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Introduction: The metabolic activity of the gut microbiota plays a pivotal role in
the gut-brain axis through the effects of bacterial metabolites on brain function
and development. In this study we investigated the association of gut microbiota
composition with language development of 3-year-old rural Ugandan children.

Methods: We studied the language ability in 139 children of 36 months in our
controlled maternal education intervention trial to stimulate children’s growth and
development. The dataset includes 1170 potential predictors, including anthropometric
and cognitive parameters at 24 months, 542 composition parameters of the children’s
gut microbiota at 24 months and 621 of these parameters at 36 months. We applied
a novel computationally efficient version of the all-subsets regression methodology and
identified predictors of language ability of 36-months-old children scored according to
the Bayley Scales of Infant and Toddler Development (BSID-III).

Results: The best three-term model, selected from more than 266 million models,
includes the predictors Coprococcus eutactus at 24 months of age, Bifidobacterium
at 36 months of age, and language development at 24 months. The top 20 four-term
models, selected from more than 77 billion models, consistently include C. eutactus
abundance at 24 months, while 14 of these models include the other two predictors
as well. Mann–Whitney U tests suggest that the abundance of gut bacteria in language
non-impaired children (n = 78) differs from that in language impaired children (n = 61).
While anaerobic butyrate-producers, including C. eutactus, Faecalibacterium prausnitzii,
Holdemanella biformis, Roseburia hominis are less abundant, facultative anaerobic
bacteria, including Granulicatella elegans, Escherichia/Shigella and Campylobacter coli,
are more abundant in language impaired children. The overall predominance of oxygen
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tolerant species in the gut microbiota was slightly higher in the language impaired group
than in the non-impaired group (P = 0.09).

Conclusion: Application of the all-subsets regression methodology to microbiota data
established a correlation between the relative abundance of the anaerobic butyrate-
producing gut bacterium C. eutactus and language development in Ugandan children.
We propose that the gut redox potential and the overall bacterial butyrate-producing
capacity in the gut are important factors for language development.

Keywords: gut-brain-axis, butyrate, Coprococcus eutactus, language development, all subsets regression, mixed
integer optimization, metagenomic aerotolerant predominance index

INTRODUCTION

There is an accumulating amount of evidence for a role of the
gut microbiota in brain function and development via the so-
called microbiota-gut-brain-axis, as recently reviewed by Cryan
et al. (2019). The communication along this axis is bidirectional.
Communication from the brain to the gut occurs through signals
to change bowel movements and intestinal permeability, which in
turn changes the enteric microbiota composition, its metabolic
activity and response signal. The gut microbiota signals to the
brain via stimulation of intestinal host immune cells, eliciting
a cytokine response. In addition, signals are transferred to the
brain through bacterial metabolites, including short chain fatty
acids (SCFA’s). This results in altered neurotransmitter release,
hormone secretion and induction of vagus nerve signaling
to the brain (Rhee et al., 2009; Bienenstock et al., 2015;
Jameson et al., 2020).

In this study we investigated the correlation between gut
microbiota composition and language ability of 3-year-old rural
Ugandan children, as assessed by the Bayley Scales of Infant
and Toddler Development (BSID-III) composite scores for
language development (Albers and Grieve, 2007). The scales
provide comprehensive development measures for children
up to 42 months and have been adapted for appropriate
use among children in rural Uganda (Muhoozi et al., 2016).
The data used in this study were collected during a follow-
up trial of a two-armed, open cluster-randomized education
intervention regarding nutrition, child stimulation and hygiene
among mothers of children in the Kisoro and Kabale districts
of South-West Uganda (Muhoozi et al., 2018). The intervention
did not lead to any significant changes in the gut microbiota
diversity compared with the control group at phylum or genus
level. Neither did we observe any significant differences between
the two study groups in the Shannon diversity index at 20–24
and 36 months, respectively. However, the Shannon diversity
index of the gut microbiota increased significantly in both study
groups from 24 to 36 months (Atukunda et al., 2019). Further
analysis of the changes associated with the gut microbiota in the
transition from 24 to 36 months revealed that there was a notable
shift from autochthonous (endogenous) to allochthonous (plant-
derived) Lactobacillus species, and a correlation of Lactobacillus
with stunting, most probably resulting from the change in the
children’s diet from breast milk to solid, plant-based foods
(Wacoo et al., 2020). As follow-up to this study we further

investigate here correlations between the gut microbiota of these
children with language development.

It should be noted that predictors for current cognition
parameters in children may not only be found in past values of
these parameters, but also in current and past gut microbiota
compositions. This is supported by longitudinal studies that
indicate a maturation program of the human gut microbiome in
the first 3 years of life, consisting of distinct phases of microbiome
progression (Backhed et al., 2015; Stewart et al., 2018). Suitable
predictors are usually found by fitting models including the
predictors being assessed and comparing the fit of the model
with the fit of a model that does not include these predictors.
This poses a non-trivial problem, because the number of different
models that can be fitted grows exponentially with the number
of potential predictors, so it is not feasible to fit all possible
models and compare their fit. In addition, the predictors can
be correlated so that different sets of predictors can explain the
response variable of interest equally well. In the present paper,
we successfully address the above mentioned problems in data
analysis of the gut microbiota from rural Ugandan children. Our
key finding is that abundance of butyrate-producing bacterium
Coprococcus eutactus in the gut microbiota at 24 months predicts
language development in these children at 36 months.

MATERIALS AND METHODS

Study Design and Data Collection
The data used in this study were collected during a follow-
up trial of a two-armed, open cluster-randomized education
intervention regarding nutrition, stimulation and hygiene among
impoverished mothers of children in the Kisoro and Kabale
districts of South-Western Uganda (Muhoozi et al., 2018). The
purpose of the study by Muhoozi et al. was to assess the effects of a
nutrition education intervention, delivered in group meetings to
impoverished mothers, on child growth, cognitive development
and gut microbiota in rural Uganda. Developmental outcomes
were assessed with the BSID-III composite scores for cognitive
(primary endpoint), language and motor development. Other
outcomes included gut microbiota compositions.

