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Many microbes are parasitic within the human body, engaging in various physiological
processes and playing an important role in human diseases. The discovery of
new microbe–disease associations aids our understanding of disease pathogenesis.
Computational methods can be applied in such investigations, thereby avoiding
the time-consuming and laborious nature of experimental methods. In this study,
we constructed a comprehensive microbe–disease network by integrating known
microbe–disease associations from three large-scale databases (Peryton, Disbiome,
and gutMDisorder), and extended the random walk with restart to the network for
prioritizing unknown microbe–disease associations. The area under the curve values
of the leave-one-out cross-validation and the fivefold cross-validation exceeded 0.9370
and 0.9366, respectively, indicating the high performance of this method. Despite being
widely studied diseases, in case studies of inflammatory bowel disease, asthma, and
obesity, some prioritized disease-related microbes were validated by recent literature.
This suggested that our method is effective at prioritizing novel disease-related microbes
and may offer further insight into disease pathogenesis.

Keywords: microbe, disease, heterogeneous network, random walk with restart, microbe-disease associations

INTRODUCTION

Microbial communities, including fungi, archaea, protozoa, bacteria, and viruses, are distributed
across various organs of the human body, such as the skin, oral cavity, respiratory tract, and
intestine (Cheng et al., 2020; Qi et al., 2021; Sommer and Backhed, 2013). It is reported that
about 1014 microbial cells reside in the adult intestine, nearly 10 times the number of human
cells. Therefore, microbes play an important role in the human body, engaging in various
physiological processes, including metabolism regulation and immune defense (Das and Nair,
2019), and disorders relating to microbial communities within the human body have been linked
to various human diseases (Huang et al., 2020; Yang et al., 2016). For example, Qin et al.
(2010) found that inflammatory bowel disease (IBD), mainly in the forms of ulcerative colitis
and Crohn’s disease, was usually caused by low microbial diversity. The diversity of the gut
microbiota has also been associated with obesity, and the microbial-community composition can
be intentionally manipulated to regulate the energy balance of obese individuals (Ley et al., 2005).
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Chen and Blaser (2007) found that colonization with
Helicobacter pylori was inversely associated with asthma
and allergy occurrence, and childhood acquisition of H. pylori
can reduce these risks. The imbalance of microbial communities
has also been associated with various types of cancer, including
oral cancer (Zhang L. et al., 2019), colorectal cancer (Kim D.J.
et al., 2020), and lung cancer (Zheng et al., 2020). Microbe-based
disease pathogenesis is complex and can be influenced by
environmental factors such as diet, smoking, and antibiotics
therapy (Human Microbiome Project Consortium, 2012; Althani
et al., 2016; Chen H. et al., 2017; Liu W. et al., 2020). Exploring
and understanding microbe-disease associations, therefore,
presents a significant challenge (Cheng et al., 2019; Cheng, 2019).

With the development of high-throughput sequencing
technologies, such as 16S ribosomal RNA (16S rRNA), an
increasing number of microbes have been identified, accelerating
human disease research. Furthermore, projects such as the
Human Microbiome Project (HMP) (Gevers et al., 2012; Nadia,
and Ramana, 2020) and the Metagenomics of the Human
Intestinal Tract (MetaHIT) Project1 were initiated to reveal
the relationships between microbes and human diseases.
However, traditional experimental methods for investigating
microorganism-based pathogenesis are laborious and time-
consuming, hindering progress in this field. In recent years,
many computational methods have been successfully applied to
the prediction of new associations, for example, miRNA–target
association prediction (Deng et al., 2019; Yousef et al., 2007),
lncRNA–target association prediction (Wang et al., 2019a;
Zhang J. et al., 2019; Zhang Z. et al., 2019; Zhao et al., 2020),
drug–target association prediction (Liu H. et al., 2020; Luo
et al., 2017; Munir et al., 2019; Wang et al., 2020), drug–ncRNA
association prediction (Yang et al., 2020), and association
prediction between physical examination indicators with
diabetes (Yang et al., 2021). However, these computational
methods were only extended to the field of microbe–disease
association prediction when the Human Microbe–Disease
Association Database (HMDAD) became available (Ma
et al., 2017). The HMDAD is the first resource that collects
human microbe–disease associations through manual curation
from 61 microbiota publications before July 2014. HMDAD
documents 483 microbe–disease entries, including 39 diseases
and 292 microbes, providing the foundation for subsequent
computational–based microbe–disease association predictions.

Based on HMDAD, Chen X. et al. (2017) constructed
a microbe–disease network and developed the KATZHMDA
model for microbe–disease association prediction using the
KATZ measurement and Gaussian interaction profile kernel
similarity for microbes and diseases. Then, a series of
computational methods were proposed to infer potential
microbe–disease associations (Qu et al., 2019; Yang and Zou,
2020; Zhou et al., 2020). For example, Shen et al. (2017)
extended the random walk to the microbe–disease heterogeneous
network to compute the possibilities of microbe–disease
associations. Huang et al. (2017) proposed NGRHMDA, which
adopted neighbor-based collaborative filtering and a graph-based

1http://www.metahit.eu/

scoring method, to infer potential microbe–disease associations.
Wang et al. developed a prediction model, NBLPIHMDA, to
predict new microbe–disease associations. This model applied
bidirectional label propagation on the disease similarity network
and the microbe similarity network (Wang et al., 2019b). Liu Y.
et al. (2020) proposed a deep matrix factorization microbe–
disease association (DMFMDA) model, which combined the
linear modeling ability of matrix factorization and the non-
linear modeling ability of multi-layer perceptron to infer
potential microbe–disease associations. To our knowledge,
current computational methods for potential microbe–disease
association predictions are all based on known microbe–disease
associations from HMDAD. However, HMDAD documents the
microbe–disease entries of only 61 publications before July
2014 and has not been updated. In recent years, research
into microbe–disease associations have increased exponentially.
Accordingly, some online repositories have been developed to
record highly credible microbe–disease associations, such as
Peryton (Skoufos et al., 2021), Disbiome (Janssens et al., 2018),
and gutMDisorder (Cheng et al., 2020), which include thousands
of curated microbe–disease associations.

