analysis of microbial communities from
environmental habitats and greatly benefits a vast range of fields, including human health, drug
development, agriculture, and ecology. Getting the taxonomic profiles of the microbiome is a
major concern for metagenomic investigations, which is mainly achieved through two sequencing
approaches, 16S rRNA gene amplicon sequencing (16S) and deep whole-metagenome shotgun
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sequencing (WMS) (Turnbaugh et al.,, 2009; Qin et al., 2010).
WMS can provide taxa information down to species and even
strain levels as well as analysis of functional potentials, and the
high cost and massive data work leave it inaccessible to many
researchers, particularly ones performing large longitudinal
studies. In contrast, 16S sequencing represents a more convenient
and cost-efficient method, but its accuracy almost cannot pass
through the genus level. To complement each shortcoming,
researchers compromise to perform 16S sequencing at the
beginning of studies to gain primary clues for the subsequent
WMS studies. Therefore, this strategy requires 16S results
to be sufficiently accurate and highly consistent with the
WMS datasheet. Otherwise, the whole project led by 16S
sequencing would progress astray if the preliminary information
derived from 16S was imprecise. Nevertheless, the accuracy
and consistency of 16S readouts with WMS outputs have not
been thoroughly investigated, mainly because there are few
sophisticated artificial microbiomes with defined taxonomic
information and similar complexity to the real microbial samples.

High-resolution and low-cost sequencing methods in the
microbiome field are constantly in urgent need to facilitate
massive research. Shallow WMS sequencing (S-WMS) is
emerging as a candidate for large-scale microbiome studies. The
novel sequencing has been explored to provide more shallow
depth than the classical WMS, aiming to tackle the high cost
of WMS while maintaining its benefits of deep resolution.
It is documented that S-WMS is more effective to recover
species-level polymorphisms and functional traits, and it exhibits
less amplification bias than 16S sequencing (Jovel et al., 2016;
Hillmann et al, 2018). Importantly, it requires much less
materials and simplifies sample processing and DNA operations,
which can primarily reduce the overall cost comparable with 16S.
These advantages clearly mark S-WMS as a better alternative
to 16S sequencing for the initial investigations regarding the
vast microbiome. In light of these advantages, it is quite
necessary to elaborate the consistency and accuracy of S-WMS
results so that the promising method could be acknowledged
and widely applied.

A well-defined mock microbiome, particularly with similar
complexity to the real microbial samples, is essential for
researchers to verify the consistency and accuracy of
metagenomic sequencing methods. The rapid progress in
culturomics has recently assisted in establishing artificial
microbial communities to mimic real microbiome samples,
making it feasible and reliable to systematically evaluate each
metagenomic sequencing method (Greub, 2012; Diakite et al.,
2020). To date, either commercial mock communities (e.g.,
ZymoBIOMICS Standards and ATCC Microbiome Standards)
or a self-constructed artificial microbiome have been involved in
several previous studies (Earl et al., 2018; Cichocki et al., 2020;
Ducarmon et al., 2020; Han et al., 2020), whereas these known
microbial communities only consisted of 4-23 species—far
less sophisticated than the natural human microbiome. Hence,
complex mock communities with more diverse species are still
long-awaited to facilitate in-depth and precise investigations.

In this study, we construct sophisticated artificial microbiomes
containing more than 60 gut species with varied abundance

similar to the content in real human fecal samples and
comprehensively evaluate the accuracy and consistency of 16S/S-
WMS results with WMS data in both real fecal samples and
the constructed artificial microbiome. Our findings demonstrate
that 16S analysis is significantly inferior to S-WMS in terms
of consistency with WMS, recall rate, and accuracy at the
genus level. Moreover, S-WMS does not just provided high-
resolution analysis down to the species level but also exhibits
large coverage of functional predictions, thereby corroborating
S-WMS as a potential alternative to 16S in further large-scale
metagenomics surveys.