Stool samples were collected from 139 children at the age of
20–24 months and at 36 months and shipped to Netherlands for
DNA extraction (Atukunda et al., 2019). Quantitative PCR was
performed to determine the relative amount of bacterial template
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and amplicon sequencing was carried out as previously described
(de Boer et al., 2015; Parker et al., 2018). In summary, V4 16S
rRNA gene amplicon sequencing was carried out by paired end
sequencing conducted on an Illumina MiSeq platform (Illumina,
Netherlands). Taxonomic names were assigned to all sequences
using the Ribosomal Database Project (RDP) naïve Bayesian
classifier with a confidence threshold of 60% (Wang et al., 2007)
and the mothur-formatted version of the RDP training set v.9
(Schloss et al., 2009). All 16S rRNA amplicon paired end reads of
the gut microbiota samples sequenced in this study are accessible
at BioProject PRJNA517509 (Kort, 2019).

Language development was determined by the Bayley Scales of
Infant and Toddler Development 3rd edition (BSID−III) using
the language subscale. The BSID-III provides comprehensive
development measures with children up to 42 months and
has been adapted for appropriate use among children in rural
Uganda (Muhoozi et al., 2016, 2018). The BSID-III language
component focuses on pre-linguistic behaviors, communication
and social routines in addition to expressive and receptive
language skills. The children’s performance was scored according
to the guidelines in the administration manual and the raw scores
from expressive and receptive subscales were summed up and
converted to composite scores using BSID−III conversion tables.
In the reference material of United States children the mean score
after conversion is 100.

Model Selection Using Mixed Integer
Optimization
Model selection strategies should reveal sets of predictors that
explain the data equally well, if such is the case. Best subset
selection (Miller, 2002) based on Ordinary Least Squares (OLS)
returns the best k models with p predictors each, so that the
common predictors in the best models form a solid basis to
explain the response variable of interest and the predictors that
differ among the best models point to alternative interpretations
to explain the same variable. However, until recently, subset
selection could only be performed when the total number of
predictors t is fairly small, say, t < 30. Therefore, best subset
selection used to be a less attractive model selection technique
for research that assesses many parameters. Obviously, one could
perform OLS-based forward selection to select predictors (Miller,
2002). This approach has the disadvantage that the resulting
models comprise a single path in multidimensional space. That is,
there is one model for each number of predictors up to p. There is
no guarantee that the model with p predictors corresponds with
the model of the same size from best subset selection.

Bertsimas et al. (2016) proposed methodology to select the
best model with p out of t predictors with t in the 100 s. Their
approach is based on Mixed Integer Optimization (MIO). The
key innovation is that searching unpromising sets of predictors
is cut off in an early stage of the calculations so that not all of
the models with p predictors have to be assessed. In the original
form, just one model with p predictors is returned along a range
of values for p extended the original form to obtain the second-
best up to k-th best models of given size as well (Vazquez et al.,
2020). The method thus results in a list of models compatible with

the data. The authors further employ a powerful visualization
method to reveal possible alternative ways to explain the same
variable. For example, one might observe that either the effect of
predictor X or the effect of predictor Y is in the best ten models
that link language development to four predictors, but the models
do not include both of them.

For ease of reference, we call the method of Vazquez et al.
(2020) MIO after its core element. It was developed primarily
with applications in statistical design of industrial experiments in
mind. The data in these cases usually have few observations and
many controllable experimental factors. This is similar to field
studies on human microbiota compositions where the number
of cases is much smaller than the number of species.

A key element of MIO is best-subset selection, which finds the
best fitting model with p parameters as measured by the model’s
residual sum of squares. Current state-of-the-art algorithms for
best-subset selection, as implemented in SAS 9.4 or JMP 14, or in
the “leaps” package in R, which is based on (Furnival and Wilson,
1974), do not allow solving the problem when the search is over
more than t = 30 predictors (Vazquez et al., 2020). Bertsimas
et al. (2016) proposed a formulation for the best subset selection
in terms of a MIO problem. Modern optimization solvers such
as (Gurobi,, 2017), do permit searching over a large number of
potential predictors. The goal function to be minimized is

min
β̂,η̂, z

η̂T η̂− 2(XTy)T
+ yTy (1)

In this equation, η̂ is an N × 1 vector of fitted values, β̂ is a t × 1
vector of coefficients for the regression equation, y is the N × 1
vector of observations, X is an N × t matrix of predictors, and
z is a t × 1 indicator vector that indicates whether or not the
corresponding elements of β̂ are non-zero. The goal function (1)
is a version of the residual sum of squares rewritten to reduce the
number of quadratic variables from t to N. This is useful because
in our application there are many more potential predictors than
there are subjects.

An optimization model allows for the minimization of the
goal function under constraints. The constraints proposed by
Bertsimas et al. (2016) are:

zu ∈ {0, 1} , u = 1, · · · , t (2)

(1− zu) β̂u = 0, u = 1, · · · , t (3)

t∑
u=1

zu ≤ p (4)

η̂ = Xβ̂ (5)

Constraint (2) defines the individual elements zu of the vector
z as binary variables. Constraint (3) features the regression
coefficients for the individual predictors β̂u. The constraint
specifies that β̂u can be non-zero if zu equals 1 and that β̂u is
exactly zero if zu equals 0. Constraint (4) restricts the regression
model to at most p non-zero parameters. Finally, constraint (5)
defines η̂ as the fitted values matching the coefficients in β̂. The
model (1)–(5) returns for each value of p specified by the data
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analyst the best fitting model as measured by the residual sum of
squares. Vazquez et al. (2020) extended the application potential
by proposing further constraints to obtain the second best, third
best etc. model for each value of p. For example, if parameters
1 and 2 define the best fitting model with p = 2 terms, the
constraint z1+z2 < 2 is added to the constraints (2)–(5) and the
model is rerun. The constraints prevent simultaneous inclusion
of parameters 1 and 2 in the new model so that a second best
model results. Vazquez et al. (2020) implemented the MIO model
in Python using (Gurobi,, 2017) as the solver of the optimization
and used the raster plots of Wolters and Bingham (2011) to
visualize the models. For this purpose, the predictors are rescaled
so that they all have the same length. The raster plot represents
each model with p parameters as p pixels that are darker or lighter
according to the size of the respective coefficients. Each predictor
has its own horizontal coordinate and each model has its own
vertical coordinate. The models are ordered according to the
number of non-zero coefficients and, subsequently, their residual
sum of squares. Predictors that often occur in the models form a
band in the plot.

