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The purpose of this study was to investigate the prevalence, antimicrobial resistance,
virulence genes, and genetic diversity of Campylobacter spp. along the yellow-feathered
broiler slaughtering line in Southern China from December 2018 to June 2019. A total of
157 Campylobacter spp. isolates were identified from 1,102 samples (including 53.6%
(75/140) of live chicken anal swab samples, 27.5% (44/160) of defeathering samples,
18.1% (29/160) of evisceration samples, 2.1% (3/140) of washing samples, 1.4%
(2/140) of chilling samples, and 1.1% (4/362) of environmental samples). The prevalence
of Campylobacter spp. was 14.2%, including 43.9% Campylobacter jejuni, 53.5%
Campylobacter coli, and 2.5% other Campylobacter species. The highest antimicrobial
resistance rate was found to be against sulfamethoxazole (138/157, 87.9%), and 90.4%
(142/157) of the isolates were multidrug resistant (MDR). Examination of resistance-
related genes revealed the double base mutated Thr-86-Ile, which informed ACA-TTA,
with an Arg-79-Lys substitution in gyrA. Eleven virulence-associated genes (cadF, cdtA,
cdtB, ciaB, flaA, imaA, dnaJ, plaA, virB11, racR, and cdtC) were also detected by a
polymerase chain reaction (PCR) analysis, and cadF (81.5%) was the most prevalent.
Based on an analysis of pulsed-field gel electrophoresis (PFGE) results, we found that
Campylobacter spp. could be cross-contaminated throughout the entire slaughtering
line. These results show that it is imperative to study the Campylobacter spp. from the
yellow-feathered broiler along the slaughtering line in China to develop preventative and
treatment measures for the poultry industry, as well as food safety and public health.

Keywords: multidrug-resistant Campylobacter, yellow broiler, slaughtering line, virulence genes, pulse field gel
electrophoresis

INTRODUCTION

Campylobacter spp. is the most common causative agent of foodborne diseases, with Campylobacter
jejuni and Campylobacter coli representing (Newell and Fearnley, 2003; Ma et al., 2014). The
United States Centers for Disease Control and Prevention (CDC) estimates that Campylobacter
spp. infections affect more than 1.5 million people in the United States every year, moreover, there
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are additional cases that go undiagnosed or unreported (FoodNet
and CDC, 2017). The National Institute of Nutrition and Food
Safety of the Chinese Center for Disease Control and Prevention
tested 879 raw poultry meat in 2007. The detection rate of
C. jejuni was 1.82%, while the figure rose to 2.28% in 2008.
More importantly, in rare cases, Campylobacter spp. can cause a
serious complication known as Guillain-Barre syndrome, which
is associated with a mortality rate as high as 3–10%; thus,
monitoring the prevalence of Campylobacter spp. is necessary.

Broiler chickens intended for human consumption represent
the primary mode of Campylobacter spp. transmission (Moore
et al., 2005; Greige et al., 2019). Although yellow- and white-
feathered broiler are two of the main types of broiler, current
studies on Campylobacter spp. have focused mainly on white-
feathered broiler. In China, yellow-feathered broiler is a
Chinese-specific broiler industry. The production (head units)
of live yellow-feathered broiler breeding was approximately
4.0 billion in 2016, which was comparable with the production
of white-feathered broiler (Wang et al., 2019). In addition,
slaughtering is a critical part of the “farm to fork,” and the
scalding, chilling, defeathering, and evisceration processes
represent sites of major cross-contamination and are of critical
importance (Figueroa et al., 2009). As such, the European
Commission has established microbiological processing
hygiene criteria for Campylobacter spp. in broiler carcasses
(European Commision, 2017); however, few studies have
focused on the entire slaughtering chain of yellow-feathered
broiler. Therefore, detecting the prevalence of Campylobacter
spp. during the slaughtering process of yellow-feathered
broiler is essential.