MATERIALS AND METHODS

Fecal Sample Collection

The volunteers contributing fecal samples were recruited as part
of research protocol number 2020LL-3 approved by the Third
Affiliated Hospital of Qigihar Medical University. The study
was performed in accordance with the Helsinki Declaration. An
informed consent was acquired from all volunteers recruited into
the study. The fresh stool samples were collected from 69 subjects
and stored at —80°C before use.

Preparation of Mock Microbial
Communities

The bacterial species in mock microbial communities were
obtained from Quantibio Microbio Seed Bank (QuantiHealth
Technology, Beijing, China'), and they were isolated from human
fecal samples and cultured under standard laboratory conditions.
The taxa of the bacteria were identified by matrix-assisted laser
desorption ionization-time of flight mass spectrometer (MALDI-
TOF MS) and genome sequencing.

DNA Extraction

The microbial genomic DNA of human fecal samples and
cultured bacteria were extracted by DNeasy PowerSoil kit
(QIAGEN) according to the manufacturer’s instructions and
then subjected to 1% agarose gel electrophoresis for evaluation.
Concentration and purity of microbial DNA were determined
with NanoDrop 2000 UV-vis spectrophotometer (Thermo Fisher
Scientific) and Qubit 3.0 fluorometer (Thermo Fisher Scientific).

16S rRNA Gene Amplicon Sequencing

and Data Processing

The hypervariable regions V3-V4 of the bacterial 16S
rRNA gene were amplified by an ABI GeneAmp® 9700
PCR thermocycler (Applied Biosystems) with primer pairs
338F (5-ACTCCTACGGGAGGCAGCAG-3’) and 806R (5'-
GGACTACHVGGGTWTCTAAT-3'). The PCR amplification of
16SrRNA gene was performed as follows: initial denaturation at
95°C for 3 min, followed by 27 cycles of denaturing at 95°C for
30 s, annealing at 55°C for 30 s, and extension at 72°C for 45 s,
and single extension at 72°C for 10 min, and end at 4°C. The

'https://microbe.quantibio.com/
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PCR mixtures contain 5x TransStart FastPfu buffer (TransGen
Biotech) 4 pnL, 2.5 mM dNTPs 2 pL, forward primer (5 wM)
0.8 L, reverse primer (5 pM) 0.8 nL, TransStart FastPfu DNA
Polymerase (TransGen Biotech) 0.4 nL, template DNA 10 ng,
and finally ddH,O up to 20 pwL. PCR reactions were performed
in triplicate. The PCR product was extracted from 2% agarose
gel and purified using the AxyPrep DNA Gel Extraction Kit
(Axygen Biosciences) according to manufacturer’s instructions
and quantified using Quantus™ Fluorometer (Promega).

Purified amplicons were pooled in equimolar and paired-end
sequenced (2 x 300) on an Illumina MiSeq platform (Illumina)
according to the standard protocols by Majorbio Bio-Pharm
Technology Co., Ltd. The raw reads were deposited into the
NCBI Sequence Read Archive (SRA) database. The raw 16S
rRNA gene sequencing reads were demultiplexed, quality-filtered
by Trimmomatic, and merged by FLASH with the following
criteria: (i) The 300 bp reads were truncated at any site receiving
an average quality score of <20 over a 50 bp sliding window,
and the truncated reads shorter than 50 bp were discarded,
reads containing ambiguous characters were also discarded. (ii)
Only overlapping sequences longer than 10 bp were assembled
according to their overlapped sequence. The maximum mismatch
ratio of the overlap region is 0.2. Reads that could not be
assembled were discarded. (iii) Samples were distinguished
according to the barcode and primers, and the sequence direction
was adjusted, exact barcode matching, two nucleotide mismatch
in primer matching. Operational taxonomic units (OTUs) with
97% similarity cutoff were clustered using UPARSE (version
7.1?), and chimeric sequences were identified and removed. The
taxonomy of each OTU representative sequence was analyzed by
RDP classifier® against the 16S rRNA database (e.g., Silva SSU128)
using a confidence threshold of 0.7.