Promising predictors of the language development of 139
children at 36 months of age were selected for the MIO approach
described above. The data included a total of 1170 potential
predictors (Supplementary File 1), including one parameter
indicating whether or not the mother of the child was included
in the education intervention group), six anthropometric and
cognitive parameters when the children were 24 months 542 gut
microbiota composition related parameters at 24 months and 621
parameters at 36 months. Subsequently, the 20 best models were
established with 1–4 predictors in terms of their residual standard
deviation. The best 4-term models were selected from more than
77 billion models, which is the number of ways one can choose
four objects out of 1170.

In order to compare the results obtained by the MIO approach
to those obtained by a conventional statistical method, the same
data were also evaluated by the Mann–Whitney U test (Mann and
Whitney, 1947). The statistical distribution of the abundance data
is a mixture of binary date (absence or presence of the species)
and rational data (measure of abundance if present). Therefore,
we used the non-parametric Mann–Whitney test rather than
a parametric alternative. Using the Mann–Whitney test we
investigated which bacterial species had a different abundance in
the gut microbiota of children that scored equal or above average
for language development when compared with those that scored
lower than average. For this purpose, all the 139 children at the
age of 3 years old were divided into a “language impaired” or
“language below average” group with a BSD-III score below the
mean value of 100 (n = 61), and a “language non-impaired” or
“equal or above average” group with a BSID-III score of 100 or
higher (n = 78).

PCR-Based Identification of
Coprococcus eutactus in Stool Samples
For the experimental identification of C. eutactus in stool
samples, species-specific primers were designed for the 16S rRNA
gene via primer-BLASTTM (Ye et al., 2012): forward-primer

785F 5′-GGGTTCCAAAGGGACTCGG-3′ and reverse primer
1412R 5′-CAGCTCCCTCTTGCGGTT-3′. The oligonucleotides
were manufactured by BiolegioTM (Nijmegen, Netherlands) and
delivered in 100 µL TAE-buffer with a concentration of 100 µM.
DNA was released from the stool samples in nuclease-free milliQ
by heating an Eppendorf tube at 95◦C for 10 min. The PCR mix
contained 12.5 µL GoTaqTM mastermix, 2.5 µL of 10 µM forward
primer, 2.5 µL of 10 µM reverse-primer, 5.0 µL nuclease-free
milliQ, 2.5 ul template DNA. PCR-samples were placed in the
PCR machine (BiometraTM, model Tgradient) with 1 cycle of
95◦C for 5 min; 30 cycles of 95◦C for 30 s, 60◦C for 30 s and 72◦C
for 1 min, completed 72◦C for 5 min. Products were analyzed
by the use of a 1.5% agarose gel with ethidium bromide in TAE-
buffer. The PCR was validated by the use of genomic DNA from
the cultivated C. eutactus type strain ATCC 27759 as a positive
control. This strain was obtained from the German Collection of
Microorganisms and Cell Cultures (DSM strain number 107541)
and cultivated under anaerobic conditions in chopped meat
casitone (CMC) medium as described by the supplier.

The Core Microbiota of Ugandan
Children at 24 and 36 Months of Age
For the definition of the core, the bacterial 16S rRNA gene
amplicon sequencing dataset of the Ugandan children’s feces
cohort (139 subjects, measured at 24 months) was used, obtained
from the study of Atukunda et al. (2019). The 1163 bacterial V4-
region 16S rRNA gene sequences, delivered in MicrosoftTM Excel
format, were annotated to bacterial genus and species via the
local BLAST in CLC WorkbenchTM Version 20.0 computational
software. All sequence abundances were grouped to species-
level and ordered by most prevalent to least prevalent. Bacterial
V4-region 16S rRNA amplicon sequences with hits of more
than three species with identical identity-scores were grouped
to genus level (e.g., Bifidobacterium). The core was composed
by the top 50 most prevalent bacterial species at a 0.1% relative
abundance detection threshold, as described previously (Shetty
et al., 2017). From the composed core a heat map was created by
MeVTM software (Saeed et al., 2003), thereby including a 0.1–100
logarithmic scale for the x-axis threshold at percentage of relative
abundance and representing the prevalence via color-scaling for
each of the 50 relative abundance detection thresholds.

Assessment of Metagenomic
Aerotolerant Predominance Index (MAPI)
To assess aerobic/anaerobic balance in the gut microbiota
samples of our cohort we used the Metagenomic Aerotolerant
Predominance Index (MAPI) (Million and Raoult, 2018), based
on a previously published database with a list of bacteria and
their aerotolerant or obligate anaerobic metabolism (Million
et al., 2016). This MAPI index indicates the ratio of the
metagenomic relative abundance of aerotolerant species and
the relative abundance of strict anaerobes. From the taxonomic
assignment of amplicon sequence variants (ASV’s) of each
of the 139 stool bacterial communities of Ugandan children
(Supplementary File 1), we calculated the total number of
reads that corresponded to strict aerotolerant or anaerobic
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bacteria. We then calculated the ratio of aerotolerant relative
abundance to strict anaerobic relative abundance. This ratio was
>1 for aerotolerant predominance and <1 for strict anaerobic
predominance. In order to fit a lognormal distribution, the
natural logarithm of the aerotolerant ratio was calculated for each
metagenome for further analysis. The MAPI corresponds to the
variable “ln(Ae/Ana).”

Ethical Approval
All mothers gave written or thumb-printed, informed consent
to participate and could decline an interview or assessment
at any time. The study was approved by The AIDS Support
Organization Research Ethics Committee (no. TASOREC/06/15-
UG-REC-009) and by the Uganda National Council for
Science and Technology (no. UNCST HS 1809) as well as by
the Norwegian Regional Committee for Medical and Health
Research Ethics (no. 2013/1833). The trial was registered at
clinicaltrials.gov (NCT02098031).