There is severe worldwide antimicrobial resistance of
Campylobacter spp. in white-feathered broiler, especially
multidrug-resistant (MDR) strains (Zbrun et al., 2015), including
in China. In particular, resistance to fluoroquinolones [e.g.,
ciprofloxacin (CIP) and nalidixic acid (NAL)] is extremely high in
some regions (Zhang et al., 2018). Furthermore, since macrolides
(e.g., erythromycin) are common first-line treatments, the
resistance to the macrolides in China is considerably higher
than other countries (Chen et al., 2010; Bolinger and Kathariou,
2017); however, the long feeding cycle of yellow-feathered broiler
may increase antibiotic use. Unfortunately, there are no previous
studies that have assessed the resistance bacteria isolated from
yellow-feathered broiler.

Thus, the aim of the present study was to elucidate the
prevalence, antimicrobial resistance, virulence genes, and genetic
diversity of Campylobacter spp. along the yellow-feathered
broiler slaughtering line in Southern China. These findings
provide a foundation of follow-up studies on risk assessment and
food safety monitoring associated with Campylobacter spp.

MATERIALS AND METHODS

Sample Collection
From December 2018 and June 2019, a total of 1,102 samples
were collected from different stages of the slaughtering line
(including defeathering, evisceration, washing, chilling, and live

chicken anal swab samples) and the environment in a yellow-
feathered broiler slaughterhouse in Guangdong province, China.
The description of the number and type of samples are listed in
Table 1. The specific sampling methods for each of the different
links are based on previously described methods (Han et al.,
2019). Each sample was labeled, transferred to the laboratory
within 2 h, and processed immediately.

Campylobacter spp. Isolation and
Identification
Campylobacter spp. isolation and identification was performed
according to the Standard ISO 10272-1: 2006 (International
Organization for Standardization, 2006) method (Han et al.,
2016, 2019). For the live chicken anal swab samples, Skirrow
blood agar containing 5% defibrinated sheep blood was incubated
at 42◦C for 36–48 h under a microaerophilic conditions (85% N2,
10% CO2, 5% O2). The poultry carcass samples were subjected
to a broth culture in a 50-ml centrifuge tube, after which 1 ml of
enrichment was added to 9 ml Bolton broth (with 5% defibrinated
sheep blood), and then incubated at 42◦C for 48 h under the same
conditions. For the environmental swabs and water samples, the
suspension was cultivated at 37◦C in a shaker at 100 rpm for 2–
4 h. Next, 1 ml of enrichment was added to 9 ml Bolton broth
containing 5% defibrinated sheep blood and incubated at 42◦C
for 48 h under the same conditions.

Smooth, translucent, drop-shaped suspected colonies on
the selective culture medium were selected and identified
using a series of methods, including Gram staining and

TABLE 1 | Prevalence of Campylobacter spp. in the yellow-feathered
broiler slaughterhouse.

Source Prevalence of 157 Campylobacter spp. Total

Sample C. jejuni C. coli Other
species

Slaughtering line

Live chicken anal
swab

140 33 (23.6%) 42 (30%) – 75 (53.6%)

Defeathering
(carcass)

160 22 (13.8%) 22 (13.8%) – 44 (27.5%)

Evisceration
(carcass)

160 9 (5.6%) 20 (12.5%) – 29 (18.1%)

Washing (carcass) 140 3 (2.1%) – – 3 (2.1%)

Chilling (carcass) 140 2 (1.4%) – – 2 (1.4%)

Environmental

Evisceration
(water)

80 – – 1 (1.3%) 4 (1.1%)

Washing (water) 80 – – –

Sterilizing water 42 – – –

Defeathering
(water)

80 – – –

Ground (swab) 40 – – 2 (5.0%)

3-Pronged hook
(swab)

40 – – 1 (2.5%)

Total 1,102 69 (43.9%) 84 (53.5%) 4 (2.5%)

“–” Means no Campylobacter spp. was detected.

Frontiers in Microbiology | www.frontiersin.org 2 June 2021 | Volume 12 | Article 682741

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-682741 June 14, 2021 Time: 12:59 # 3

Bai et al. Multidrug-Resistant Campylobacter spp.

biochemical testing (production of catalase, oxidase test, growth
test, hippurate hydrolysis, indoxyl acetate hydrolysis, and
susceptibility to cephalotin). The presumptive isolates underwent
further confirmation by multiplex PCR targeting of the 16S rDNA
gene of Campylobacter spp., MapA gene of C. jejuni, and ceuE
gene of C. coli. PCR was conducted with the primers listed in
Supplementary Table 1.

