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Dietary intervention is effective in human health promotion through modulation of
gut microbiota. Diet can cause single-nucleotide polymorphisms (SNPs) to occur in
the gut microbiota, and some of these variations may lead to functional changes
in human health. In this study, we performed a systematic SNP analysis based on
metagenomic data collected from children with Prader–Willi syndrome (PWS, n = 17)
and simple obese (SO) children (n = 19), who had better healthy conditions after
receiving high-fiber diet intervention. We found that the intervention increased the SNP
proportions of Faecalibacterium, Bifidobacterium, and Clostridium and decreased those
of Bacteroides in all children. Besides, the PWS children had Collinsella increased and
Ruminococcus decreased, whereas the SO had Blautia and Escherichia decreased.
There were much more BiasSNPs in PWS than in SO (4,465 vs 303), and only
81 of them appeared in both groups, of which 78 were from Faecalibacterium
prausnitzii, and 51 were nonsynonymous mutations. These nonsynonymous variations
were mainly related to pathways of environmental adaptation and nutrition metabolism,
particularly to carbohydrate and nucleotide metabolism. In addition, dominant strains
carrying BiasSNPs in all children shifted from F. prausnitzii AF32-8AC and F. prausnitzii
942/30-2 to F. prausnitzii SSTS Bg7063 and F. prausnitzii JG BgPS064 after the
dietary intervention. Furthermore, although the abundance of Bifidobacterium increased
significantly by the intervention and became dominant strains responsible for nutrition
metabolism, they had less BiasSNPs between the pre- and post-intervention group in
comparison with Faecalibacterium. The finding of F. prausnitzii as important functional
strains influenced by the intervention highlights the superiority of applying SNP analysis
in studies of gut microbiota. This study provided evidence and support for the effect
of dietary intervention on gut microbial SNPs, and gave some enlightenments for
disease treatment.
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INTRODUCTION

Single-nucleotide polymorphism (SNP) is the most common
genetic variation in DNA sequence in order to better adapt
to the external environment in the evolutionary process
(Haraksingh and Snyder, 2013). SNPs in the coding region
can be classified as nonsynonymous mutation and synonymous
mutation. Nonsynonymous mutation changes the sequence of
amino acids and then affects the genetic function, while the
synonymous mutation does not affect the genetic function
(Tennessen, 2008). There are huge amounts of microorganisms
living in the human intestinal tract, and the diet is one of the
most important factors shaping the structure and function of
the gut microbiota (Goldsmith and Sartor, 2014; Shen, 2017).
Environmental pressure caused by the change in the diet not only
alter the structure of the gut microbiota but also led to genetic
variations in the microbes (Truong et al., 2017). These variations
can lead to different functions in strains, which, in turn, affect the
health of the host.

Considering the taxonomic diversity of bacteria and the
genetic variations in response to constant environmental change
(Hofreiter et al., 2015), the analyses based on the abundance
and composition of the gut microbiota are not enough to reflect
changes in gene function or microbial transfer, which might not
only omit some correlations but also infer wrong conclusions
from this rough quantitative level. For instance, researchers had
studied the gut metagenomes of 98 mothers and their infants over
1 year, used rare SNPs to reveal vertical transmission of strains,
and found that the colonization with strains of infants mainly
derived from the environment but not from their mothers,
although the gut microbial composition of infants converged
toward that of their mothers over time (Nayfach et al., 2016).
This pattern might be missed in the analysis with the gut
microbial composition, and it was mistakenly assumed that
vertical bacterial transmission of infants from their mother was
increased during the first year after birth.

Single-nucleotide polymorphisms, which refer to single-
nucleotide variations in genes, are more able to reveal the
differences between strains and between genes. The continuous
expansion of gut metagenomic sample dataset and an increasing
number of the bacterial reference genome have facilitated the
studies of gut microbial SNPs. The flexible application of gut
microbial SNPs can solve the complex problems that other
analysis at species level cannot solve, obtain more accurate
results at the strain- or gene-level, and provide new clues for
the precision diagnosis and treatment of diseases (Galloway-
Peña et al., 2012; Leonard et al., 2016; Zou et al., 2020).
Patient-specific SNPs were found in the gut microbiota of both
type 2 diabetes mellitus (T2D) and tuberculosis patients, which
could separate the patients from the healthy individuals. The
gene carrying T2D-specific SNPs encodes the alpha glucoside
enzyme, which is a kind of important T2D drug target, and
the researchers believed that these SNPs could be used as
drug targets for the treatment of T2D (Chen et al., 2017).
The tuberculosis-specific SNP genes were mainly involved in
carbohydrate metabolism prevalently from Bacteroides vulgatus,
suggesting that there were altered carbohydrate preference

and different carbohydrate metabolism patterns in the gut of
tuberculosis patients, and providing reference for the diagnosis
and treatment of tuberculosis (Hu et al., 2019). Other researchers
conducted gut microbial SNP studies on antibiotic resistance
genes of individuals from different countries and found that the
population-specific SNPs on antibiotic resistance genes were not
related to the country, but might be attributed to the altered
microbiota by differences in population structure or different
antibiotic usage (Hu et al., 2013).