In this study, we constructed a two-layer heterogeneous
network by integrating large-scale known microbe–disease
associations from the Peryton, Disbiome, and gutMDisorder
databases, then extending the random walk with restart (RWR) to
the network to prioritize candidate microbe–disease associations.
The method fully considered the topological properties of
the comprehensive network and achieved reasonable efficacy.
Exploring microbe–disease relationships may not only help to
reveal the mechanisms of disease pathogenesis but also provide
insights to aid the prevention, diagnosis, and prognosis of
various diseases.

MATERIALS AND METHODS

Dataset Collection
The known microbe–disease associations used in this study
were downloaded from the Peryton database2 (Skoufos et al.,
2021), the Disbiome database3 (Janssens et al., 2018), and
the gutMDisorder database4 (Cheng et al., 2020). Peryton is
a novel resource that hosts more than 7,900 experimentally
supported microbe–disease associations through manual
curation of 314 publications. The database incorporates 43
diseases and 1,396 microorganisms, which are standardized via
Medical Subject Headings (MeSH) and the NCBI Taxonomy
database, respectively. Disbiome is a comprehensive database
that collects microbe–disease associations from nearly 1,200
publications. Disbiome records 372 diseases and 1,622 organisms.
The diseases are classified using the Medical Dictionary
for Regulatory Activities (MedDRA) classification system
and the microorganisms are normalized using NCBI and
SILVA taxonomies. The gutMDisorder database provides a

2https://dianalab.e-ce.uth.gr/peryton/
3https://disbiome.ugent.be/home
4http://bio-annotation.cn/gutMDisorder/home.dhtml
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comprehensive resource for dysbiosis of the gut microbiota in
disorders and interventions. gutMDisorder documents 2,263
experimentally supported microbe–disease associations between
579 gut microbes and 123 disorders or 77 intervention measures
in humans. The microbes and diseases are standardized via
the NCBI Taxonomy database and Disease Ontology (DO),
respectively. The human microbe–disease associations were
collected from the databases mentioned above to construct the
composite heterogeneous network.

Microbe–Disease Associations
The human microbe–disease associations were collected from
the three databases mentioned above. Since the identifiers
of diseases and microbes were inconsistent between different
databases, we standardized the diseases and microbes via MeSH
and the NCBI Taxonomy database, respectively. Finally, we
obtained 7,810 microbe–disease associations (1,389 microbes
and 41 diseases) from the Peryton database, 7,378 microbe–
disease associations (1,439 microbes and 251 diseases) from
the Disbiome database, and 1,249 microbe–disease associations
(412 microbes and 84 diseases) from the gutMDisorder database
(see Figure 1). We removed any repeated microbe–disease
associations from different resources, and finally obtained 11,037
distinct microbe–disease associations involving 287 human
diseases and 2,106 microbes, which were used to construct the
microbe–disease network.

Microbe Similarity
Based on the assumption that microbes with similar functions
tend to share similar interactions or non-interaction patterns
with diseases (Chen X. et al., 2017), we obtained the microbe
similarity via known human microbe–disease associations using
the Gaussian interaction profile kernel. The interaction profile
(IP) of a microbe represented the associations between this
microbe and 287 human diseases. The IP of microbe mi was
denoted as a vector, IP(mi), in which the jth element was set to
be 1 when the disease dj was confirmed to be associated with mi;
otherwise, it was set as 0. According to the interaction profiles,
the Gaussian interaction profile kernel microbe similarity was
defined as follows:

KM
(
mi, mj

)
= exp

(
−γm||IP (mi)− IP(mj)||

2) (1)

γm = γ′m

/( 1
nm

nm∑
k=1

||IP(mk)||
2

)
(2)

In the formula mentioned above, γm denotes the normalized
kernel bandwidth, which can be calculated by a new bandwidth
γ′m. In this study, we set γ′m=1 according to previous relevant
research (Chen X. et al., 2017). nm denotes the number
of microbes in this study. KM(mi,mj) denotes the Gaussian
interaction profile kernel similarity between two microbes, mi
and mj. We constructed a microbe–microbe network, in which
2,106 microbes and the similarity between them were represented
by nodes and edges, respectively.

Disease Similarity
Compared with microbe similarity, disease similarity has been
widely investigated. A variety of disease similarity in Cheng’s
study (Cheng et al., 2018) and the Gaussian interaction profile
kernel disease similarity were used in this study to obtain the
disease similarity. Firstly, we calculated the Gaussian interaction
profile kernel similarity between disease di and dj as follows:

KD
(
di, dj

)
= exp

(
−γd||IP

(
di
)
− IP(dj)||

2
)

(3)

γd = γ′d

/( 1
nd

nd∑
k=1

||IP(dk)||
2

)
(4)

In the formula mentioned above, γ′d was also set to be 1 and nd
denotes the number of diseases in this study. KD(di,dj) denotes
the Gaussian interaction profile kernel similarity between two
diseases, di and dj.

Cheng et al. (2018) provided DincRNA, a comprehensive
bioinformatics resource for disease similarity calculation and
non-coding RNA functional analysis. They utilized five methods,
i.e., those of Wang et al. (2007), Resnik (1995), Lin (1998), PSB
(Mathur and Dinakarpandian, 2012), and SemFunSim (Cheng
et al., 2014) to calculate the similarity of pairwise diseases
(SPWD). These methods took into consideration semantic
associations, information content (IC), biological processes, and
functional associations. The disease similarity score between di
and dj in Cheng’s study was defined as SPWD(di,dj). Finally, the
average value of Gaussian interaction profile kernel similarity as
well as Cheng’s SPWD was taken as disease similarity, which is
shown as follows:

SD
(
di, dj

)
=

KD
(
di, dj

)
+ SPWD

(
di, dj

)
2

(5)

Finally, we constructed a disease–disease network, comprising
287 human diseases, and the similarity between them was
represented by edges.