Shotgun Sequencing

Library preparation for shotgun sequencing was performed using
the KAPA HyperPlus Library Preparation kit (KAPA Biosystems)
for fragmentation of input DNA following the manufacturer’s
instructions. The libraries were quantified by using KAPA
Library Quantification Kits (KAPA Biosystems) following the
manufacturer’s instructions. Libraries were constructed with an
insert size of approximately 350 bp, followed by high-throughput
sequencing to obtain paired-end reads with 150 bp in the forward
and afterward directions.

Shotgun sequencing was performed on an Illumina
NovaSeq 6000 System (Illumina). Cluster generation, template
hybridization, isothermal amplification, linearization, blocking,
denaturing, and hybridization of the sequencing primers were
performed according to the workflow indicated by Illumina.

Quality Control of Shotgun Sequencing
Data

Low-quality reads were removed from the raw data by using
MOCAT?2 (Roat et al., 2016). Sequencing adapters were removed
by using Cutadapt software (version v1.14,-m 30). Then, the

*http://drive5.com/uparse/
3http://rdp.cme.msu.edu/

SolexaQA package was used to remove the reads with a threshold
of less than 20 or length of less than 30 bp. The reads that could
be aligned with the human genome (Homo sapiens, UCSC hg19)
were cleaned by using SOAP aligner software (v2.21, -M 4 -1 30
-v 10) (Li et al., 2009), and the rest of the reads were used for
further analysis. The clean reads were assembled by SOAP de
novo software (an iterative De-Bruijn Graph De Novo Assembler)
using the parameters of -d 1,-M 3,-R,-u,-F to get the scaftigs of
at least 500 bp.

Genes were predicted using MetaGeneMark. A non-
redundant gene catalog was constructed with CD-HIT using the
parameters of ¢ 0.95-aS 0.9 (Fu et al., 2012). The clean reads were
mapped onto the gene catalog with the length of at least 100 bp
using BWA software to calculate the gene abundance.

Taxonomic Profiling

Microbial community composition was analyzed using
Metaphlan2 software. The query reads were mapped against
the reference genomes in the RefSeq database (version 82)
with a 97% identity threshold. The reads that mapped to a
single reference genome were labeled with the NCBI taxonomic
annotation. The reads that matched multiple reference genomes
were indicated by the last common ancestor of each label
according to the NCBI taxonomy.

Functional Profiling

For 16S rRNA sequencing data, the metagenomes of the gut
microbiome were input from 16S rRNA sequences with PICRUSt
(Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States). This method predicts the gene family
abundance from the phylogenetic information with an estimated
accuracy of 0.8. The closed OTU table was used as the input
for metagenome imputation and was first rarefied to an even
sequencing depth prior to the PICRUSt analysis. Next, the
resulting OTU table was normalized by 16S rRNA gene copy
number. The gene content was predicted for each individual.
Then, the predicted functional composition profiles were
collapsed into level 3 of KEGG (Kyoto Encyclopedia of Genes and
Genomes) database pathways. Pathways present in <10% of the
samples were not included in the comparison analysis.

For shotgun sequencing data, functional profiling was
acquired by KEGG Orthology group (KO) annotations for
RefSeq-derived genes from directly observed exhaustive gapped
alignments. To improve the KO profile accuracy for low-
abundance genes, the KO profiles were separately predicted
from reference genomes and the predicted profiles were used
to augment the estimates of low-abundance KOs as previously
reported (Jovel et al., 2016; Hillmann et al., 2018).