Many studies have proved the close relationship between
the gut microbiota and obesity, but in-depth researches on the
strain- or gene-level still need to be conducted (Turnbaugh et al.,
2006; Flint, 2011; Baothman et al., 2016). Our previous study
demonstrated that a high-fiber dietary intervention significantly
improved the physiological conditions of the genetic (Prader–
Willi syndrome, PWS) and simple obese (SO) children, and this
promotion was found to be relevant to the change in the gut
microbiota (Zhang et al., 2015). In order to better understand
the underlying mechanism for this effective treatment, we
performed a systemic SNP analysis based on high-throughput
metagenomic sequencing data obtained from two longitudinal
cohorts, children with PWS or SO. We first identified SNPs in
each cohort affected by the intervention and screened out genes
with significant change in SNP density. The species that carried
these genes were then sourced and linked with relevant metabolic
pathways. After that, we focused on BiasSNPs that occurred in
both cohorts, particularly on those nonsynonymous mutations.
Functional pathways and dominant strains with BiasSNPs
influenced by the intervention were investigated further. Finally,
PWS and SO-specific BiasSNP-affected strains and metabolic
pathways were individually analyzed.

MATERIALS AND METHODS

Data Collection
The dietary intervention trial was approved by the Ethics
Committee of the School of Life Sciences and Biotechnology,
Shanghai Jiao Tong University, with No. 2012-016 and registered
at the Chinese Clinical Trial Registry with No. ChiCTR-ONC-
12002646. Written informed consent was obtained from the
guardian of the obese children. The trial was performed as
described in the previous study (Zhang et al., 2015). Briefly, 17
PWS and 19 SO children completed the dietary intervention in
the hospital for 90 and 30 days, respectively. The diet used in
the clinical trial for intervention mainly included whole grains,
traditional Chinese medicinal foods, and prebiotics (WTP),
incorporated certain amount of vegetables, fruits, and nuts
(Xiao et al., 2014).

The fecal samples and physiological indexes of all obese
children were collected at predefined time points (PWS: on
intervention days 0, 30, 60, and 90; SO: days 0 and 30)
(Zhang et al., 2015). Metagenomic sequencing of the extracted
and purified DNA was performed on Illumina Hiseq 2000
platform at Shanghai Biotechnology Co., Ltd. All potential
biologically hazardous materials in this study were properly
handled according to Chinese biosafety laws and regulations.
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The raw metagenome sequencing data was accessed at the NCBI
SRA (Sequence Read Archive) database with accession number
SRP045211 (Zhang et al., 2015).

Detection of Single-Nucleotide
Polymorphisms
The data pre-processing was done as described in our previous
study (Zhang et al., 2015). Briefly, the original sequencing data
was quality controlled by FlexBar and Prinseq (Schmieder and
Edwards, 2011; Dodt et al., 2012), and then aligned to the human
genome reference (Homo sapiens, UCSC hg19) using Bowtie2 to
remove the reads from human (Langmead and Salzberg, 2012).
Each sample had 84.6 ± 21.2 million (mean ± SD) high-quality
reads on average. Then BWA (Li and Durbin, 2009) was used to
align the high-quality reads to the integrated gene catalog (IGC),
which contained approximately 11 million high-quality human
gut microbial reference genes (Li et al., 2014; Xie et al., 2016).
Afterward, the SAMTools was used to detect, filter, sort, and
merge SNPs (Li et al., 2009; Li, 2011).

To ensure the reliability of the detected SNPs, only SNPs with
at least five supported sequencing reads were kept, and those
with less than 60% coverage in a group were furtherly removed
to achieve more representative SNPs. The downstream analyses
were all performed with the SNPs resulting from this procedure.

Calculation of Single-Nucleotide
Polymorphisms Density
Single-nucleotide polymorphism density reflected the number
of SNPs per kilobase in a gene per million sequencing paired-
end reads. For any sample S, the SNP density Di of gene i was
calculated as follows:

Di =
ni

TSLi

where ni is the number of SNPs in gene i, Ts is the sequencing
amount of sample S, and Li is the length of the gene i per
kilobase in sequence.