Antimicrobial Susceptibility Testing
Susceptibility against antibiotics was evaluated using the
disk diffusion technique (K–B method), and the results
were read based on the National Committee for Clinical
Laboratory Standards (NCCLS). Twelve antibiotics belonging
to nine different classes were tested (Supplementary Table 1).
Campylobacter spp. isolates were tested for their susceptibility
to CIP, NAL, gentamicin (GEN), clindamycin (CLI), tetracycline
(TET), erythromycin (ERY), amikacin (AMK), streptomycin
(STR), florfenicol (FFC), ampicillin (AMP), sulfamethoxazole
(SXT), and tigecycline (TGC). C. jejuni (NCTC 11168) was set as
the quality control. Isolates exhibiting resistance to three or more
antibiotic classes were defined as MDR.

Detection of Resistance and
Virulence-Associated Genes
All Campylobacter spp. isolates were screened for the presence
of resistance and virulence genes by PCR. The DNA templates
were prepared according to a previously described method (Han
et al., 2019). The primers used to amplify the resistance genes in
this study are listed in Supplementary Table 2 and virulence-
associated genes are shown in Supplementary Table 3. PCR
products were analyzed by agarose gel electrophoresis (1%)
and sent to Sangon Biotech Co., Ltd. (Shanghai, China) for
sequencing. Sequence data were then analyzed by DNAstar
(DNAstar Inc., Madison, WI, United States), and the sequences
were aligned using GenBank online BLAST software1.

Pulsed-Field Gel Electrophoresis
The isolates were subjected to molecular typing by pulsed-
field gel electrophoresis (PFGE), which was performed using
the PulseNet standardized protocol. PFGE was performed after
digestion of the genomic DNA with the restriction enzyme, Sam I,
Salmonella enterica subsp. enterica serovar Braenderup (CDC no.
H9812), was used as the standard control strain. The PFGE results
were analyzed using BioNumerics Software. A PFGE pattern was
defined as a group of strains with a Dice coefficient similarity
of 85% or higher and the PFGE pattern represented by multiple
strains was a PFGE cluster.

Statistical Analysis
A comparison of frequencies was calculated using a Fisher’s exact
test with GraphPad Prism 7.0. A P-value < 0.05 was considered
to indicate statistical significance.

1http://www.ncbi.nlm.nih.gov/BLAST/

RESULTS

Prevalence of Campylobacter spp. in the
Yellow-Feathered Broiler Slaughterhouse
A total of 157 (157/1102, 14.2%) Campylobacter spp. isolates
were identified from 1,102 samples (Table 1), which consisted
of a high prevalence in three processes: (1) 75 (75/140,
53.6%) isolates from live chicken anal swabs; (2) 44 (44/160,
27.5%) isolates from defeathering; and (3) 29 (29/160, 18.1%)
isolates from evisceration. Moreover, 53.5% (84/157) of
isolates were C. coli, which was the predominant factors in
this study. Figure 1A presents the prevalence of C. jejuni
from different sources. Two significant decreases were
observed for C. jejuni: (1) from 23.6% (33/140) in the
process of live chicken anal swabs to 13.8% (22/160) during
defeathering and (2) 13.8% (22/160) during defeathering to
5.6% (9/140) in evisceration. In contrast, the positive rate
of C. coli declined rapidly from 30% (42/140) in the live
chicken anal swabs to 13.8% (22/160) defeathering, and the
level of contamination remained at 12.5% (20/160) during
evisceration, then fell to 0% during the washing and chilling
processes (Figure 1B).

Multidrug-Resistant Campylobacter spp.
Isolates
The isolates exhibiting resistance to sulfamethoxazole
(87.9%), nalidixic acid (86.6%), ciprofloxacin (77.1%), and
tetracycline (71.3%) were commonly observed, followed by
ampicillin (70.7%), clindamycin (69.4%), streptomycin (68.1%),
erythromycin (67.5%), and gentamicin (57.3%) with a medium
resistance level. Low resistance levels were observed in florfenicol
(21.1%), amikacin (14%), and tigecycline (1.9%) (Figure 2). In
total, 142 isolates (90.4%) were found to be resistant to at least
three classes of antimicrobial agents, which were classified as
MDR strains (Table 2). The multiple drug resistance rate for
the washing and chilling processes was 100%, whereas the rates
for the live chicken anal swab, defeathering, and evisceration
displayed rates of 92, 88.6, and 86.2%, respectively. Analysis
by species showed that, 89.9% of C. jejuni, 86.9% of C. coli,
and 100% of other Campylobacter species were identified
as MDR isolates.