Statistical Analysis

Data are indicated by means =SEM R software (version 3.5.1) was
used for the statistical analysis. The significance among groups
was assessed by one-way ANOVA followed by Newman-Keuls
post hoc tests. p < 0.05 was considered statistically significant.
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RESULTS

Shallow WMS Provided More Consistent
Taxonomic Assignments With WMS Than
16S Analysis

We adopted two cohorts of human fecal samples to evaluate
the data consistency between shallow WMS/16S and WMS
metagenomics. The first cohort, comprising 10 stool samples,
was analyzed by 16S rRNA amplicon sequencing and WMS
sequencing with different depths (10, 5, 1, and 0.5 Gb),
respectively. Compared with the classical WMS data (10- or
5-Gb depth), both 16S and WMS with shallow depths of 1
and 0.5 Gb (referred to as S-WMS in the context) provided
nearly identical results at the phylum, class, and order levels,
but the family resolution of 16S sequencing was not very
satisfactory (Supplementary Figure 1). At the genus level, the
16S-derived taxonomic profile varied from WMS in several
genera, e.g., Bacteroides and Eubacterium (Figure 1A). Detailed
statistics regarding dominant genera clearly display the disparate
pattern of 16S from WMS analysis. According to 16S, abundant
genera, including Bacteroides and Faecalibaterium, could be
detected with no significant alterations, and the less abundant
ones were markedly decreased (Parabacteroides, Alistipes, and
Subdoligranulum) or even undetected (Roseburia and Blautia)
(Figure 1B). In contrast, S-WMS showed nearly identical
taxonomic information to WMS even at a depth of 0.5 Gb
(Figures 1A,B). Although shallow sequencing depth (0.5 Gb) is
conducive to the lower cost of a single sample, it requires many
more samples to fulfill an entire chip (1 Tb), which may heavily
delay the metagenomic process. Previous studies prove that
approximately 1 Gb sequencing depth would provide sufficient
metagenomic coverage (Jovel et al., 2016; Hillmann et al., 2018),
so we selected 1 Gb as the optimal depth for S-WMS in the
following studies.

To further confirm the consistency between S-WMS and
WMS, we further took a larger cohort containing 59 human stool
samples and found that S-WMS data was more highly associated
with  WMS than 16S-derived results (S-WMS versus 16S:
0.806 versus 0.407) (Figure 2A). When comparing the average
taxonomic assignments among three sequencing approaches, the
genera profile of 16S was obviously different from those of
WMS and S-WMS (Figure 2B and Supplementary Figure 2)
concomitant with the sharply declined similarity value 0.199
(Figure 2B). Furthermore, 16S recalled 47.5% of WMS-assigned
genera, less than the high recall rate of S-WMS (63.6%).
Significantly, the genus recall rate of S-WMS rose rapidly with a
higher abundance threshold for counting genera, yet 16S showed
little improvement (Figure 2C). Meanwhile, 99.9% of the S-WMS
sequences correctly matched WMS reads, whereas 15.9% of the
16S data were not assigned by WMS (Figure 2D). For genus
abundance quantification, 16S just presented similar levels of
Bacteroides, Bifidobacterium, and Megamonas to classical WMS,
accompanied by the significant reduce in Prevetella, Eubacterium,
Blautia, Roseburia, Alistipes, and Subdoligranulum (Figure 2E).
As expected, S-WMS displayed a highly consistent genera pattern
with classical WMS regardless of each abundance (Figure 2E).

Genera scatterplots of S-WMS/16S versus WMS further indicate
that S-WMS results greatly resemble WMS data unlike the
dispersed plot of 16S (Figures 2E,G). These results collectively
demonstrate that there exists an apparent inconsistency between
16S and WMS data, and S-WMS sequencing is highly consistent
with the classical WMS.

Shallow WMS Revealed Accurate
Taxonomic Results by Assessing Mock

Microbial Communities

Given that the data inconsistency between 16S sequencing
and WMS may be largely due to the inaccuracy of 16S or
intrinsic biases of different sequencing approaches, we next
constructed two types of artificial microbiome communities to
evaluate the accuracy of different sequencing methods. The
first artificial microbiome (MOCKI1) contained 69 human gut
bacterial species belonging to 33 genera of five phyla in which
each species accounted for the same abundance. The second
sample (MOCK2) comprised 62 human gut bacterial species
belonging to 28 genera of five phyla, characterized by the
varied abundance of each species, comparable to the average
values of indicated species in human population (Supplementary
Tables 1, 2).