Detection of BiasSNP
Detection of BiasSNP was performed through comparison of
an SNP in a nucleotide base between two groups. A BiasSNP
was the differential SNP that dominated between two groups
(Supplementary Figure 1). Nonsynonymous BiasSNP, whose
mutation in a gene caused the encoded amino acid to be changed,
was furtherly identified by in-house Perl script.

Statistical Analysis
In this study, the significance of the difference was judged with
Wilcoxon paired test for a cohort between before and after the
dietary intervention or with Wilcoxon unpaired test for two
cohorts in R software (version 3.5.3). The significance of the
difference among multiple groups was tested with permutational
multivariate analysis of variance (perMANOVA) in the “vegan”
library of the R software. The phylogenetic and clustering
trees based on BiasSNPs were constructed using the maximum
likelihood model GTRGAMMA and 1,000 bootstrap replicates
in RAxML (Stamatakis, 2014). Additionally, the R package

“clusterProfiler” (version 3.8.1) was used to perform enrichment
analysis of the SNP genes (Yu et al., 2012).

Data Visualization
Data visualization was mainly realized in the R software,
“ggalluvial” (version 0.11.3), which was used to illustrate the
alluvial diagram between strain and metabolic pathway, while
dotplot, boxplot, and pieplot were displayed by means of
“ggplot2” (version 3.2.0). In addition, the network charts were
drawn using the Cytoscape software (version 3.7.2) (Shannon
et al., 2003), and the optimization of the tree diagram was
accomplished with the aid of the online tool EvolView1.

RESULTS

The Overall Effect of High-Fiber Dietary
Intervention on Gut Microbial
Single-Nucleotide Polymorphisms in
Obese Children
A total of 218,343 SNPs were detected in the gut microbiota of
the 36 obese children. These SNPs were concentrated in 40,515
genes, and these genes could be sourced from 57 genera and 150
species. The high-fiber dietary intervention lessened the overall
SNP numbers on the 30th intervention day; the SNPs in PWS
children decreased to 85,769 from 109,139, while in SO children,
they decreased to 36,247 from 80,773. Before the intervention,
all children had the dominant SNPs at genus level, which
were from Faecalibacterium, Ruminococcus, and Bacteroides.
In addition, the SO children had SNPs from Escherichia with
relatively higher proportion (33.76%). The intervention increased
the SNP proportions of Faecalibacterium, Bifidobacterium, and
Clostridium and decreased those of Bacteroides in all children.
Meanwhile, the PWS children had Collinsella increased and
Ruminococcus decreased, whereas the SO had Blautia and
Escherichia decreased (Figure 1A).

The Altered Single-Nucleotide
Polymorphism Density Structure in
Prader–Willi Syndrome and Simple
Obese Children
In our previous study, the PWS group had worse health
conditions such as higher inflammation level than the SO
group before the intervention. However, we did not detect
significant difference between the two groups in gut microbial
structure (Zhang et al., 2015). Interestingly, with the SNP
density structure, a significant separation between the two
groups before the intervention was observed (Figure 1B,
PerMANOVA test, P < 0.001). The SNP density structure was
altered significantly by the dietary intervention in both groups
(Figure 1B, PerMANOVA test, P < 0.001). According to the
changes that occurred in the PWS group, the structure alteration
might occur mainly in the earlier stage of the intervention, as the
shift on the 60th and 90th days was less that on the 30th day.

1https://www.evolgenius.info/evolview
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FIGURE 1 | High-fiber dietary intervention altered gut microbial single-nucleotide polymorphism (SNP) pattern in both Prader–Willi syndrome (PWS) (n = 17) and
simple obese (SO) (n = 19) children. (A) The composition of SNPs at the genus level among different interventional time points. PWS on day 0 (PS00), 30 (PS30), 60
(PS60), and 90 (PS90); SO on day 0 (SO00) and day 30 (SO30). (B) PCA plot based on the SNP density of gut microbiota.

After 30 days of dietary intervention, the PWS children had
26,174 genes significantly changed in SNP density (Wilcoxon test,
adjusted P < 0.05), and most of them (20,279) had fold changes
lager than 8. Among these genes, 13,450 had higher SNP density
before the intervention, which were distributed in 102 species and
mainly concentrated in Faecalibacterium prausnitzii (20.27%),
Bacteroides stercoris (15.63%), and Bacteroides dorei (12.49%).
These genes were enriched in metabolic pathways for amino
acid biosynthetic (ko01230), carbon metabolism (ko01200),
two-component system (ko02020), and starch and sucrose
metabolism (ko00500) (Figure 2A). After the intervention,
6,847 genes had higher SNP density. These genes were
concentrated in 59 strains, mainly including butyrate-producing
bacterium (24.65%), Bifidobacterium catenulatum (17.95%),
and Bifidobacterium longum (10.60%). The corresponding
metabolic pathways contained biosynthesis of amino acids
(ko01230), carbon metabolism (ko01200), and starch and sucrose
metabolism (ko00500) (Figure 2B). Notably, although the

enriched metabolic pathways remain constant, their contributing
strains changed after the intervention. For instance, the
biosynthesis of amino acids (ko01230) was mainly from
F. prausnitzii before the intervention, while the contributing
strains of this function were replaced by butyrate-producing
bacterium, B. catenulatum, and B. longum after the intervention.