Construction of the Composite
Heterogeneous Weighted Network
We constructed a composite heterogeneous weighted network by
integrating the microbe–disease, microbe–microbe, and disease–
disease associations mentioned above. In the composite network,
there were two types of nodes, 2,106 microbes and 287 human
diseases. The edges between microbes and diseases represented
11,042 distinct microbe–disease associations, and the edge weight
was set to be 1 when the microbe mi was confirmed to be
associated with disease dj; otherwise, it was 0. The edges between
different microbes were based on microbe similarity, and the edge
weight between node mi and mj was denoted by KM(mi,mj). The
edges between different diseases were based on disease similarity,
and the edge weight between nodes di and dj was denoted by
SD(di,dj).
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FIGURE 1 | Venn diagram of overlapping microbes (A) and diseases (B) from the Peryton, Disbiome, and gutMDisorder databases.

Prioritizing Candidate Disease-Related
Microbes Based on the Composite
Network
Based on the composite heterogeneous weighted network, we
used the RWR to prioritize candidate disease-related microbes
by fully exploiting the heterogeneous biological associations. The
RWR algorithm simulates a random walker that starts from the
seed nodes and then moves to their immediate neighbors or
stays at the current nodes according to the probability transition
matrix. The iterative transition is repeated until all vertices
achieve a steady state. In this study, the formula of RWR is
defined as:

Pt+1 = (1− r) WPt + rP0 (6)

In the abovementioned formula, r∈(0,1) denotes the restart
probability. Pt denotes a vector in which the ith element holds the
probability of being at node i at step t. W denotes the transition
matrix, which is a column-normalized adjacency matrix of the
composite network. Here, we defined the adjacency matrix W as
follows:

W =
[

AM B
BT AD

]
(7)

B is a probability transition matrix from microbe network to
disease network. Accordingly, BT is the transpose of B. Let λ

be the probability of the random walker jumping from microbe
network to disease network or vice versa. We defined the
transition probability from microbe network to disease network
as follows:

B(i,j) = p
(
dj
∣∣ mi

)
=

{
λBij/

∑
j Bij, if

∑
j Bij 6= 0

0, otherwise
(8)

AM is the microbe network transition matrix. The element of
AM(i,j) represents the probability of the random walker transition
from mi to mj, which is defined as follows:

AM(i,j) =

{
(1− λ)M(i,j)/

∑
j M(i,j), if

∑
j Bij 6= 0

M(i,j)/
∑

j M(i,j), otherwise
(9)

Similarly, AD is the disease network transition matrix. The
element of AD represents the probability of the random walker
transition from di to dj, which is defined as follows:

AD(i,j) =

{
(1− λ)D(i,j)/

∑
j D(i,j), if

∑
j Bij 6= 0

D(i,j)/
∑

j D(i,j), otherwise
(10)

P0 denotes the initial probability vector, which is a normalized

unit vector. P0 =

[
m0
d0

]
represents the initial probability vector

for the heterogeneous network. m0 and d0 represent the initial
probabilities of the microbe network and the disease network,
respectively. After many iterations, when the difference between
Pt and Pt+1 falls below 10−10, it achieves a steady state. Then,
microbes and diseases are ranked based on the steady probability.
The flowchart of this work is shown in Figure 2.

RESULTS

Performance Evaluation
To assess the performance of our method, we determined its
ability to identify known disease-related microbes. The leave-
one-out cross-validation (LOOCV) and fivefold cross-validation
(fivefold CV) methods (Dao et al., 2020; Wang et al., 2021)
were applied on known microbe–disease associations for 236
diseases, which included at least five known microbes. The
receiver operating characteristic curve (ROC) plots the true-
positive rate (sensitivity) versus false-positive rate (1 - specificity)
at different cutoffs, and the area under the curve (AUC) was used
to represent the results of cross-validation (Feng et al., 2019; Lv
et al., 2020).

For LOOCV, for every disease, each known disease-related
microbe was considered as one test sample, the remaining
known disease-related microbes were considered as training
samples, and all other unknown disease-related microbes in the
composite network were considered as candidate samples. Then,
we obtained a rank list of the test samples and all candidate
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FIGURE 2 | The flowchart of prioritization of candidate disease-related microbes.

samples according to prediction scores by performing our
method. The model would achieve high prediction performance
when the test samples ranked higher than the given threshold.
The ROC and AUC values indicated the performance of the
method. In our study, we found that all diseases achieved high
predictive performance and the AUC values of LOOCV ranged
from 0.9370 to 1 (see Supplementary Table 1).

For fivefold CV, for every disease, a set of known disease-
related microbes was equally and randomly divided into five
subparts. Each subpart was considered as the test sample in
turn, and the other four subparts were considered as training
samples; all of the other unknown disease-related microbes in
the composite network were considered as candidate samples.
Considering the potential bias caused by random sample division,
we repeated this process 10 times to obtain an average AUC.
Similar to LOOCV, we found that the AUC values of fivefold
CV ranged from 0.9366 to 1 (Supplementary Table 2). The high
predictive power indicated that the approach utilizing integrated

interactions from the composite two-layer network was highly
efficient in prioritizing candidate disease-related microbes.

There are two parameters in our method, one is the restart
probability denoted as r, and the other is the probability of the
random walker jumping between different networks denoted as
λ. We set various values under the framework of LOOCV and
fivefold CV to evaluate the impact of these parameters and found
that the method achieved its best performance when r was set as
0.1 and λ was set as 0.5.

Case Studies
We integrated a composite network that included 2,393 nodes
(2,106 microbes and 287 human diseases) and 11,037 edges. The
RWR algorithm, which makes full use of the network topology,
was applied to identify candidate microbes involved in diseases
among the composite network of 236 diseases. To verify the
ability of our method to discover unknown associations, we
implemented case studies on IBD, asthma, and obesity. The
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FIGURE 3 | The predictive power of LOOCV (left) and fivefold CV (right) for IBD (A), asthma (B), and obesity (C).

resulting list of the top 30 candidate microbes associated with
these diseases is shown in Supplementary Table 3.