Analysis of the Genes and Sequencing
Associated With Antibiotic Resistance
The test results of the amplification resistance genes are
presented in Figure 3A. In general, 75.2% (118/157) of the
isolates were positive for the carriage of the tetracycline-
resistant gene, tetO. Sixty-three percent (80/157) of the isolates
was identified as erythromycin-resistant gene, ermB, in the
study. With regard to the aminoglycoside-resistant genes,
the highest overall level of resistance gene was observed
for aph(2′′)-Ig at 44.6% (70/157), followed by aac(6′)-Ie at
15.9% (25/157), aph(2′′)-If at 8.9% (14/157), and aacA4
at 7.6% (12/157).

An alignment of the deduced amino acid consensus sequences
of the isolates resistant to erythromycin and fluoroquinolone
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FIGURE 1 | (A) Prevalence of C. jejuni isolates (n = 69) in the slaughtering line. A Fisher’s exact test was used for the categorical variables. ***P < 0.01, *P < 0.05.
(B) Prevalence of C. coli isolates (n = 84) in the slaughtering line. A Fisher’s exact test was used for the categorical variables. ***P < 0.01, **P < 0.05.

FIGURE 2 | Resistance proportions of Campylobacter spp. from the yellow-feathered broiler slaughterhouse against 12 antibiotics. Abbreviations for antimicrobial
agents: SXT, sulfamethoxazole; NAL, nalidixic acid; CIP, ciprofloxacin; TET, tetracycline; AMP, ampicillin; CLI, clindamycin; STR, streptomycin; ERY, erythromycin;
GEN, gentamicin; FFC, florfenicol; AMK, amikacin; TGC, tigecycline.

(FQ) with published sequences are presented in Table 3. Among
the 106 erythromycin-resistant isolates, the C2113T (36.8%)
and A2075G (18.9%) mutations in the 23S rRNA gene were
observed. Moreover, a series of point substitutions were identified
in the gyrA gene from the 136 quinolone-resistant isolates. The
Thr-86-Ile substitution (27.9%) was identified in the nalidixic
acid resistance isolates, and 23.5% isolates of the nalidixic
acid resistance isolates were found to possess a new double-
base mutation in Thr-86-Ile with an Arg-79-Lys substitution.
However, the other nalidixic acid resistance isolates did not
display mutations.

Prevalence and Distribution of
Campylobacter spp. Virulence
Determinants
The virulence determinant of cadF (81.5%) was the most
prevalent in all the isolates, followed by cdtA (66.2%), cdtB
(61.1%), plaA (59.9%), ciaB (57.3%), flaA (52.9%), imaA (45.9%),
dnaJ (44.6%), racR (41.4%), and cdtC (31.8%). Only two isolates
(1.3%) carried the virB11 gene, which was located in a plasmid
(Figure 3B). There were 96 (61.1%) strains that coharbored
at least five virulence determinants. Among these isolates, 24
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TABLE 2 | Multidrug-resistant (MDR) Campylobacter spp. isolates from different sources and species1.

Species A (n = 75) B (n = 44) C (n = 29) D (n = 3) E (n = 2) F (n = 4) Total (%)

5 > X = 3

C. jejuni 5 7 3 0 0 0 33/142 (23.2)

C. coli 6 4 8 0 0 0

Other 0 0 0 0 0 0

7 > X = 5

C. jejuni 9 7 2 1 1 0 53/142 (37.3)

C. coli 14 12 4 0 0 0

Other 0 0 0 0 0 3

X = 7

C. jejuni 16 6 3 2 1 0 56/142 (39.4)

C. coli 19 3 5 0 0 0

Other 0 0 0 0 0 1

Total (%) 69/75 (92.0) 39/44 (88.6) 25/29 (86.2) 3/3 (100.0) 2/2 (100.0) 4/4 (100.0) 142/157 (90.4)

C. jejuni (n = 69) 62/69 (89.9); C. coli (n = 84) 73/84 (86.9); Other (n = 4) 4/4 (100.0).
X, the number of antibiotic resistant classes; C. jejuni, Campylobacter jejuni; C. coli, Campylobacter coli; A, the source of live chicken anal swab; B, the source of
defeathering; C, the source of evisceration; D, the source of washing; E, the source of chilling; F, the source of environmental.