The SO children had 17,427 genes significantly changed
in SNP density (adjusted P < 0.05). The number of genes
with fold change greater than 8 was 13,927. Among them,
10,409 genes with higher SNP density existed in the pre-
intervention group, which were derived from 112 strains
and mainly in Escherichia coli (37.53%), F. prausnitzii
(16.88%), and Ruminococcus sp. 5_1_39BFAA (11.84%).
Though the distribution of these strains in SO were
different from that in PWS, these SNP density differential
genes they carried also focused on biosynthesis of amino
acids (ko01230), carbon metabolism (ko01200), and two-
component system (ko02020) (Figure 2C), while 3,518
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FIGURE 2 | Species and metabolic pathways corresponding to the genes with differential SNP density between before and after intervention in obese children.
(A) The corresponding species and metabolic pathways of the genes with high SNP density in PWS before the intervention. (B) The corresponding species and
metabolic pathways of the genes with high SNP density in PWS after the intervention. (C) The corresponding species and metabolic pathways of the genes with high
SNP density in SO before the intervention. (D) The corresponding species and metabolic pathways of the genes with high SNP density in SO after the intervention.

genes with higher SNP density were detected in the post-
intervention group, which were derived from 26 strains and
mainly in B. catenulatum (52.84%), B. longum (15.98%),
and Bifidobacterium breve (10.83%). These genes focused on
biosynthesis of amino acids (ko01230), carbon metabolism
(ko01200), and amino sugar and nucleoside sugar metabolism
(ko00520) (Figure 2D). Similar to the PWS, the intervention
also changed the relationships between the strains and the
metabolic pathways. However, unlike in PWS, E. coli followed
by F. prausnitzii were the main contributors in SO to the
biosynthesis of amino acids before the intervention, while
contributions from these two strains might be neglected,
and B. catenulatum took dominant responsibilities after the
dietary intervention.

Common BiasSNPs Before and After
Intervention in Prader–Willi Syndrome
and Simple Obese Children
With the interest in the differences of SNP between the groups in
sequence, we furtherly screened BiasSNPs whose variation were
dominant in one group/one time point among more than 60%
of the individuals. Comparing with the SNPs before and after
30 days of intervention, the detected BiasSNPs in PWS was 4,465,
larger than 303 in SO. The PWS and SO had only 81 BiasSNPs in
common distributed in 69 genes. Source track indicated that 78
common BiasSNPs were from F. prausnitzii, and the remaining
three were from Streptococcus thermophilus, suggesting that
F. prausnitzii was the most affected under the intervention.

In order to identify the source of these BiasSNPs at genome
level, 103 genomes of F. prausnitzii were downloaded from
the GenBank database, and the nucleotide sites corresponding
to common BiasSNPs were abstracted. Only nine out of the
103 F. prausnitzii strains had more than 70% coverage of
BiasSNPs. Then, we constructed a phylogenetic tree of these
nine F. prausnitzii and the corresponding strains from the pre-
and post-intervention groups based on these 78 BiasSNPs. It
was observed that F. prausnitzii AF32-8AC was closest to the
pre-intervention group, followed by F. prausnitzii 942/30-2,
F. prausnitzii APC942/18-1, and F. prausnitzii MGYG-HGUT-
02545 in the phylogenetic tree (Figure 3A), while the closest
to the post-intervention group was F. prausnitzii SSTS Bg7063,
followed by F. prausnitzii JG BgPS064 and F. prausnitzii NZ
FPSSTS7063 SV a2 mod. This suggested that the dominant strains
of F. prausnitzii were converted from F. prausnitzii AF32-8AC
and F. prausnitzii 942/30-2 to F. prausnitzii SSTS Bg7063 and
F. prausnitzii JG BgPS064 after the dietary intervention.