Inflammatory Bowel Disease
Inflammatory bowel disease, mainly in the form of ulcerative
colitis and Crohn’s disease, is a chronic relapsing inflammatory
disease of the colon and small intestine that affects an increasing
number of people (Jostins et al., 2012). When considering case
studies of IBD, ROC curves were obtained (Figure 3A) and the
AUC values of LOOCV and fivefold CV for IBD were both
0.9913. Although there have been many studies on IBD–microbe

associations (with 106 known IBD-related microbes), 16 of
the top 30 prioritized IBD–microbe associations were manually
confirmed by newly published literature (Table 1). For example,
Roseburia is a top-ranked microbe in the prioritized IBD–related
microbe list. Kim E.S. et al. (2020) found higher fecal calprotectin
(FC) levels in pregnant patients with IBD through pregnancy,
and Roseburia was positively correlated with maternal FC levels
at T3. Sokol et al. (2018) found that IBD patients with Clostridium
difficile infection (CDI) had more pronounced dysbiosis of Dorea,
which was also a top-ranked microbe in the prioritized IBD-
related microbe list. Toyonaga et al. (2015) found that compared
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with IL-10 knockout mice, the level of Clostridium cluster XVIII
was significantly higher in OPN/IL-10 double knockout mice,
when the role of osteopontin in the pathophysiology of IBD
was investigated.

Asthma
Asthma is a common chronic inflammatory disease caused by
a variety of factors, including genetic and environment factors.
Microorganisms may also play a role in the pathogenesis of
asthma. Here, we considered asthma case studies, the ROC
curves for which are displayed in Figure 3B, and the AUC
values of LOOCV and fivefold CV for asthma were 0.9900 and
0.9898, respectively. Since asthma and its related microbes have
been widely studied (with 108 known asthma-related microbes),
seven of the top 30 prioritized asthma–microbe associations were
manually confirmed by newly published literature (Table 2).
Blautia, a top-ranked microbe in the prioritized IBD-related
microbe list, was found to be present at high concentration in
asthma patients (Fu et al., 2021). Dong et al. (2020) showed
that treatment with Gu–Ben–Fang–Xiao Decoction (GBFXD)
increased the abundance of Lachnospiraceae in asthmatic
mice, which consequently led to elevated levels of short-
chain fatty acids. Patricia et al. found that the abundance of
Epicoccum was negatively associated with male asthma patients
(Segura-Medina et al., 2019).

Obesity
Obesity is a disease associated with a body mass index of 30 kg/m2

or higher. It is prevalent in both adults and children worldwide
and has been linked to health complications such as rheumatoid
arthritis, nonallergic rhinitis, and cancer (Apovian, 2016). Here,
we considered obesity case studies, the ROC curves for which
are displayed in Figure 3C, and the AUC values of LOOCV
and fivefold CV for obesity were 0.9807 and 0.9808, respectively.
Although obesity and its related microbes have been widely
studied (with 204 known obesity-related microbes), seven of the

TABLE 1 | Literature verification of the predicted IBD-related microbes.

Microbe Literature

Helotiales PMID:27811291

Roseburia PMID:33307026

Lactobacillus sp. PMID:30565527

Lachnospira PMID:33604319

Mycobacteriaceae PMID:32635236

Streptococcus sp. PMID:19095961

Erysipelotrichaceae PMID:33059653

Dorea PMID:28786749

Bacteroides fragilis group PMID:17897884

Bacteroides stercoris PMID:32765449

Akkermansia PMID:31892611

Klebsiella PMID:32758418

Clostridium cluster XVIII PMID:26274807

Megamonas PMID:31776537

Clostridium sp. PMID:20552029

Fusobacterium mortiferum PMID:17607724

top 30 prioritized obesity–microbe associations were manually
confirmed by newly published literature (Table 3). Raman et al.
(2013) found that Robinsoniella, a top-ranked microbe in the
obesity-related microbe list, was present at higher levels in
nonalcoholic fatty liver disease patients and was implicated in
the etiology of, and complications related to, obesity. Zeng
et al. (2019) showed that Dorea was positively correlated with
bodyweight and serum lipids, which were two significant clinical
indicators of obesity.

DISCUSSION

A wide variety of microbes have been found to be parasitic
within the human body. Such microbes play important roles in
various physiological processes, such as metabolism regulation
and immune defense. Research has also revealed that imbalances
in microbial communities are closely associated with human
diseases. Thus, identifying novel disease-related microbes is
vital when investigating disease pathogenesis, and computational
methods have been effective in achieving this. To date, the
computational methods that have been applied to identify
novel microbe–disease associations have all been based on the
HMDAD database, which only recorded 483 microbe–disease
entries from 61 publications before July 2014. In this study,
we constructed a comprehensive microbe–disease network by
integrating known microbe–disease associations from three novel
large-scale databases (Peryton, Disbiome, and gutMDisorder),
and extended the RWR to the network for prioritizing candidate
disease-related microbes. The AUC values of the LOOCV and
fivefold CV for 236 human diseases exceeded 0.9370 and 0.9366,

TABLE 2 | Literature verification of the predicted asthma–related microbes.

Microbe Literature

Epicoccum PMID:30961954

Galactomyces PMID:27711990

Citrobacter koseri PMID:29062711

Blautia PMID:33221308

Clostridium sp. PMID:32009325

Lachnospiraceae PMID:32431609

Unclassified Lactobacillales PMID:27838347

TABLE 3 | Literature verification of the predicted obesity-related microbes.

Microbe Literature

Unclassified Lachnospiraceae PMID:32784721

Dialister succinatiphilus PMID:28261164

Clostridium cluster XVIII PMID:31281460

rc4-4 PMID:27304513

Dorea PMID:31530820

Robinsoniella PMID:23454028

Enterobacteriaceae PMID:32805279

The case studies mentioned above indicate that our method is effective for
prioritizing novel disease-related microbes, and the prioritized microbes may be
used as biomarkers for disease prevention, diagnosis, and prognosis.