RESULTS

Abundance of Coprococcus eutactus Is
a Predictor for Language Development
The application of the MIO approach to identify predictors for
language development in Ugandan children at 36 months of age
resulted in the raster plot of Figure 1A. For this visualization, we
normalized the predictors and the language development score
such that their means are zero and their standard deviations are
one. A coefficient thus expresses the increase in the response,
in terms of multiples of its standard deviation, if a predictor
is increased by one standard deviation. As co-occurrences can
only be recorded in models with two or more parameters, we
ignore models with a single parameter in our evaluation. The
red vertical band with horizontal axis label 5 shows that, with
a few exceptions, the best models with 2–4 parameters include
the language development of the children at 24 months and that
its coefficient is positive. This parameter is included in 52 of
the 60 models with 2–4 parameters. The figure shows that in
7 of the 8 remaining cases, cognition at 24 months (horizontal
axis label 4) replaces language development at 24 months
in the model. The MIO methodology shows here alternative
explanations of the same data by correlated predictors. Indeed,
the Pearson correlation coefficient of the language ability and
cognition parameters equals 0.7. In spite of this correlation, the
much higher frequency of occurrence of the language ability
at 24 months suggests that this parameter should be included
in favor of cognition at 24 months. Further red bands can be
observed at horizontal axis labels 281 and 563, respectively. These
bands correspond with relative abundances of C. eutactus, and
Bifidobacterium from the gut microbiota at 24 and 36 months
of age, respectively. The abundance of C. eutactus occurs in 42
of the 60 models with 2–4 parameters, while the abundance of
Bifidobacterium occurs in 19 of these models. A total of 18 of the
models include both parameters. Species identities were verified
with the BLAST tool. They led to a species assignment on the basis
of a 100% identity match with the partial 16S rRNA sequence

of C. eutactus strain ATCC 27759 (Holdeman and Moore, 1974)
over the total length of the sequenced V4 region of 253 base pairs.
The assignment of the species C. eutactus is unambiguous, but
sequences of Bifidobacterium longum and Bifidobacterium breve
are both aligning to the 16S rRNA V4 sequence with a match of
100% identity, therefore we refer to parameter 563 as a match to
the B. longum group (see also below).

Figure 1 further shows that some predictors enter the fitted
models occasionally. The most frequently occurring parameter
after the B. longum group is Intestinibacter bartlettii (previously
known as Clostridium bartlettii) at 24 months of age (horizontal
label 348). This identification was based on a unique 100%
identity match of the V4 amplicon with the partial 16S rRNA
gene sequence of the type strain I. bartlettii strain WAL 16138
(Song et al., 2004). As this parameter enters only in 8 out of
the 60 models, there is no powerful evidence that it should be
included in a regression model. The residual standard deviations
for the 80 models in Figure 1A were plotted against the number
of predictors in the models in Figure 1B. The latter figure shows
that, for four predictors, many of the 20 subsets explain the
data equally well, so this application of a method to reveal the
common elements in these subsets is warranted. Exploration
of the common elements points to a three-parameter model
with parameters five (language development of the children at
24 months), 281 (abundance of C. eutactus) and 563 (abundance
of the B. longum group at 36 months), respectively. This model
turns out to be the best three-parameter model. The figure shows
that its residual standard deviation clearly stands out from the
remaining 19 models. We conclude that a model including these
three parameters explains these data best. In addition, we checked
the results of MIO with the gut microbiota data expressed on
the genus level comprising a set of 293 potential predictors. The
results show that the genus Coprococcus is present in five of
the top ten four-term models confirming its importance as a
predictor for language development (Supplementary File 2).

The linear regression model for BSID-III language
development at 36 months with all parameters on their
original scale is summarized in Table 1. For the intercept and
each predictor in the model, the entries in columns three to six
show the regression coefficient, its standard error, the ratio of
the coefficient to its standard error (t Ratio) and the P-value
of this ratio. The residual standard deviation of the model is
12 based om 135 degrees of freedom. This measure quantifies
the variability unexplained by the model. The model’s F value
equals 21.5. This measure indicates how much larger the model
mean square is when compared to the unexplained variance. The
adjusted R2 value of 31% is the percentage of variation accounted
for by the model, adjusted for the number of parameters.

All the model coefficients are positive so that higher values
of previous BSID-III language development, previous abundance
of C. eutactus and current abundance of B. longum point to
higher language development at 36 months. The large values of
the abundance coefficients can be explained by the measurement
scale. The observed relative abundances of C. eutactus at
24 months (ID 281) and B. longum at 36 months of age (ID 563)
are at most 4.5%. The model in Table 1 includes the language
development score recorded when the children were at the age
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FIGURE 1 | The 20 best fitting models of 1 up to 4 terms linking language development of children aged 36 months to membership of the intervention or control
group, values of 6 developmental parameters of the same children when aged 20–24 months, their microbiota composition at that age, and microbiota composition
at 36 months. (A) Predictors in the models. Language development and all predictors are normalized to a mean of 0 and a standard deviation of 1. Horizontal labels
correspond with the predictors’ identification number in the data file. The parameters include the following scores at 24 months: the intervention indicator (0); height
to age, HAZ (1); weight to age, WAZ (2); weight to height, WHZ (3); cognition (4); language development (5); motoric development (6). These are followed by the gut
microbiota parameters at 24 months (parameters 7–548) and at 36 months (parameters 548–1169). Vertical coordinates 1–20, 21–40, 41–60, and 61–80 show best
fitting models with 4, 3, 2, and 1 terms, respectively. Blue pixels correspond with negative coefficients and red pixels correspond with positive coefficients. Intensity
of the pixels increases with size of the model coefficients. (B) Residual standard deviations plotted against the number of terms in the models for language
development; language development in original units.

TABLE 1 | Prediction model for language development.

ID Parameter Coefficient Standard error t Ratio P-value Cross-validation

Intercept 57 7.8

5 language (24 months) 0.44 0.082 5.4 <0.001 0.44 ± 0.036

281 Coprococcus eutactus (24 months) 1929 430 4.5 <0.001 1927 ± 178

563 Bifidobacterium longum group (36 months) 417 114 3.7 <0.001 417 ± 32

Coefficients were calculated for the BSID-III scores of children aged 36 months by the MIO approach as indicated in Figure 1.
ID, identification number in data file.
Residual standard deviation = 12; degrees of freedom = 135; model F value = 21.5; Adjusted R2 (%) = 31. Cross-validation: data was split in six sets of 20 children and one
set of 19 children. Coefficients were calculated leaving out each of the seven sets in turn. The table shows means ± standard deviations of the seven coefficient estimates.