Of the 81 common BiasSNPs, 53 were nonsynonymous
mutations in which 51 were in F. prausnitzii and the remaining
two were in S. thermophilus. These 53 nonsynonymous
BiasSNPs existed in 49 genes, whose detailed information are
listed in Table 1. The enriched KEGG metabolic pathways
based on these 49 genes showed that these SNPs were
mainly related to nutrition metabolism and environmental
adaptation functions (Figures 3B,C). In detail, pathways
related to nutrition metabolism included carbohydrate
metabolism (ko00720), nucleotide metabolism (ko09104),
amino acid metabolism (ko09105), lipid metabolism (ko09103),
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FIGURE 3 | Strains and metabolic pathways corresponding to common BiasSNPs. (A) Phylogenetic relationship of nine Faecalibacterium prausnitzii and the
corresponding strains of pre- and post-intervention groups based on the common BiasSNPs. (B) Metabolic pathways related to nutrition metabolism. (C) Metabolic
pathways associated with environmental adaptation. (D) Metabolic pathways associated with the gene fadD. (E) Genes encoding transporters.

and metabolism of terpenoids and polyketides (ko09109).
Particularly, there were more genes related to carbohydrate
and nucleotide metabolism (Figure 3B). Pathways associated
with environmental information processing included membrane
transport (ko09131), environmental adaptation (ko09159), and
signal transduction (ko09132), which were mainly linked with
ABC transporters (ko02010), thermogenesis (ko04714), and
two-component system (ko02020), respectively (Figure 3C).

Notably, some genes, such as pyk and fadD, were involved
in multiple metabolic pathways (Figures 3B,D), suggesting their
important roles in the entire metabolic network. The gene pyk
encodes pyruvate kinase (Gubler et al., 1994), mainly taking
part in glycolysis/gluconeogenesis (ko00010), purine metabolism
(ko00230), and pyruvate metabolism (ko00620). The gene fadD
encodes long-chain acyl-CoA synthetase that can use long-chain
fatty acids as carbon source and energy (Pech-Canul et al.,
2020), and is mainly involved in fatty acid biosynthesis and
degradation (ko00061 and ko00071), ferroptosis (ko04216), lipid
biosynthesis proteins (ko01004), quorum sensing (ko02024),
thermogenesis (ko04714), etc.

There were several gene-encoding transporters in enrichment
pathways (Figure 3E). These transporters include a variety
of proteins that are involved in signal transduction and
various intracellular processes, such as cell proliferation and

differentiation. In this study, the genes with common BiasSNPs
encode a variety of transport system permease proteins,
such as spermidine/putrescine transport system permease
protein (potB encoding), phosphate transport system permease
protein (pstA encoding), polar amino acid transport system
permease protein (ABC.PA.P encoding), iron complex transport
system permease protein (ABC.FEV.P encoding), zinc transport
system permease protein (znuB encoding), etc. Besides, they
also encode basic membrane protein A (bmpA encoding),
multidrug resistance protein (dinF encoding), and anaerobic
dimethyl sulfoxide reductase subunit B (dmsB encoding).
These results indicated that these genes with nonsynonymous
SNPs were closely related to the transporters under the
dietary intervention.

Prader–Willi Syndrome-Specific
BiasSNPs Affected by High-Fiber Dietary
Intervention
PWS-specific BiasSNPs (4,384) were detected between the pre-
and post-intervention groups, which were distributed in 2,039
genes and sourced from 34 strains. The distribution at strain
level indicated that most of the BiasSNPs were derived from
F. prausnitzii (82.0%) (Figure 4A).
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TABLE 1 | Information of 49 genes with nonsynonymous BiasSNP.

GeneID Name Definition

SZEY-
27A_GL0066464

ABC.CD.TX HlyD family secretion protein

MH0423_GL0087716 ABC.FEV.P Iron complex transport system
permease protein

MH0204_GL0062877 ABC.PA.P Polar amino acid transport system
permease protein

O2.UC34-
2_GL0007607

ACSL, fadD Long-chain acyl-CoA synthetase

MH0094_GL0105570 asd Aspartate-semialdehyde
dehydrogenase

SZEY-
58A_GL0041727

ATPF1E,
atpC

F-type H+-transporting ATPase
subunit epsilon

NOM017_GL0035853 bmpA,
bmpB,
tmpC

Basic membrane protein A and related
proteins

SZEY-
106A_GL0033468

dmsB Anaerobic dimethyl sulfoxide
reductase subunit B

MH0161_GL0016845 E3.2.1.8,
xynA

Endo-1,4-beta-xylanase

MH0161_GL0083263 glgC Glucose-1-phosphate
adenylyltransferase

T2D-
109A_GL0053344

GLU, gltS Glutamate synthase (ferredoxin)

250twins_37179_
GL0047337

ispDF 2-C-methyl-D-erythritol 4-phosphate
Cytidylyltransferase/2-C-methyl-D-
erythritol 2,4-Cyclodiphosphate
synthase