For MOCKI1 with lower complexity, both 16S and S-WMS
recalled a high percentage of compositional genera (87.88 versus
95.96%) (Supplementary Figure 3A). However, about 37.78%
of 16S-reported genera did not exist although only 12.03% of
S-WMS-assigned genera were falsely recorded (Supplementary
Table 3). Consequently, 96.46% of the S-WMS reads matched
the real data, whereas up to 18.15% of 16S reads did not
exist (Supplementary Figure 3B). Besides this, the genus
abundance profile based on S-WMS was much closer to the
actual one than 16S with an average similarity value of 0.87
(Supplementary Figure 3C). Metagenome analysis of MOCK2,
whose composition largely mimics the real microbial community,
also confirmed the high accuracy of S-WMS results. Although
16S recalled 82.86% of the compositional genera, slightly lower
than the 87.14% of S-WMS (Figure 3A), 40.78% of 16S-assigned
genera did not exist, significantly higher than the percentage
of falsely assigned genera by S-WMS (28.64%) (Figure 3B).
Consistent with observations using MOCK1, the S-WMS-
assessed genus profile was also prominently closer to the actual
pattern than 16S analysis (0.77 £ 0.03 versus 0.61 + 0.03,
p < 0.001) (Figure 3C). Of note, for the 19 genera with
accumulated abundance of more than 0.01%, three genera,
including Citrobacter, Enterobacter, and Lachnospiraceae were
hardly detected by 16S sequencing, and S-WMS completely
displayed all 19 genera (Figure 3D and Supplementary Table 4).

Therefore, according to assessments utilizing artificial
microbiomes, our results reveal that S-WMS is more accurate for
the genus assignments than 16S sequencing.

Shallow WMS Displayed Precise

Assignments Down to Species Level
Because the taxonomic resolution of 16S can rarely pass
the species level, we next investigated whether shallow WMS
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also presented precise species information of microbiome.
We observed that the species profile derived from S-WMS
substantially resembled that of WMS with 5 Gb depth
(Figure 4A). S-WMS recalled 58.5% of total species detected
by WMS and the recall rate jumped to 91.6% for species
with relative abundance >0.03% (Figure 4B). Moreover, the
species abundance quantified by S-WMS was almost identical
to that determined by WMS (Figure 4C), showing a high
consistency between shallow and classical WMS regarding species
assignments. As compared with a deeper WMS data (10 Gb), the
consistency still remained, reflected by the similar estimation on
abundance profiles at the species level (Figure 4D).

We then introduced MOCK2 to verify the accuracy of
S-WMS regarding species assignments. Although S-WMS
recalled 66.2% of the total species in the MOCK2 community
(Figure 5A), 96.29% of S-WMS reads were correctly assigned
(Figure 5B). In particular, the recall rate sharply rose with the
increase in species abundance. S-WMS could recall 91.2% of

species with relative abundance >0.04% (Figure 5A). Moreover,
S-WMS-deduced species profiles showed high similarity with the
actual information, although with elevation in Bifidobacterium
adolescentis (Figure 5C), and S-WMS provided credible
abundance for most species (Figure 5D). Taken together, our
results corroborate that S-WMS can provide credible species
assignments, either WMS data or the artificial microbiome with
defined taxonomic information as a reference.