Frontiers in Microbiology | www.frontiersin.org 6 June 2021 | Volume 12 | Article 681485

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-681485 May 28, 2021 Time: 18:9 # 7

Kort et al. Coprococcus eutactus Predicts Language Development

of 24 months. The interpretation of this finding is that children
that had the same development score when they were of that
age, differ in their subsequent language development according
to their microbiota composition at that age and the composition
at their current age.

The number of potential predictors far surpasses the number
of children tested leading to the possibility of happenstance
correlations between language development scores and predictor
variables. Therefore, we cross-validated the model by random
division of the data into six subsets of 20 children and one
subset of 19 children. Subsequently, we fitted the model with
language (24 month), C. eutactus (24 month), and B. longum
(36 month) on the data leaving out each of the subsets in turn,
and predicted the language score (36 month) of the children in
the left out subset. The model residuals have been indicated in
Figure 2. The cross validation root mean square error averaged
over the seven subsets was 12.1. The residual standard deviation
of the model fitted on the entire dataset was 12.0. This value is
only slightly smaller than the average cross-validation root mean
square error. The standard deviation of the language score was
14.4. The models did not overfit the data, because there is still
a substantial unexplained variation. However, this unexplained
variation should not be addressed by the addition of more
terms in the model. The averages and standard deviations of the
coefficients over the seven fitted models are shown in column
seven of Table 1.

Increased Prevalence of Coprococcus
eutactus in the Core Gut Microbiota Over
Time
In order to evaluate the prevalence of C. eutactus in the
microbiota of children of 24 and 36 months in relation to

FIGURE 2 | Model: residuals from Cross-validation: residuals for left-out sets
in cross validation; Root mean square error (RMSE) = 12.1. Fitted: residuals
from the model fitted to all the data; RMSE = 12.0. Null: residuals form a
model with only an intercept; RMSE = 14.4.

other highly abundant members of the intestinal microbiota, we
carried out a comparative analysis of the core gut microbiota
from the Ugandan children at 24 and 36 months (Figure 3). It
should be noted that for this analysis all ASV’s assigned to the
same species have been pooled together. Both cores appear to
be rather comparable in composition (80% of the species are
present in both cores). However, at 24 months only the top three
species, including Faecalibacterium prausnitzii, Prevotella copri,
and Blautia wexlerea, were highly prevalent (>90%, detection
threshold 0.1%), while a set of ten species is highly prevalent
among Ugandan children at 36 months, in line with a decrease
in the variation in the gut microbiota composition among
children at higher age. The overall prevalence and abundance
of Bifidobacterium species increased at 36 months compared
to 24 months (from position 24 to 10), although this is not
the case for ASV’s matching to B. longum (see ASV ID 563
in Figure 4), in agreement with the notion that the relative
abundance of this species reduces when children are no longer
breast fed. The butyrate producing species F. prausnitzii was
the most prevalent bacterial species in the datasets of both ages
and is present in all Ugandan children in our study at the
age of 36 months. Noteworthy, both microbiota cores clearly
show a typical Prevotella gut microbiota type, in agreement with
previous observations that led to the assignment of Bacteroides
and Prevotella as biomarkers of diet and lifestyle in Western
and non-Western subjects, respectively (Gorvitovskaia et al.,
2016), and references herein. Accordingly, Prevotella species,
such as P. copri, show much higher relative abundance among the
majority of subjects in both heat maps of 24 and 36 months than
Bacteroides species, represented in the core only by Bacteroides
xylanolyticus. The gut bacterium C. eutactus is also represented
in both cores, be it at relatively low prevalence and abundance
levels; species position 44 at the age of 24 months and position
37 at the age of 36 months. The prevalence of the C. eutactus
ASV ID 281 among the Ugandan children in this study increased
from 24 to 36 months from 62 to 81%, although the average
relative abundance was slightly lower (Figure 4). This increased
prevalence over time was also evident in the core gut microbiota;
all 11 ASV’s matching to C. eutactus showed an increase from
38 to 44% at 0.1% abundance threshold (Figure 3). These
observations and our best fitting model are in agreement with
the notion that early acquirement of C. eutactus (before or at
24 months) is a beneficial factor for language development.

Butyrate-Producing Species More
Abundant in Children With Above
Average Language Development
The presence of the butyrate-producing bacterium C. eutactus
was confirmed in the fecal samples of the Ugandan children in
our cohort by PCR using specific primers designed in this study
for C. eutactus. PCR-analysis of a random set of stool samples
from the rural Ugandan children showed a product in 75% of
the fecal samples in line with the prevalence range (62–81%)
found for C. eutactus in our 16S rRNA gene sequence data from
the children’s stool samples. In order to further substantiate the
results obtained by the MIO approach, we also checked with
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FIGURE 3 | Heat maps of top 50 most prevalent bacteria in the fecal microbiota of Ugandan children at the age of 24 months (A) and 36 months (B), as determined
by 16S rRNA gene amplicon sequencing. The color gradient indicates the prevalence (see top-legend) at the detection threshold of the relative abundance (%)
presented at the x-axis with a logarithmic scale. The y-axis indicates the order of most prevalent bacteria at a detection threshold of 0.1% abundance. Unambiguous
species assignments include Dialister succinatiphilu, Dialister propionicifaciens; Lactobacillus salivarius, Lactobacillus ruminis; Clostridium saudiense, Clostridium
disporicum; Varibaculum anthropi, Varibaculum cambriense; Prevotella oris, Prevotella albensis, Prevotella salivae; Clostridium amygdalinum, Clostridium
methoxynbenzovorans.

FIGURE 4 | Scatter interval plots of the fraction or relative abundance of C. eutactus and Bifidobacterium. (A) Fraction of Coprococcus eutactus (amplicon
sequence variant ID 281) in the gut microbiota of 139 Ugandan children at the age of 24 and 36 months, (B) Fraction of Bifidobacterium longum group (amplicon
sequence variant ID 563) in the gut microbiota of Uganda children aged 24 and 36 months. P-values were calculated with the two sided Mann–Whitney U test for
language impaired (n = 61) and language non-impaired groups (n = 78) of the children.
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a conventional statistical method (the Mann–Whitney U test)
which bacterial species had a different abundance in children
that scored equal or above average for language development
when compared with children that scored below average. We
first checked for the presence of the specific ASV’s predicting
language development by the MIO approach. We found that the
relative abundances of the identified ASV’s in our best fitting
model of C. eutactus at 24 months (ID 281) and Bifidobacterium
at 36 months (ID 563) were significantly different in both groups
according to the two sided Mann–Whitney U test, with P-values
of 0.003 and 0.03, as presented in Figure 4.