Frontiers in Microbiology | www.frontiersin.org 7 July 2021 | Volume 12 | Article 685549

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-685549 July 3, 2021 Time: 17:16 # 8

Yang et al. Prioritizing Disease-Related Microbes

respectively, indicating the high performance of our method.
Furthermore, we considered case studies of IBD, asthma, and
obesity. Although these three diseases have been widely studied,
some prioritized disease-related microbes were validated by new
publications. This finding suggested that our method is an
effective method for prioritizing novel disease-related microbes,
thereby aiding our understanding of disease pathogenesis.

There were some limitations in our current study. Firstly,
the number of diseases considered in our study was small. This
reflects the fact that large-scale microbe studies across a wide
range of diseases are lacking, although the development of high-
throughput sequencing technologies, such as 16S rRNA, may
address this. Secondly, the microbe similarity used in this study
was only based on known human microbe–disease associations
using a Gaussian interaction profile kernel, which may lead
to a defective heterogeneous network. This limitation may be
addressed by further research into microbial functions and by
integrating the functional similarities of microbes.

DATA AVAILABILITY STATEMENT

The known microbe-disease associations used in this study
were downloaded from Peryton database (https://dianalab.e-
ce.uth.gr/peryton/#/associations), Disbiome database (https://
disbiome.ugent.be/export), and gutMDisorder database (http://
bio-annotation.cn/gutMDisorder/resource.dhtml). The raw data
used in this study were downloaded from the databases

mentioned above, which is open source without any accession
number. Other dataset presented in the study are included in the
article/Supplementary Material.

AUTHOR CONTRIBUTIONS

LC and JL conceived and designed the study. HY and CQ
collected and processed the data. HY and PW performed the
experiments. HY and FT wrote the manuscript. All authors read
and approved the final manuscript.

FUNDING

This work was supported by the Tou-Yan Innovation Team
Program of the Heilongjiang Province (2019–15), the National
Natural Science Foundation of China (61902095 and 61871160),
the Heilongjiang Province Postdoctoral Fund (LBH-Q20030),
and the Young Innovative Talents in Colleges and Universities
of Heilongjiang Province (2018–69).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fmicb.
2021.685549/full#supplementary-material

REFERENCES
Althani, A. A., Marei, H. E., Hamdi, W. S., Nasrallah, G. K., El Zowalaty,

M. E., Al Khodor, S., et al. (2016). Human microbiome and its association
with health and diseases. J. Cell Physiol. 231, 1688–1694. doi: 10.1002/jcp.
25284

Apovian, C. M. (2016). Obesity: definition, comorbidities, causes, and burden. Am.
J. Manag. Care 22(Suppl. 7), s176–s185.

Chen, H., Peng, S., Dai, S., Zou, Q., Yi, B., Yang, X., et al. (2017a). Oral
microbial community assembly under the influence of periodontitis. Plos One
12:e0182259. doi: 10.1371/journal.pone.0182259

Chen, X., Huang, Y. A., You, Z. H., Yan, G. Y., and Wang, X. S. (2017b). A novel
approach based on KATZ measure to predict associations of human microbiota
with non-infectious diseases. Bioinformatics 33, 733–739.

Chen, Y., and Blaser, M. J. (2007). Inverse associations of helicobacter pylori with
asthma and allergy. Arch. Intern. Med. 167, 821–827. doi: 10.1001/archinte.167.
8.821

Cheng, L. (2019). Computational and biological methods for gene therapy. Curr.
Gene Ther. 19:210. doi: 10.2174/156652321904191022113307

Cheng, L., Hu, Y., Sun, J., Zhou, M., and Jiang, Q. (2018). DincRNA:
a comprehensive web-based bioinformatics toolkit for exploring disease
associations and ncRNA function. Bioinformatics 34, 1953–1956. doi: 10.1093/
bioinformatics/bty002

Cheng, L., Li, J., Ju, P., Peng, J., and Wang, Y. (2014). SemFunSim: a
new method for measuring disease similarity by integrating semantic and
gene functional association. PLoS One 9:e99415. doi: 10.1371/journal.pone.
0099415

Cheng, L., Qi, C., Zhuang, H., Fu, T., and Zhang, X. (2020). gutMDisorder: a
comprehensive database for dysbiosis of the gut microbiota in disorders and
interventions. Nucleic Acids Res. 48, D554–D560.

Cheng, L., Zhao, H., Wang, P., Zhou, W., Luo, M., Li, T., et al. (2019).
Computational methods for identifying similar diseases. Mol. Ther. Nucleic
Acids 18, 590–604. doi: 10.1016/j.omtn.2019.09.019

Dao, F. Y., Lv, H., Zhang, D., Zhang, Z. M., Liu, L., Lin, H., et al. (2020). DeepYY1:
a deep learning approach to identify YY1-mediated chromatin loops. Brief.
Bioinform. bbaa356. [Epub ahead of print].

Das, B., and Nair, G. B. (2019). Homeostasis and dysbiosis of the gut microbiome
in health and disease. J. Biosci. 44:117.