S-WMS Exhibited More Accurate
Functional Prediction Than 16S
Sequencing

Prediction of the functional repertoire is another critical
concern for microbiome analysis. Nowadays, the 16S data has
been increasingly applied to predict the functional potential
(Langille et al., 2013; Asshauer et al, 2015; Douglas et al.,
2018), but its accuracy still needs further verification. Here,
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we utilized a complicated artificial microbiome whose overall catalogs. The prediction by S-WMS was almost identical to
function was well defined to evaluate the accuracy of 16S- the actual information (Input) at both KEGG levels 1 and 2
and S-WMS-based functional prediction in terms of KEGG although 16S data displayed a varied prediction from the real
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FIGURE 3 | Genus composition of a high-complexity artificial microbial community (MOCK2) assessed by shallow WMS or 16S. (A) Genus recall rate. (B) Falsely
assigned genus rate by 16S or S-WMS. (C) Stacked bar plot of genera abundances. The values on top of the bar graph indicate the Spearman correlation
coefficient between S-WMS/16S data and the actual (Input) values. (D) The relative abundance of dominant genera determined by 16S or S-WMS. The gray bars
indicate the actual (Input) value. Sixty-three gut bacterial species (belonging to 28 genera) were cultured under standard laboratory conditions. The artificial
community was sequenced five times by each approach. **p < 0.001.

profile at both levels 1 and 2 of KEGG catalogs (Figure 6).
Specifically, the 16S-estimated functional proportions of cellular
process, environmental information processing, and structural
complex were much smaller, and metabolism function was
larger than the real values at level 1 (Figure 6A). At level 2,
the accumulated abundance of carbohydrate metabolism was
increased and percentages of drug resistance, environmental
information processing, and cellular community-prokaryotes
were decreased as compared with the predicted profile of
the MOCK2 community (Figure 6B). Besides this, at KEGG
level 3, both 16S and S-WMS exhibited sufficiently reliable
prediction of the microbiome (Supplementary Figure 4).
Collectively, our results indicate that S-WMS is a more
reliable method for the functional estimation of microbiome
than 16S sequencing.

DISCUSSION

With the prosperity of metagenomics-based microbiome
analysis, novel sequencing methods with low cost and reliable
taxonomic and functional information are urgently needed,
particularly for large longitudinal investigations. Recently,
S-WMS has been emerging as a high-accuracy and low-cost
candidate for large-scale microbiome studies (Jovel et al,
2016; Hillmann et al, 2018). However, the accuracy and
consistency of S-WMS results with WMS data are currently
not acknowledged, owing to the lack of solid evidence by
well-defined mock microbiomes. In this study, we constructed
artificial microbiomes containing more than 60 gut species
with varied abundance similar to the content in real human
fecal samples and comprehensively evaluated the accuracy
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and consistency of 16S/S-WMS results with WMS in terms of
consistency, accuracy, and functional prediction. We provided
conclusive evidence that S-WMS could present much more
accurate taxonomic assignments and functional prediction with
a low cost comparable to 16S sequencing. More importantly,
S-WMS results are highly consistent with conventional WMS
data, and their transition can be directly achieved on the same
microbial samples without resampling.

It is a significant purpose for metagenome analysis to
acquire knowledge about the taxonomy information of samples.
Recall rate of taxon and quantification of abundance are two

essential indicators for accurate assessments of microbiome.
Although 16S remains a standard approach to characterize the
taxonomic profile of various environmental samples, a growing
body of evidence clearly shows the concomitant biases, such as
uneven coverage of microbes’ diversity region by common 16S
rRNA PCR primers (Hong et al., 2009), incorrect phylogenetic
relationship within particular taxa (Dewhirst et al., 2005),
and multiple 16S rRNA gene copy numbers in the genome
(Kembel et al,, 2012). Additionally, different DNA extraction
protocols, especially the commercial kits, also have varied efficacy
in extracting DNA from Gram-negative and -positive type
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strains (Sjoberg et al., 2020), which may result in considerable
interventions to the following sequencing analysis. However,
these biases are common for 16S rRNA and other marker
gene-based sequencing methods, so it is difficult for researchers
to thoroughly avoid them. In this work, we first carried out
comparative analysis to evaluate the consistency of 165/S-WMS
with WMS. Intriguingly, 16S results displayed good consistency
with WMS data at the phylum, class, order, and family levels
but not down to the genus level. Only 47.52% of WMS-detected
genera were recalled by 16S sequencing, and its recall rate did
not increase much with the enrichment of specific genera. The
taxonomic pattern of genera measured by 16S was also distinct
from that determined by WMS. Several predominant genera
with relative abundance >1.5% in human gut microbiota by
WMS were even not detected by 16S, but some minimal genera,
such as Porphyromonas was given a relative abundance value as
high as 13.4%. Therefore, these remind us that close attention
should be paid to this inconsistency when adopting a 16S-WMS
combined strategy for microbiome characterization. On the
contrary, S-WMS, as a promising candidate, could recall 63.66%