BGI-28A_GL0080202 K07027 Glycosyltransferase 2 family protein

MH0260_GL0085944 K09153 Small membrane protein

MH0427_GL0005657 KARS, lysS Lysyl-tRNA synthetase, class II

V1.FI16_GL0163211 METTL6 Methyltransferase-like protein 6

MH0089_GL0042766 mgtE Magnesium transporter

NLM015_GL0035022 pdp Pyrimidine-nucleoside phosphorylase

MH0222_GL0152632 phoR Two-component system, OmpR family,
phosphate regulon sensor histidine
kinase PhoR

BGI-06A_GL0076090 PK, pyk Pyruvate kinase

T2D-59A_GL0116703 potB Spermidine/putrescine transport
system permease protein

MH0251_GL0137853 ppdK Pyruvate, orthophosphate dikinase

MH0055_GL0043341 pstA Phosphate transport system
permease protein

MH0069_GL0033002 pyrE Orotate phosphoribosyltransferase

T2D-56A_GL0037409 pyrI Aspartate carbamoyltransferase
regulatory subunit

250twins_36674_
GL0060378

rnfD Na+-translocating ferredoxin:NAD+
oxidoreductase subunit D

SZEY-
103A_GL0004639

RP-L13,
MRPL13,
rplM

Large subunit ribosomal protein L13

V1.CD6-0-
PT_GL0047319

SPP Sucrose-6-phosphatase

SZEY-
90A_GL0013477

TC.MATE,
SLC47A,
norM

Multidrug resistance protein, MATE
family

MH0176_GL0049322 TC.NCS2 Nucleobase:cation symporter-2, NCS2
family

MH0422_GL0084041 thiJ Protein deglycase

160400887-
stool1_196973

tig Trigger factor

(Continued)

TABLE 1 | Continued

GeneID Name Definition

T2D-10A_GL0004234 yesN Two-component system, response
regulator YesN

763678604-
stool1_204596

znuB Zinc transport system permease
protein

MH0136_GL0032411 K07003 Uncharacterized protein

N084A_GL0010742 K07017 Uncharacterized protein

V1.UC35-
4_GL0167766

K07095 Uncharacterized protein

T2D-
198A_GL0043098

K09775 Uncharacterized protein

V1.FI20_GL0181809 Unclassified Unclassified

DOM026_GL0058508 Unclassified Unclassified

MH0136_GL0100087 Unclassified Unclassified

O2.UC34-
2_GL0069427

Unclassified Unclassified

V1.UC27-
0_GL0047860

Unclassified Unclassified

V1.CD2-0-
PN_GL0116497

Unclassified Unclassified

N051A_GL0048400 Unclassified Unclassified

264199.stu_r17 Unclassified Unclassified

MH0094_GL0121652 Unclassified Unclassified

NLF010_GL0004489 Unclassified Unclassified

MH0184_GL0028587 Unclassified Unclassified

A network of the KEGG metabolic pathways, with the
nonsynonymous BiasSNPs uniquely occurring in the PWS
children, was constructed. This network showed that these
BiasSNPs were mainly relevant to nutrition metabolism and
environmental adaptation (Figure 4B). There were more
BiasSNPs in PWS than in SO, and the metabolic functions
of these PWS-specific BiasSNPs were similar to that of
the common BiasSNPs, indicating that the gut microbial
SNPs were more susceptible by dietary intervention in PWS.
Nutrition metabolism mainly included carbohydrate metabolism,
amino acid metabolism, metabolism of cofactors and vitamins,
nucleotide metabolism, and lipid metabolism. Pathways of
environmental adaptation mainly covered cellular community,
membrane transport, and folding, sorting, and degradation.
Genes (242) with nonsynonymous BiasSNPs in the pathway
network of PWS children are listed in Supplementary Table 1.

Simple Obese-Specific BiasSNPs
Affected by High-Fiber Dietary
Intervention
There were 222 SO-specific BiasSNPs between before and
after dietary intervention, far fewer than those in PWS. These
BiasSNPs were distributed in 196 genes and sourced from 17
strains, also mainly from F. prausnitzii (74.8%) (Figure 5A).
Among them, 104 BiasSNPs were nonsynonymous. The network
of enriched KEGG metabolic pathways constructed with the
genes carrying nonsynonymous BiasSNPs showed that these
BiasSNPs were mainly related to nutrition metabolism, DNA
replication and repair, and translation (Figure 5B). The
nutrition metabolism included carbohydrate metabolism, amino
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FIGURE 4 | Species composition and enrichment metabolic pathways carrying the BiasSNPs in PWS children. (A) Composition of species with BiasSNP in PWS
children. Colors represent different species. (B) The relationship between the metabolic pathways of BiasSNP in PWS children. The line indicates that the metabolic
pathways share the same gene, the dot represents the pathway, the size of the dot represents the number of genes with BiasSNP in the pathway, and the color
represents the class of pathway.

acid metabolism, metabolism of cofactors and vitamins, and
nucleotide metabolism. The SNPs related to DNA replication and
repair may furtherly influence the genetic variation, including
base excision repair, homologous recombination, mismatch
repair, and nucleotide excision repair. In addition, a number
of nonsynonymous BiasSNP existed in translation-related
metabolic pathways, such as aminoacyl-tRNA biosynthesis and
ribosome. Twenty-six genes with nonsynonymous BiasSNPs
in the pathway network of SO children are presented in
Supplementary Table 2.