Deng, L., Wang, J., and Zhang, J. (2019). Predicting gene ontology function of
human microRNAs by integrating multiple networks. Front. Genet. 10:3. doi:
10.3389/fgene.2019.00003

Dong, Y., Yan, H., Zhao, X., Lin, R., Lin, L., Ding, Y., et al. (2020). Gu-Ben-Fang-
Xiao decoction ameliorated murine asthma in remission stage by modulating
microbiota-acetate-tregs axis. Front. Pharmacol. 11:549. doi: 10.3389/fphar.
2020.00549

Feng, C. Q., Zhang, Z. Y., Zhu, X. J., Lin, Y., Chen, W., Tang, H., et al. (2019).
iTerm-PseKNC: a sequence-based tool for predicting bacterial transcriptional
terminators. Bioinformatics 35, 1469–1477. doi: 10.1093/bioinformatics/bty827

Fu, X., Li, Y., Meng, Y., Yuan, Q., Zhang, Z., Wen, H., et al. (2021). Derived habitats
of indoor microbes are associated with asthma symptoms in Chinese university
dormitories. Environ. Res. 194:110501. doi: 10.1016/j.envres.2020.110501

Gevers, D., Knight, R., Petrosino, J. F., Huang, K., McGuire, A. L., Birren, B. W.,
et al. (2012). The human microbiome project: a community resource for the
healthy human microbiome. PLoS Biol. 10:e1001377. doi: 10.1371/journal.pbio.
1001377

Huang, S. Y., Xiang, X., Qiu, L., Wang, L., Zhu, B., Guo, R., et al. (2020).
Transfection of TGF-beta shRNA by using ultrasound-targeted microbubble
destruction to inhibit the early adhesion repair of rats wounded achilles
tendon in vitro and in vivo. Curr. Gene Ther. 20, 71–81. doi: 10.2174/
1566523220666200516165828

Huang, Y. A., You, Z. H., Chen, X., Huang, Z. A., Zhang, S., Yan, G. Y., et al. (2017).
Prediction of microbe-disease association from the integration of neighbor and
graph with collaborative recommendation model. J. Transl. Med. 15:209.

Human Microbiome Project Consortium (2012). Structure, function and diversity
of the healthy human microbiome. Nature 486, 207–214. doi: 10.1038/
nature11234

Frontiers in Microbiology | www.frontiersin.org 8 July 2021 | Volume 12 | Article 685549

https://dianalab.e-ce.uth.gr/peryton/#/associations
https://dianalab.e-ce.uth.gr/peryton/#/associations
https://disbiome.ugent.be/export
https://disbiome.ugent.be/export
http://bio-annotation.cn/gutMDisorder/resource.dhtml
http://bio-annotation.cn/gutMDisorder/resource.dhtml
https://www.frontiersin.org/articles/10.3389/fmicb.2021.685549/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmicb.2021.685549/full#supplementary-material
https://doi.org/10.1002/jcp.25284
https://doi.org/10.1002/jcp.25284
https://doi.org/10.1371/journal.pone.0182259
https://doi.org/10.1001/archinte.167.8.821
https://doi.org/10.1001/archinte.167.8.821
https://doi.org/10.2174/156652321904191022113307
https://doi.org/10.1093/bioinformatics/bty002
https://doi.org/10.1093/bioinformatics/bty002
https://doi.org/10.1371/journal.pone.0099415
https://doi.org/10.1371/journal.pone.0099415
https://doi.org/10.1016/j.omtn.2019.09.019
https://doi.org/10.3389/fgene.2019.00003
https://doi.org/10.3389/fgene.2019.00003
https://doi.org/10.3389/fphar.2020.00549
https://doi.org/10.3389/fphar.2020.00549
https://doi.org/10.1093/bioinformatics/bty827
https://doi.org/10.1016/j.envres.2020.110501
https://doi.org/10.1371/journal.pbio.1001377
https://doi.org/10.1371/journal.pbio.1001377
https://doi.org/10.2174/1566523220666200516165828
https://doi.org/10.2174/1566523220666200516165828
https://doi.org/10.1038/nature11234
https://doi.org/10.1038/nature11234
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-685549 July 3, 2021 Time: 17:16 # 9

Yang et al. Prioritizing Disease-Related Microbes

Janssens, Y., Nielandt, J., Bronselaer, A., Debunne, N., Verbeke, F., Verbeke, F.,
et al. (2018). Disbiome database: linking the microbiome to disease. BMC
Microbiol. 18:50. doi: 10.1186/s12866-018-1197-5

Jostins, L., Ripke, S., Weersma, R. K., Duerr, R. H., McGovern, D. P., Hui, K. Y.,
et al. (2012). Host-microbe interactions have shaped the genetic architecture of
inflammatory bowel disease. Nature 491, 119–124.

Kim, D. J., Yang, J., Seo, H., Lee, W. H., Lee, D. H., Lee, S., et al. (2020b). Colorectal
cancer diagnostic model utilizing metagenomic and metabolomic data of stool
microbial extracellular vesicles. Sci. Rep. 10:2860.

Kim, E. S., Tarassishin, L., Eisele, C., Barre, A., Nair, N., Rendon, A., et al. (2020a).
Longitudinal changes in fecal calprotectin levels among pregnant women with
and without inflammatory bowel disease and their babies. Gastroenterology 160,
1118–1130.e3.

Ley, R. E., Bäckhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., Gordon, J. I.,
et al. (2005). Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. U. S. A.
102, 11070–11075.

Lin, D. (1998). “An information-theoretic definition of similarity, in Proceedings of
the 15th International Conference on Machine Learning, ed M. Kaufman (San
Francisco, CA), 296–304.

Liu, H., Zhang, W., Zou, B., and Wang, J. (2020a). DrugCombDB: a comprehensive
database of drug combinations toward the discovery of combinatorial therapy.
Nucleic Acids Res. 48, D871–D881.

Liu, W., Haran, J. P., Allison, J. J., Ye, S., Tjia, J., Bucci, V., et al. (2020b).
High-dimensional causal mediation analysis with a large number of mediators
clumping at zero to assess the contribution of the microbiome to the risk of
bacterial pathogen colonization in older adults. Curr. Bioinform. 15, 671–696.
doi: 10.2174/1574893614666191115123219

Liu, Y., Wang, S., Zhang, J., and Zhang, W. (2020c). DMFMDA: prediction of
microbe-disease associations based on deep matrix factorization using bayesian
personalized ranking. IEEE/ACM Trans. Comput. Biol. Bioinform. [Epub ahead
of print].

Luo, Y., Zhao, X., Zhou, J., Yang, J., Zhang, Y., Kuang, W., et al. (2017). A network
integration approach for drug-target interaction prediction and computational
drug repositioning from heterogeneous information. Nat. Commun. 8:573.