of total genera assigned by classical WMS, and the recall rate
sharply jumped to 88.80% for genera with abundance >0.02%.
The genus profile reported by S-WMS also highly resembled
the conventional WMS. Furthermore, S-WMS also provided
a credible species-level taxonomy resolution of microbiota,
especially species with relative abundance more than 0.01%.
Reliable accuracy estimation over a sequencing profiling
largely depends on ideal artificial samples with specific taxonomic
information that are sufficiently similar to real microbiome
samples. Several studies evaluate the accuracy of 16S data, but
their investigations were just based on data simulation (Escobar-
Zepeda et al., 2018; Hillmann et al., 2018) or simple artificial
microbiome samples, which comprise a small amount of bacterial
species without abundance gradients (Jovel et al., 2016; Earl
et al, 2018; Hillmann et al, 2018). In fact, more complex
artificial microbiomes are crucial to assess the accuracy of various
metagenome sequencing approaches. In our study, we established
two types of artificial microbiomes, one consisting of 69 human
gut bacterial species with equal abundance (MOCK1) and the
other one comprising 62 species from 28 genera of five phyla
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(MOCK?2). The relative abundances of compositional species
ranged from 20.3539 to 0.0004% in MOCK2, corresponding
to their authentic values in human population. To our
knowledge, the MOCK2 microbial community is the most
complicated microbiome and closest to the real human gut
microbiota; thus, it could act as a benchmark for the systemic
evaluation of various sequencing approaches. With the help
of the sophisticated MOCK2 microbiome, we conclude that
the taxonomic assignments of 16S sequencing was less precise,
mainly based on the following evidence: first, about 40% of the
total 16S-assigned genera did not exist in the sample; second,
some dominant genera with relative abundance above 0.1% were

not detected by 16S; third, some absent genera were reported by
16S with a large abundance (>1.50%). In contrast, S-WMS not
only recalled a higher portion of compositional genera but also
revealed more accurate taxon abundance. Eventually, the 16S-
predicted genus profile was distinct from the real information,
and the S-WMS-assigned genus composition was more similar to
the input content.

In light of the defined compositions of MOCK2, we could
obtain the authentic functional information of this microbial
community. Although 16S data are increasingly used for
functional prediction of microbiota (Langille et al, 2013;
Asshauer et al., 2015; Xu et al., 2017; Douglas et al., 2018), its
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precision was not satisfactory after employing the complicated
artificial microbiome into our investigations. We found that
the functional profile deduced by 16S was markedly different
from the actual information at both levels 1 and 2 of KEGG
catalogs, and the S-WMS-provided functional description was
quite similar to the actual data at both KEGG levels 1 and 2.
Therefore, our findings did not just reminded researchers to take
a cautious attitude toward 16S-predicted microbial functions, but
it also proved S-WMS to be a reliable and cost-efficient method
for functional estimation. Besides this, the application of the
MOCK community indeed facilitated our understandings of the
strengths and limitations of each sequencing approach, shedding
novel light on the future studies.

CONCLUSION

In summary, our work demonstrated that genus assignments
and functional predictions by 16S sequencing were not accurate
enough and not sufficiently consistent with WMS, according to
assessments using both real fecal samples and a complicated
artificial microbiome. In contrast, shallow WMS can provide a
much more accurate description down to the species level, and
highly resemble the classical WMS, representing it as a better
alternative to 16S sequencing for large-scale studies.
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