TABLE 3 | The mutations in antimicrobial resistance genes, 23S rRNA and gyrA.

Gene Mutations Proportion (%) Total (%)

23S rRNA A2075G 20/106 (18.9) 59/106 (55.7)

C2113T 39/106 (36.8)

gyrA ACA-ATA Thr-86-Ile 38/136 (27.9) 70/136 (51.5)

ACA-TTA Thr-86-Ile with Arg-79-Lys 32/136 (23.5)

(25.0%) isolates that cocarried 10 virulence genes were dominant.
Compared with different sources, the 22 (75.9%) strains isolated
from the evisceration process were the highest, and species 57
(67.9%) of C. coli was predominant (Table 4).

Pulsed-Field Gel Electrophoresis
A total of 69 C. jejuni and 84 C. coli isolates, representing
isolates of different sources and species were selected for PFGE
analysis after digestion by SmaI. Consequently, three isolates
from C. jejuni and one from C. coli were subjected to three
repeated trials, and genotypes could not be identified by PFGE.

As a result, the 66 C. jejuni isolates were grouped into 14
clusters (a–n) (Figure 4), represented by multiple strains, and
19 unique PFGE patterns, represented by a single strain. The
83 C. coli isolates were grouped into 17 clusters (Figure 5) and
29 unique PFGE patterns. The C. jejuni isolates were dominant
in cluster f, which included five isolates from the swab samples
and one from the defeathering samples. Furthermore, the C. coli
isolates had three dominant clusters of d, f, and o. In cluster d,
all six isolates were derived from the defeathering samples. In
cluster f, five isolates were derived from live chicken anal swab
samples and one evisceration sample. In cluster o, all six isolates
were derived from live chicken anal swab samples. In terms of
the slaughtering line, the live chicken anal swab samples carried
the most PFGE patterns (34 patterns), followed by defeathering
samples (24 patterns), evisceration samples (19 patterns), chilling
(2 patterns), and washing (1 patterns). The isolates that belonged
to the same genotype could be recovered from different origins
(i.e., the C. jejuni isolates in clusters d and f). In addition, the
isolates from one source could be identified in the same genotype
(i.e., the C. coli isolates in cluster o).

FIGURE 3 | (A) Drug resistance gene carrying rate of Campylobacter spp. (B) Virulence determinants carrying rate of Campylobacter spp.
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TABLE 4 | Campylobacter spp. isolates coharbored the number of virulence determinants in different sources and species.

The number of virulence determinants Species A (n = 75) B (n = 44) C (n = 29) D (n = 3) E (n = 2) F (n = 4) Total (%)

5 C. jejuni 2 1 0 1 0 0 14/96 (14.6)

C. coli 4 3 3 0 0 0

Other 0 0 0 0 0 0

6 C. jejuni 1 2 2 0 0 0 21/96 (21.9)

C. coli 10 2 4 0 0 0

Other 0 0 0 0 0 0

7 C. jejuni 1 5 1 2 1 0 12/96 (12.5)

C. coli 2 1 0 0 0 0

Other 0 0 0 0 0 1

8 C. jejuni 1 1 1 1 0 0 9/96 (9.4)

C. coli 4 0 1 0 0 0

Other 0 0 0 0 0 0

9 C. jejuni 3 0 1 0 0 0 16/96 (16.7)

C. coli 3 4 4 0 0 0

Other 0 0 0 0 0 1

10 C. jejuni 3 5 1 0 1 0 24/96 (25)

C. coli 3 5 4 0 0 0

Other 0 0 0 0 0 2

Total (%) 37/75 (49.3) 29/44 (65.9) 22/29 (75.9) 2/3 (66.7) 2/2 (100) 4/4 (100) 96/157 (61.1)

C. jejuni (n = 69) 35/69 (50.7); C. coli (n = 84) 57/84 (67.9); Other (n = 4) 4/4 (100).
C. jejuni, Campylobacter jejuni; C. coli, Campylobacter coli; A, the source of live chicken anal swab; B, the source of defeathering; C, the source of evisceration; D, means
the source of washing; E, the source of chilling; F, the source of environmental.