Lv, H., Dao, F. Y., Guan, Z. X., Li, Y. W., Lin, H., Yang, H., et al. (2020). Deep-
Kcr: accurate detection of lysine crotonylation sites using deep learning method.
Brief. Bioinform. bbaa255. [Epub ahead of print].

Ma, W., Zhang, L., Zeng, P., Huang, C., Li, J., Geng, B., et al. (2017). An analysis of
human microbe-disease associations. Brief. Bioinform. 18, 85–97.

Mathur, S., and Dinakarpandian, D. (2012). Finding disease similarity based on
implicit semantic similarity. J. Biomed. Inform. 45, 363–371. doi: 10.1016/j.jbi.
2011.11.017

Munir, A., Malik, S. I., and Malik, K. A. (2019). Proteome mining for the
identification of putative drug targets for human pathogen clostridium tetani.
Curr. Bioinform. 14, 532–540. doi: 10.2174/1574893613666181114095736

Nadia, and Ramana, J. (2020). The human oncobiome database: a database of
cancer microbiome datasets. Curr. Bioinform. 15, 472–477. doi: 10.2174/
1574893614666190902152727

Qi, C., Wang, P., Fu, T., Lu, M., Cai, Y., Chen, X., et al. (2021). A comprehensive
review for gut microbes: technologies, interventions, metabolites and diseases.
Brief. Funct. Genomics 20, 42–60. doi: 10.1093/bfgp/elaa029

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., et al. (2010).
A human gut microbial gene catalogue established by metagenomic sequencing.
Nature 464, 59–65.

Qu, K., Guo, F., Liu, X., Lin, Y., and Zou, Q. (2019). Application of machine
learning in microbiology. Front. Microbiol. 10:827. doi: 10.3389/fmicb.2019.
00827

Raman, M., Ahmed, I., Gillevet, P. M., Probert, C. S., Ratcliffe, N. M., Smith, S.,
et al. (2013). Fecal microbiome and volatile organic compound metabolome in
obese humans with nonalcoholic fatty liver disease. Clin. Gastroenterol. Hepatol.
11,868-75.e1-3.

Resnik, P. (1995). Using information content to evaluate semantic similarity in a
taxonomy. arXiv [Preprint]. cmp-lg/9511007.

Segura-Medina, P., Vargas, M. H., Aguilar-Romero, J. M., Arreola-Ramírez, J. L.,
Miguel-Reyes, J. L., and Salas-Hernández, J. (2019). Mold burden in house
dust and its relationship with asthma control. Respir. Med. 150, 74–80. doi:
10.1016/j.rmed.2019.02.014

Shen, X., Chen, Y., Jiang, X., Hu, X., He, T., Yang, J., et al. (2017). Prioritizing
disease-causing microbes based on random walking on the heterogeneous
network. Methods 124, 120–125. doi: 10.1016/j.ymeth.2017.06.014

Skoufos, G., Alexiou, A., Kavakiotis, L., Lambropoulou, A., Kotsira, V., Tastsoglou,
S., et al. (2021). Peryton: a manual collection of experimentally supported
microbe-disease associations. Nucleic Acids Res. 49. 1328–1333. doi: 10.1093/
nar/gkaa902

Sokol, H., Jegou, S., McQuitty, C., Straub, M., Leducq, V., Landman, C., et al.
(2018). Specificities of the intestinal microbiota in patients with inflammatory
bowel disease and Clostridium difficile infection. Gut Microbes 9, 55–60. doi:
10.1080/19490976.2017.1361092

Sommer, F., and Backhed, F. (2013). The gut microbiota–masters of host
development and physiology. Nat. Rev. Microbiol. 11, 227–238. doi: 10.1038/
nrmicro2974

Toyonaga, T., Nakase, H., Ueno, S., Matsuura, M., Yoshino, T., Honzawa, Y.,
et al. (2015). Osteopontin deficiency accelerates spontaneous colitis in mice
with disrupted gut microbiota and macrophage phagocytic activity. PLoS One
10:e0135552. doi: 10.1371/journal.pone.0135552

Wang, D., Jiang, Y., Wang, D., Zhang, Z., Mao, Z., Lin, H., et al. (2021). DM3Loc:
multi-label mRNA subcellular localization prediction and analysis based on
multi-head self-attention mechanism. Nucleic Acids Res. 49:e46. doi: 10.1093/
nar/gkab016

Wang, J., Wang, H., Wang, X., and Chang, H. (2020). Predicting drug-target
interactions via FM-DNN learning. Curr. Bioinform. 15, 68–76. doi: 10.2174/
1574893614666190227160538

Wang, J. Z., Du, Z., Payattakool, R., Yu, P. S., and Yu, P. S. (2007). A new method
to measure the semantic similarity of GO terms. Bioinformatics 23, 1274–1281.
doi: 10.1093/bioinformatics/btm087

Wang, L., Wang, Y., Li, H., Feng, X., Yuan, D., and Yang, J. (2019b). A bidirectional
label propagation based computational model for potential microbe-disease
association prediction. Front. Microbiol. 10:684. doi: 10.3389/fmicb.2019.
00684

Wang, L., Xuan, Z., Zhou, S., Kuang, L., and Pei, T. (2019a). A novel model
for predicting LncRNA-disease associations based on the LncRNA-MiRNA-
disease interactive network. Curr. Bioinform. 14, 269–278. doi: 10.2174/
1574893613666180703105258

Yang, F., and Zou, Q. (2020). mAML: an automated machine learning pipeline
with a microbiome repository for human disease classification. Database
2020:baaa050.

Yang, H., Luo, Y., Ren, X., Wu, M., He, X., Peng, B., et al. (2021). Risk prediction
of diabetes: big data mining with fusion of multifarious physical examination
indicators. Inf. Fusion 75, 140–149. doi: 10.1016/j.inffus.2021.02.015

Yang, H., Tang, H., Chen, X. X., Zhang, C. J., Zhu, P. P., Ding, H., et al.
(2016). Identification of secretory proteins in mycobacterium tuberculosis using
pseudo amino acid composition. Biomed. Res. Int. 2016:5413903.