Out of the 542 gut microbiota ASV parameters at 24 months,
397 matched to a bacterial species with an identity score of 97%
or higher. Using the latter composition parameters, we employed
the two sided Mann–Whitney U tests to explore on a per species
basis differences in abundance of these parameters between 3-
year old children that scored equal or above average for language
development and children that scored below average. If these two

language groups would not differ in microbiota composition, we
would expect that 20 out of the 397 tests have P-values below 0.05.
Instead, twenty-five of these tests had such a P-value. Table 2 lists
the corresponding ASV’s. Nineteen ASV’s were more abundant in
the equal or above average group and six ASV’s were more present
in the below average group. Among these were also other unique
sequences matching to parameters identified in the predictive
models as presented in Figure 1, including Bifidobacterium (ID
23), and I. bartlettii (ID 348).

A number of other striking features emerge from this Mann–
Whitney U test. The list in Table 2 contains five unique
16S rRNA gene ASVs which show a match with the genus
Bifidobacterium. Although the V4 16S rRNA gene amplicon
sequence does not allow for unambiguous assignment of species
for this genus, we can assign these ASV’s to three distinct
Bifidobacterium species groups: the Bifidobacterium catenelatum,
adolescentis and longum groups (see Table 2). Members of the
first two groups show at 24 months a positive correlation with

TABLE 2 | Two-tailed Mann–Whitney U test for relative abundance of bacterial species equal or above average and below average language ability groups.

ID Bacterial species Identity (%) P-value core member obligate anaerobic

Species with higher relative abundance in non-impaired language group

281 Coprococcus eutactus 100.0 0.003 yes yes

23 Bifidobacterium catenulatum1 99.6 0.003 yes yes

20 Bifidobacterium adolescentis2 99.6 0.005 yes yes

357 Faecalibacterium prausnitzii 97.6 0.006 yes yes

14 Bifidobacterium adolescentis2 100.0 0.008 yes yes

406 Holdemanella biformis 97.6 0.010 yes yes

294 Roseburia hominis 100.0 0.010 no yes

316 Eubacterium eligens 99.2 0.013 yes yes

513 Campylobacter troglodytis 98.8 0.015 no no

25 Bifidobacterium adolescentis2 99.6 0.020 yes yes

466 Faecalibacterium prausnitzii 97.6 0.021 yes yes

78 Prevotella copri 99.6 0.022 yes yes

348 Intestinibacter bartlettii 100.0 0.024 no yes

352 Terrisporobacter petrolearius 99.6 0.032 no yes

318 Bacteroides xylanolyticus 98.0 0.035 yes yes

390 Clostridium disporicum3 97.2 0.040 yes yes

280 Coprococcus eutactus 99.6 0.042 yes yes

399 Catenibacterium mitsuokai 97.6 0.044 yes yes

519 Campylobacter troglodytis 98.4 0.047 no no

Species with higher relative abundance in impaired language group

219 Granulicatella elegans 100.0 0.0005 no no

57 Parabacteroides 97.2 0.015 no yes

31 Bifidobacterium longum4 99.6 0.027 yes no

529 Escherichia/Shigella 99.6 0.028 yes no

528 Escherichia/Shigella 100.0 0.034 yes no

521 Campylobacter coli 97.2 0.041 no no

A two-tailed test was performed for bacterial relative abundances of the gut microbiota of Ugandan children at the age of 24 months for language impaired (n = 61;
BSID-III scores < 100) and non-impaired groups (n = 78; BSID-III scores ≥ 100).
Bacterial species [based on BLAST searches of amplicon sequence variants (ASV’s)] listed in the table had a P-value below 0.05. Species with identity scores below 97%
were excluded from the list in the table. Unambiguously assigned bacterial species are indicated by superscripts.
The ASV-match of Bifidobacterium catenulatum1 is identical to that of Bifidobacterium pseudocatenulatum, Bifidobacterium kashiwanohense, Bifidobacterium
tsurumiense, Bifidobacterium callitrichidarum, and Bifidobacterium gallicum (assigned to the catenalatum group); Bifidobacterium adolescentis2 is identical to that of
Bifidobacterium faecale and Bifidobacterium stercoris (assigned to the adolescentis group); Clostridium disporicum3 identical to C. saudiense; Bifidobacterium longum4

to B. breve (assigned to the longum group).
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language development. Relative abundance of members of the
longum group show at 24 months a negative correlation with
language development, but a positive correlation at 36 months
(Figure 4). At this point it is not clear why the relative
abundance of the B. longum species group at 24 months,
known to be beneficial and dominant in infants, correlate
negatively with language development, in contrast to species
from B. catenulatum and adolescentis groups, which are generally
more prevalent in adults (Arboleya et al., 2016). Many of the
bacterial species listed in Table 2, which are more abundant
in the above average group, are known butyrate producers,
including C. eutactus, F. prausnitzii, Holdemanella biformis,
Roseburia hominis, Clostridium disporicum, and Catenibacterium
mutsuokai (Vital et al., 2014). The SCFA butyrate has been
implicated to play a role in brain function, as further
discussed below.

Increased Predominance of Oxygen
Tolerant Species in Children Impaired in
Language Development
While 17 out of 19 ASV’s with significant scores in the above
average group matched with strictly anaerobic species (all except
for Campylobacter troglodytis), we identified only one ASV
matching with a strictly anaerobic bacterium (Parabacteroides)
among the significant scores in the below average group (Table 2).
This result is in line with the notion that a relatively high
redox potential in the environment of the gut is an adverse
condition for language development. It should be noted that
majority of the ASV’s in the below average group (4 out of 6)
match to species with known adverse effects in humans, including
Granulicatella elegans (Table 2). Although known to be part
of the normal intestinal human microbiota, this species has
often been implicated in adverse conditions. In addition, aerobic
Escherichia/Shigella, and Campylobacter coli species are known
as major foodborne pathogens, causing the widely occurring
diseases shigellosis and campylobacteriosis, which lead to severe
diarrhea, in particular at relatively high prevalence among
children in the developing world. A box plot of the MAPI
indices among all the children in both language development
groups indicated a slight difference (P = 0.09) between the two
groups (Figure 5).