DISCUSSION

Campylobacter spp. play a significant role in the food safety.
Yellow-feathered broiler is Chinese local dominant species,
which exhibits obvious regional characteristics associated with
production and consumption distribution. Guangdong is the
largest yellow-feathered broiler-producing province in China,
and one of the main consumer regions. Compared with the
white broiler, the yellow-feathered broiler has a longer growth
cycle, and the chilling is often performed at the final stage of
the yellow-feathered broiler slaughter and sold as whole chickens.
In contrast, while the white-feathered broiler is subjected to the
segmentation process and often sold by dividing the animal into
different parts. As such, these disparities in processing will have
different impacts on consumer food safety issues. However, few
studies have investigated the contamination of Campylobacter
spp. in yellow-feathered broiler slaughterhouses. This is the first
study with a research focus on the whole yellow-feathered broiler
slaughtering chain in China.

The separation rate of Campylobacter spp. from the
slaughterhouse reached a low point of 14.2% in this study,
compared with previous reports from white-feathered broiler
or turkey slaughterhouse ranging from 26.3 to 100% in China
and some other Asian and African countries (Chen et al., 2010;
Ma et al., 2014; Messad et al., 2014; Kojima et al., 2015; Han
et al., 2016). The low separation rate that was obtained may
be due to undivided slaughter with the use of disinfectants to
reduce the level of cross-contamination or the sample collection
methods, seasonal factors (Zendehbad et al., 2015), and the
strict biosecurity measures used by the slaughterhouse (Sasaki

et al., 2014), may also account for their viable but non-culturable
(VBNC) state. Thus, under adverse conditions, Campylobacter
spp. may enter a VBNC state.

The prevalence of Campylobacter spp. varied between the
different sources in this study. In the entire slaughtering chain,
a gradual downward trend was observed from the live chicken
to the finished product, which was similar to a study of white-
feathered broiler in Iran; however, the positive rate of every aspect
was not found to be as high as reported in that study (Rahimi
et al., 2010). This difference may be caused by the use of the
entire chicken as a finished product to reduce the body surface
area exposed to the processing water in the scalder and chiller
tanks. These have often been considered to be sources of cross-
contamination on carcasses that potentially affect the microbial
profile of the final product (Munther et al., 2016). Our results
indicate that the defeathering and evisceration processes were the
key factors required to control the contamination in the slaughter
chain, which is consistent with previous reports (Huang et al.,
2018). Among the isolates, C. coli was the predominant species
in our study, which accounted for 53.5% of Campylobacter spp.,
which differed from that of previous reports (Chen et al., 2010;
Melero et al., 2012; Kittl et al., 2013).

The Campylobacter spp. isolates displayed substantial drug
resistance. The fluoroquinolones were found to exhibit a high
resistance rate, which was in accordance with that of previous
reports (Hungaro et al., 2014; Zbrun et al., 2015; Panzenhagen
et al., 2016). Sulfonamide and tetracycline were maintained at
high levels, which was a predictable result for its unreasonable
use in the chicken industry; however, a relatively high resistance
was observed for the first-line drugs, erythromycin (67.5%)
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FIGURE 4 | Dendrogram of SmaI PFGE patterns of 66 C. jejuni isolates from five stages of the chicken slaughtering chain. (a–n) PFGE patterns.
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FIGURE 5 | Dendrogram of the SmaI PFGE patterns of 83 C. coli isolates from five stages of the chicken slaughtering chain. (a–q) PFGE patterns.
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and gentamicin (57.3%) compared with research conducted in
Poland, Japan, Tranidala island, and Algeria (Rodrigo et al.,
2007; Sallam, 2007; Maćkiw et al., 2012; Messad et al., 2014).
Coincidentally, it remained in a similar level with recent reports
in China (Han et al., 2016, 2019; Li et al., 2017). Furthermore,
one serious drug resistance strain was discovered in the present
study, which means it was resistant to all 12 of the tested
antibiotics, including tigecycline, which represented an alarming
state of affairs.