Yang, H., Xu, Y., Shang, D., Shi, H., Zhang, C., Dong, Q., et al. (2020). ncDRMarker:
a computational method for identifying non-coding RNA signatures of drug
resistance based on heterogeneous network. Ann. Transl. Med. 8:1395. doi:
10.21037/atm-20-603

Yousef, M., Jung, S., Kossenkov, A. V., Showe, L. C., and Showe, M. K.
(2007). Naive bayes for microRNA target predictions–machine learning for
microRNA targets. Bioinformatics 23, 2987–2992. doi: 10.1093/bioinformatics/
btm484

Zeng, Q., Li, D., He, Y., Li, Y., Yang, Z., Zhao, X., et al. (2019). Discrepant
gut microbiota markers for the classification of obesity-related metabolic
abnormalities. Sci. Rep. 9:13424.

Zhang, J., Zhang, Z., Chen, Z., and Deng, L. (2019a). Integrating multiple
heterogeneous networks for novel lncrna-disease association inference.
IEEE/ACM Trans. Comput. Biol. Bioinform. 16, 396–406. doi: 10.1109/tcbb.
2017.2701379

Zhang, L., Liu, Y., Zheng, H. J., and Zhang, C. P. (2019b). The oral microbiota
may have influence on oral cancer. Front. Cell Infect. Microbiol. 9:476. doi:
10.3389/fcimb.2019.00476

Zhang, Z., Zhang, J., Fan, C., Tang, Y., and Deng, L. (2019c). KATZLGO: large-
scale prediction of LncRNA functions by using the KATZ measure based on
multiple networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 16, 407–416.
doi: 10.1109/tcbb.2017.2704587

Frontiers in Microbiology | www.frontiersin.org 9 July 2021 | Volume 12 | Article 685549

https://doi.org/10.1186/s12866-018-1197-5
https://doi.org/10.2174/1574893614666191115123219
https://doi.org/10.1016/j.jbi.2011.11.017
https://doi.org/10.1016/j.jbi.2011.11.017
https://doi.org/10.2174/1574893613666181114095736
https://doi.org/10.2174/1574893614666190902152727
https://doi.org/10.2174/1574893614666190902152727
https://doi.org/10.1093/bfgp/elaa029
https://doi.org/10.3389/fmicb.2019.00827
https://doi.org/10.3389/fmicb.2019.00827
https://doi.org/10.1016/j.rmed.2019.02.014
https://doi.org/10.1016/j.rmed.2019.02.014
https://doi.org/10.1016/j.ymeth.2017.06.014
https://doi.org/10.1093/nar/gkaa902
https://doi.org/10.1093/nar/gkaa902
https://doi.org/10.1080/19490976.2017.1361092
https://doi.org/10.1080/19490976.2017.1361092
https://doi.org/10.1038/nrmicro2974
https://doi.org/10.1038/nrmicro2974
https://doi.org/10.1371/journal.pone.0135552
https://doi.org/10.1093/nar/gkab016
https://doi.org/10.1093/nar/gkab016
https://doi.org/10.2174/1574893614666190227160538
https://doi.org/10.2174/1574893614666190227160538
https://doi.org/10.1093/bioinformatics/btm087
https://doi.org/10.3389/fmicb.2019.00684
https://doi.org/10.3389/fmicb.2019.00684
https://doi.org/10.2174/1574893613666180703105258
https://doi.org/10.2174/1574893613666180703105258
https://doi.org/10.1016/j.inffus.2021.02.015
https://doi.org/10.21037/atm-20-603
https://doi.org/10.21037/atm-20-603
https://doi.org/10.1093/bioinformatics/btm484
https://doi.org/10.1093/bioinformatics/btm484
https://doi.org/10.1109/tcbb.2017.2701379
https://doi.org/10.1109/tcbb.2017.2701379
https://doi.org/10.3389/fcimb.2019.00476
https://doi.org/10.3389/fcimb.2019.00476
https://doi.org/10.1109/tcbb.2017.2704587
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-685549 July 3, 2021 Time: 17:16 # 10

Yang et al. Prioritizing Disease-Related Microbes

Zhao, T., Hu, Y., Peng, J., and Cheng, L. (2020). DeepLGP: a novel deep learning
method for prioritizing lncRNA target genes. Bioinformatics 36, 4466–4472.
doi: 10.1093/bioinformatics/btaa428

Zheng, Y., Fang, Z., Xue, Y., Zhang, J., Zhu, J., Gao, R., et al. (2020). Specific gut
microbiome signature predicts the early-stage lung cancer. Gut Microbes 11,
1030–1042. doi: 10.1080/19490976.2020.1737487

Zhou, J., Wang, Y., and Lei, Q. (2020). Using bioinformatics to quantify the
variability and diversity of the microbial community structure in pond
ecosystems of a subtropical catchment. Curr. Bioinform. 15, 1178–1186. doi:
10.2174/1574893615999200422120819

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2021 Yang, Tong, Qi, Wang, Li and Cheng. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice. No
use, distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Microbiology | www.frontiersin.org 10 July 2021 | Volume 12 | Article 685549

https://doi.org/10.1093/bioinformatics/btaa428
https://doi.org/10.1080/19490976.2020.1737487
https://doi.org/10.2174/1574893615999200422120819
https://doi.org/10.2174/1574893615999200422120819
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

	Prioritizing Disease-Related Microbes Based on the Topological Properties of a Comprehensive Network
	Introduction
	Materials and Methods
	Dataset Collection
	Microbe–Disease Associations
	Microbe Similarity
	Disease Similarity
	Construction of the Composite Heterogeneous Weighted Network
	Prioritizing Candidate Disease-Related Microbes Based on the Composite Network

	Results
	Performance Evaluation
	Case Studies
	Inflammatory Bowel Disease
	Asthma
	Obesity

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