DISCUSSION

Our previous study performed a dietary intervention trial on
obese children with PWS and SO, and found that the high-fiber

diet had improved significantly the physiological indexes of all
the obese children and changed the composition and structure
of the gut microbiota (Zhang et al., 2015). This study focused on
the gut microbial SNP variations that occurred in genes, trying to
figure out important genes and functional strains influenced by
the intervention.

We found that the remarkable changes in gut microbial SNPs
caused by the intervention were related to nutrition metabolism,
including carbohydrate metabolism (e.g., gluconeogenesis and
pyruvate metabolism), amino acid metabolism, and lipid
metabolism in all obese children. This result was not surprising
because the SNPs existed densely in strains to adapt to
environmental changes. Compared with the normal diet, the
WTP diet provides large quantities of whole-grain mix that is rich
in starch, soluble and insoluble dietary fiber, protein, and amino
acids, but contains a small amount of fat (Xiao et al., 2014). When
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FIGURE 5 | Species composition and enrichment metabolic pathways carrying the BiasSNPs in SO children. (A) Composition of species with BiasSNP in PWS
children. Colors represent different species. (B) The relationship between the metabolic pathways of BiasSNP in PWS children. The line indicates that the metabolic
pathways share the same gene, the dot represents the pathway, the size of the dot represents the number of genes with BiasSNP in the pathway, and the color
represents the class of pathway.

this excess and/or indigestible nutrition reached the colon, they
brought environmental pressures to the microbiota that stayed
there. This pressure could facilitate the utilization of indigestible
nutrition by causing microbial SNPs and, thus, affecting the
functions of the related genes (such as pyk, coding the pyruvate
kinase). As a result, the metabolic efficiencies of indigestible
nutrition substrates would be enhanced to adapt to the shifted
environment better. Conversely, as the WTP diet is low in fat,
the lower lipid substrate level in the intestinal environment
might lead to SNPs in lipid metabolism-relevant genes (such as
fadD, coding long-chain acyl-CoA synthetase) and, thus, would
furtherly reduce the efficiencies of lipid nutrition substrates.

Meanwhile, SNPs also emerged in some pathways related to
the adaptability to environmental changes and the virulence of
bacteria, such as the two-component system, transport system,
secretion system, and drug tolerance. The two-component system
is a signal transduction system widely existing in bacteria,
which plays an important role in responding to the constantly
changing environment by means of protein phosphorylation
(Wang et al., 2002; Zuniga et al., 2011). ABC transport system
utilizes the energy released by ATP hydrolysis to transport
various substrates across membranes, including amino acid,
sugar, lipid, polypeptide, alcohol, metal, drug, etc. (Koster, 2001;
Hollenstein et al., 2007). Additionally, the ABC transport system
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is also involved in some other biological processes, such as
RNA translation and DNA repair (Licht and Schneider, 2011).
HlyD, a member of the membrane fusion proteins (MFP), links
the inner and outer membranes in some way by spanning the
periplasm and is necessary for the secretion of repeats in toxin
(RTX) hemolytic toxins (Pimenta et al., 1999; Pimenta et al.,
2005). RTX is a kind of high-molecular weight protein, heat-
resistant, calcium-dependent toxin, secreted by a large class
of Gram-negative pathogens, which can lysis various creatural
target cells (Lally et al., 1999). Dietary changes brought drastic
variations to the intestinal environment and intense evolutionary
pressure on the gut microbiota in obese children. Though further
validation is needed, our results implied that, in response to this
environmental pressure, some gut microbial SNPs that occurred
might affect the efficiency and function of metabolic pathways
related to environmental adaptation, and might be relevant to the
health promotion of the obese children.