In total, 90.4% were classified as MDR strains, which
was substantially higher than reported in previous research
(Rodrigo et al., 2007; Sallam, 2007; Zbrun et al., 2015;
Zendehbad et al., 2015). Moreover, the MDR rates were higher
than 80% for the processes of the live chicken anal swab,
defeathering, and evisceration, while the rate was 100% for
the washing and chilling processes. In addition, 89.9% of
C. jejuni, 86.9% of C. coli, and 100% of other Campylobacter
spp. were identified as MDR isolates. Due to the long feeding
cycle of yellow-feathered broiler, there may be increased
opportunities for the yellow-feathered broiler meat to obtain
antibiotic resistance to Campylobacter spp. It appears that
the drug-resistant situation in China is critical, which may
be caused by the widespread use of antimicrobial agents
during the breeding process of poultry and livestock. Therefore,
in order to obtain antibiotic-free meat, the promotion and
implementation of antibiotic-free breeding regarding the use
of physical and biological measures of animal health and
disease prevention without any chemical drugs, antibiotics,
or synthetic hormones during the breeding or slaughtering
process is considered.

The macrolide resistance gene, 23S rRNA, and
fluoroquinolone resistance gene, gyrA, were sequenced to analyze
their mutations. In total, 36.8% of erythromycin-resistant strains
possessed C2113T mutation, which was higher than A2075G
mutation (18.9%) (Pérez-Boto et al., 2014; Lim et al., 2017).
A 51.5% (70/136) Thr-86-Ile substitution was found in the
tested isolates, as the common single base mutation, ACA-ATA
(Ge et al., 2005; Abd El-Tawab et al., 2018). However, a new
double-base mutation in Thr-86-Ile was detected in 32 isolates,
which was termed ACA-TTA. Concurrent with the Arg-79-Lys
substitution, other nalidixic acid resistance isolates did not
display any type of mutation. This finding implies that the strains
were likely to find a new method of survival and spread in
extreme environments.

Campylobacter spp. has complex multifactorial systems for
multiplication in broilers, survival during food processing,
and enhanced pathogenicity following food processing
stressors (Bolton, 2015). A total of 11 virulence determinants
were detected, of which 61.7% of the strains coharbored
at least five virulence determinants. Most of the isolates
carried 10 virulence genes, accounting for 25%. There
were only two isolates that carried the virB11 gene,
which can significantly reduce adherence and invasion
compared with the wild-type strain (Bacon et al., 2000).
More importantly, 75.9% strains from the evisceration
stage and 67.9% of C. coli cocarried at least five virulence
determinants. This finding indicates that the isolates

from the evisceration stage and C. coli exhibited strong
potential pathogenicity.

In this study, multiple PFGE patterns and clusters were
observed in the C. jejuni and C. coli isolates, which indicated
that the genome was polymorphic. Furthermore, the C. coli
isolates had more PFGE patterns (29) than the C. jejuni isolates,
which had 19 PFGE patterns. This suggests that the genes of the
C. coli isolates are more unstable and variable than that of the
C. jejuni isolates. Most PFGE clusters correspond to only one
origin; however, the isolates that belonged to the same genotype
could be recovered from different origins (Ma et al., 2014). This
revealed that Campylobacter spp. could be cross-contaminated
throughout the entire slaughtering line and might have serious
consequences for the prevention in the poultry industry.

CONCLUSION

In summary, this represents the first attempt to gather
information of Campylobacter spp. from a yellow-feathered
broiler slaughterhouse in China. Moreover, we showed a
significant reduction of C. jejuni- and C. coli-positive isolates
during the process of defeathering and evisceration, serious MDR
in Campylobacter spp., and novel mutation in the gyrA genes. The
PFGE results implied that serious cross-contamination occurred
in the slaughtering line, which requires future focus in order to
reduce the level of Campylobacter spp. from the slaughterhouse
to retail outlets. Furthermore, we should restrict the use of
antibiotics in livestock and implement monitoring to control the
food safety of high risk food products.
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