DISCUSSION

The Value of Alternative Prediction
Models
For the analysis presented in this paper, we identified promising
predictors of language development in a field study from a large
set of potential predictors that are likely to be correlated. Because
of this correlation, it was imperative to use methods that could
reveal alternative explanations of the same data. In the field data
we studied, we indeed found substantial correlations among the
observed microbiota abundances that could serve as potential
predictors (4164 pairwise correlations were larger than 0.5).

Revealing alternative explanations of the same data requires
the fitting of multiple models. We used MIO in our model
search. The strong point of this approach is that one can impose
constraints relevant for the data at hand. We used this option
in our ranking of the second best down to 20th best models.
Of particular use were the models with 3 and 4 predictors.
There was a clear best 3-predictor model among 20 alternative
models. This model included the language ability of the children
at 24 months, the abundance of C. eutactus in microbiota taken at
24 months, and the abundance of B. longum in microbiota taken
at 36 months. The fact that this model is clearly better than the
alternatives suggests that we should include the three predictors
mentioned in any case. However, there might still be additional
predictors that could improve the model fit. This was investigated
by fitting 4-parameter models as well.

There was no clear best 4-parameter model. However,
C. eutactus abundance at 24 months was consistently present
in all 4-parameter models, while the other two predictors in
the best 3-parameter model were included in 14 of the 20 best
4-parameter models. By focusing on the common predictors
present in the best models, we believe that we avoided overfitting
the data. The remaining predictors were present in at most 5 out
of the 20 best 4-predictor models. We conclude that there is no
clear evidence favoring inclusion of a fourth predictor.

A further use of constraints in the MIO approach can help
finding good models that include synergistic or antagonistic
effects of the microbiota species. However, MIO is still limited
in the size of the models it can handle. In particular, it is
computationally infeasible to arrive at the best 5-term model
based on 1170 potential model terms. As there are 1163 individual
predictors involving microbiota composition, synergistic or
antagonistic effects among the species would increase this
number with 0.5 × 1163 × (1163–1) = 675,703 further terms.
It is infeasible to have a successful model search among this
number of terms.

Importance of Early Life Acquirement of
the Butyrate-Producing Coprococcus
eutactus for Language Development
One of the most intriguing findings of this work is the
correlation between the abundance of members of saccharolytic
clostridia in the gut of Uganda children at 24 months with the
composite score for language development of the children at
36 months. We identified C. eutactus (42 out of 60 models)
and I. bartlettii (8 out of 60 models). They belong to the
Lachnospiraceae and Peptostreptococcaceae, respectively, both
families within the Clostridia, a class of obligatory anaerobic
spore-forming bacteria. Both species produce SCFA’s, the primary
end-products of fermentation of non-digestible carbohydrates
that become available to the gut microbiota and gut epithelial
cells. The SCFA’s are mainly produced through saccharolytic
fermentation of carbohydrates. While C. eutactus is known to
produce the SCFA’s formate, acetate and butyrate (Holdeman and
Moore, 1974), I. bartlettii produces the SCFA’s isobutyrate and
isovalerate (Song et al., 2004). It is well established that SCFA’s,
in particular butyrate, are important substrates for maintaining
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FIGURE 5 | The Metagenomic Aerotolerant Predominance Index (MAPI). The index is presented in box plots for the groups of language impaired (n = 61) and
language non-impaired children (n = 78).

the colonic epithelium, elicit effects on lipid metabolism and
adipose tissue at several levels, in appetite regulation and energy
intake, and play a role in regulation of the immune system
(Morrison and Preston, 2016). In addition, butyrate has been
shown to protect the brain and enhance plasticity in animal
models for neurological disease. In agreement with a role for
the production of butyrate in the gut for improved language
development, studies with animal models show that butyrate is
able to reverse stress-induced decrease of neurotrophic factors
and cognition impairment both at early and later stages of life
(Valvassori et al., 2014). A number of mechanisms have been
attributed to the beneficial role of butyrate in brain function,
including its action as a histone deacetylase inhibitor and as an
activator of G protein-coupled receptors (GPR’s); a lower level of
histone acetylation is a characteristic of many neurodegenerative
diseases, and butyrate has been shown to activate GPR109a,
potentially leading to anti-inflammatory effects in the brain
(Bourassa et al., 2016).

The most consistent predictor in our MIO models for
language development at 36 months was the abundance of
C. eutactus in gut microbiota when the children were 24 months
of age. This is in agreement with the concept of a maturation
program with distinct phases of microbiota compositions, where
earlier phases can affect health outcomes later in life (Backhed
et al., 2015; Stewart et al., 2018). The dynamics of the relative
abundance of C. eutactus was highlighted in a study on the human
infant gut microbiome in development and in progression toward

type 1 diabetes (Kostic et al., 2015). This longitudinal study
indicated a maximum of C. eutactus relative abundance in healthy
infants at approximately 24 months, while the abundance of
C. eutactus type 1 diabetes predisposed children remained at
constant, at relatively low levels in the first years of life. So far
we only have analyzed the gut microbiota in children at 24 and
36 months in our cohort, thus at this moment we cannot yet make
any substantiated statements about the longitudinal development
of the gut microbiota in our cohort. However, the results in our
study are in agreement with a model that holds that relatively
high levels of C. eutactus at 24 months are beneficial, as they
are present in the group of children with above average language
development at 36 months.