Previous studies had observed that Bifidobacterium was
the selectively promoted genera under the WTP intervention
due to their outperforming ability to utilize carbohydrates
(Xiao et al., 2014; Zhang et al., 2015; Zhao et al., 2018).
Indeed, Bifidobacterium became dominant strains responsible
for nutrition metabolism after the intervention in both PWS
and SO children based on SNP density analysis. Bifidobacterium
has been demonstrated to have various probiotic effects on
the health of the host, involving protection of the intestinal
barrier, modulation of the immune response, and effects of
antimicrobial, anti-inflammatory, and anti-obesity (Marteau
et al., 2001; Heuvelin et al., 2009; Turroni et al., 2014).
However, when we turned to BiasSNP analysis, unexpectedly, it
was Faecalibacterium, instead of Bifidobacterium, that had the
most nonsynonymous SNPs, suggesting that the intervention
mainly affected the functional mutations of Faecalibacterium,
especially F. prausnitzii. F. prausnitzii can reduce the synthesis
of colonic pro-inflammatory cytokines, induce the secretion of
anti-inflammatory cytokines, and inhibit the activation of NF-
κB and the production of IL-8 (Sokol et al., 2008; Miquel
et al., 2015), and produce butyrate to make protective and anti-
inflammatory effects (Ohira et al., 2017). In addition, the track
to strains carrying BiasSNPs showed that the dominant strains,
F. prausnitzii AF32-8AC and F. prausnitzii 942/30-2, converted
to F. prausnitzii SSTS Bg7063 and F. prausnitzii JG BgPS064
after the dietary intervention, indicating that dietary intervention
probably changed the dominant strains of F. prausnitzii by
changing the intestinal environment. If the study only focuses
on the composition or abundance of the gut microbiota as the
mainstream used, the important information about F. prausnitzii
would be neglected. A previous study of 31 F. prausnitzii genomes
reported that the functional differences among these strains were
mainly concentrated in the metabolism of carbohydrates and
amino acids (Fitzgerald et al., 2018). However, we found that the
functional differences of F. prausnitzii were not only on nutrition
metabolism but also in response to environmental changes, such
as signal transduction and membrane transport. This additional
finding suggested that SNP analysis on gut microbiota could
provide more details about the functions and characteristics at
the strain level.

Some differences in the gut microbial SNP existed between
PWS and SO children in response to the intervention. There
were more BiasSNPs between before and after intervention in
PWS children than in SO, suggesting that the influence of
high-fiber diet on the gut microbial SNP may be greater in
PWS than in SO. PWS-specific BiasSNPs were mainly related
to nutrition metabolism, protein transport, and environmental
adaptation. The phosphotransferase system (PTS) in bacteria can
transport carbohydrates into cells by phosphorylation (Deutscher
et al., 2007), and also perceive available carbohydrates and
intracellular energy, regulate the decomposition of metabolites,
and ensure the optimal utilization efficiency of carbohydrates
in a complex environment (Lengeler, 1996; Kotrba et al.,
2001). N-acetylgalactosamine-specific PTS, which correlated
with the nonsynonymous BiasSNPs in PWS, is a common
amino-sugar transport system in the gut microbiota, which
can regulate and transport acetyl galactosamine (Brinkkotter
et al., 2000; Ezquerro-Saenz et al., 2006). Additionally, PWS-
specific BiasSNPs were also concentrated in two kinds of proteins
translocation systems, general secretory (Sec) pathway and
twin-arginine translocation (Tat) system. The Sec pathway is
a common and universal protein translocation system, which
could integrate synthetic proteins into bacterial cell membranes
(Zhou et al., 2014; Tsirigotaki et al., 2017), while the Tat
system can transport folded proteins efficiently across the
cytoplasmic membranes (Palmer et al., 2010). Moreover, PWS-
specific BiasSNPs were also related to spore formation, which
is wrapped by a layer of complex macromolecular protein shell
under special conditions to resist the hydrolysis of enzyme and
protect the active molecules (Setlow, 2003; Kim et al., 2006).
These differences in gut microbial SNPs between PWS and SO
could not be discovered if only composition information was
used, which emphasized the importance of SNP analysis again.

In this work, the identified non-synonymous SNPs
were dominantly carried by F. prausnitzii strains. Though
F. prausnitzii were well known for their biodiversity, we
could not find functional reports about these SNPs. Future
efforts are needed to verify/discern the specific effects of
these SNPs on the encoded protein activity, their role on
metabolism under high-fiber dietary intervention, and their
potential beneficial or detrimental influences on host health.
The verification/discernment could be done through combining
molecular simulation or experimental design.

CONCLUSION

Our results demonstrated that the high-fiber dietary intervention
altered the gut microbial SNP patterns in obese children,
and intervened the efficiency and function of metabolic
pathways in nutrition metabolism and environmental adaptation.
F. prausnitzii had been screened out as the dominant strains
by changing multiple functional SNPs under the intervention,
which had the potential to improve obesity and could be used
as a probiotic supplementary in the prevention and treatment
of obesity. This bioinformatics study provided evidence for
the influence of dietary intervention on gut microbial SNPs,
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highlighted the importance of SNP analysis on searching
differential genes and functional strains from complexed
microbial ecosystem, and gave some enlightenment for obesity
or other disease treatment.
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