A number of other uncertainties and limitations should
be considered in the interpretation of our results. Among all
hypervariable regions of 16S rRNA gene, the V4 region used
in this study ranks first in sensitivity as a marker for bacterial
and phylogenetic analysis (Yang et al., 2016). Nevertheless,
these amplicon sequence libraries allow in some cases only
a classification of microbiota members on the genus level.
Therefore, we carefully examined all assignments to the species
level in this study. Overall, the correlation between genomes
of closely related species suggests that it may be effective to
predict functions encoded in an organism’s genome. A recent
study showed phylogeny and function to be sufficiently linked
that prediction of function from 16S rRNA gene amplicons can
provide useful insights (Langille et al., 2013). However, in our

Frontiers in Microbiology | www.frontiersin.org 11 June 2021 | Volume 12 | Article 681485

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-681485 May 28, 2021 Time: 18:9 # 12

Kort et al. Coprococcus eutactus Predicts Language Development

view metagenome sequencing to reveal the full genetic capacity
of the gut microbiota, intervention studies with C. eutactus in
a germ-free mouse model and in vivo metabolite measurements
are required to acquire additional evidence on a beneficial role of
butyrate production and additional neuroactive potential of the
gut bacterium C. eutactus in cognitive development.

Relative Abundance of Coprococcus
eutactus Correlates to Multiple Cognitive
Outcomes
Interestingly, a recent study on the neuroactive potential of the
gut microbiota with a large cohort (Flemish Gut Flora Project;
n = ?1,054) revealed that butyrate-producing Coprococcus
bacteria were consistently associated with higher quality of life
indicators and depleted in depression (Valles-Colomer et al.,
2019). The authors of this study performed a module-based
examination of metabolic pathways by members of the gut
microbiota in order to investigate its neuroactive potential.
They observed that a gene encoding for the synthesis of 3,4-
dihydroxyphenylacetic acid (a metabolite of the neurotransmitter
dopamine) was strongly associated with the presence of
C. eutactus and quality of life indicators. Notably, a second
metabolic module, which co-varied with quality of life indicators
in their cohort, is the synthesis of isovalerate. This ability to
synthesize this SCFA happens to be present in Intestinibacterium

bartlettii (Song et al., 2004), which is the species matching to ASV
ID 348 in our best fitting models.

A further evaluation of the current scientific literature
confirms that the relative abundance of the genus Coprococcus,
and in particular the species C. eutactus, correlates with
other cognitive outcomes. A lower relative abundance of
Coprococcus was found in autistic patients compared to
neurotypical controls (Table 3). An independent study confirmed
lower levels of fecal acetic acid and butyrate in autistic
subjects (Liu et al., 2019). A decreased relative abundance of
C. eutactus was also observed in fecal samples and mucosal
biopts from Russian and American patients with Parkinson’s
disease (PD), respectively (Table 3). In both studies, potentially
anti-inflammatory, butyrate-producing genera, Coprococcus,
Faecalibacterium and Blautia were significantly more abundant
in feces of controls than PD patients, feeding the hypothesis
that an altered gut microbiota could contribute to inflammation-
induced development of PD pathology (Keshavarzian et al.,
2015). A cross-sectional study on schizophrenia patients also
indicated that the level of butyrate producing bacterial genera,
including Coprococcus, Blautia and Roseburia significantly
decreased in comparison to healthy controls. The observed
differences in microbiota compositions were proposed as
a basis for the development of microbiota-based diagnosis
for schizophrenia (Shen et al., 2018). However, it is clear
that among these differences, i.e., a decrease of a number

TABLE 3 | Correlations between Coprococcus eutactus and human mental health outcomes.

Genus species Finding Cohort Sample
size (n)

P-value Statistical test Study references

Coprococcus Depleted in cohort
participants with
depression

Flemish Gut Flora
project

1054 <0.05 Covariance test Valles-Colomer et al.,
2019

Coprococcus Depleted in cohort
participants with
depression

Dutch lifeline DEEP 1063 <0.05 Covariance test Valles-Colomer et al.,
2019

Coprococcus Lower relative
abundance in autistic
patients compared to
neurotypical controls

American children (20
neurotypical and 20
autistic)

40 0.001 Mann–Whitney U test Kang et al., 2013

Coprococcus Lower relative
abundance in
Parkinson’s-diseased
patients compared to
healthy controls

American adults (34
Parkinson’s patients
and 31 healthy controls)

65 0.03 Kruskal–Wallis test Keshavarzian et al.,
2015

Coprococcus eutactus Lower relative
abundance in
Parkinson-diseased
patients compared to
healthy controls

Siberian adults (89
Parkinson’s patients
and 66 healthy controls)

157 0.03 White’s t-test Petrov et al., 2017

Coprococcus Relative abundance
reduced in
schizophrenia patients

64 schizophrenia
patients and 53 healthy
controls

117 0.004 Principal coordinate
analysis Welch’s t-test

Shen et al., 2018

Coprococcus eutactus Predictor in gut
microbiota at
24 months for language
development at
36 months

Rural Ugandan children 139 <0.001 All subsets regression This study

The table includes information about cohort, sample size, statistical test, P-value, and study reference.
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of butyrate-producing bacterial genera, a similar correlation
can be observed for very different adverse cognitive outcomes,
including the impaired language development with Ugandan
children in our study.

We looked in this study for other overall differences between
bacterial gut communities in the language impaired and language
non-impaired groups of children and found higher levels of
oxygen tolerant species in the first group. This finding concerns
specific, potentially pathogenic species with significant higher
relative abundance in the language impaired group (G. elegans,
Escherichia/Shigella, C. coli), but also to slight differences in
the overall MAPI index. As this index indicates an aerotolerant
predominance for MAPI > 0 and anaerobic predominance for
MAPI < 0, it is clear that both groups have an anaerobic
predominance of bacterial species in the gut. Apparently, the
increase of a number of oxygen tolerant species in the language
impaired group is not so much reflected by the overall MAPI
index. Possibly, this results from the fact that the Ugandan
children in our study group are not severely malnourished, as
they are on average moderately stunted (−3 < HAZ <−2). More
severe malnourishment could have led to the overall depletion of
anaerobic bacteria and proliferation of oxygen tolerant bacteria,
as shown in the gut microbiota of severely malnourished children
(Million et al., 2016). In order to confirm the findings in this
study, we propose to repeat the analysis and investigate cognitive
development as a function of the MAPI index in a similar cohort
accompanied by metabolite measurements in stool samples. In
parallel, we propose to set up an intervention study aiming at
the reduction of the gut redox potential as a stimulus to create
a better growth environment for beneficial, strictly anaerobic
gut bacteria, including C. eutactus and other butyrate producers
identified in this study.
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