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Phytoextraction using hyperaccumulating plants is a method for the remediation of
soils contaminated with trace elements (TEs). As a strategy for improvement, the
concept of fungal-assisted phytoextraction has emerged in the last decade. However,
the role played by fungal endophytes of hyperaccumulating plants in phytoextraction
is poorly studied. Here, fungal endophytes isolated from calamine or non-metalliferous
populations of the Cd/Zn hyperaccumulator Noccaea caerulescens were tested for their
growth promotion abilities affecting the host plant. Plants were inoculated with seven
different isolates and grown for 2 months in trace element (TE)-contaminated soil. The
outcomes of the interactions between N. caerulescens and its native strains ranged
from neutral to beneficial. Among the strains, Alternaria thlaspis and Metapochonia
rubescens, respectively, isolated from the roots of a non-metallicolous and a calamine
population of N. caerulescens, respectively, exhibited the most promising abilities to
enhance the Zn phytoextraction potential of N. caerulescens related to a significant
increase of the plant biomass. These strains significantly increased the root elemental
composition, particularly in the case of K, P, and S, suggesting an improvement of the
plant nutrition. Results obtained in this study provide new insights into the relevance of
microbial-assisted phytoextraction approaches in the case of hyperaccumulating plants.

Keywords: hyperaccumulator, inoculation, plant-fungus interaction, plant growth promotion, trace elements

INTRODUCTION

Among the different phytoremediation approaches applied, phytoextraction using
hyperaccumulating plants is a method for the remediation of soils contaminated with trace
elements (TE) (Robinson et al., 1998; Zhao et al., 2003; McGrath et al., 2006). Among the TE
targeted for phytoextraction applications, cadmium (Cd) and zinc (Zn) are of particular interest,
as they are found at elevated levels in soils mainly due to anthropic activities such as mining,
smelting, the use of domestic and industrial wastes or the burning of fossil fuels, causing serious
environmental problems worldwide (Alloway, 2013; Su et al., 2014). Cadmium is considered
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one of the most toxic non-essential elements for plants (Clemens
and Ma, 2016), and Zn has phytotoxic effects when present
in excess in plants (Kabata-Pendias, 2010). Among the various
hyperaccumulators, Noccaea caerulescens (J. & C. Presl) F. K.
Mey (Brassicaceae) is one of the species with the highest ability
to tolerate and accumulate Cd and Zn (Lombi et al., 2000;
McGrath et al., 2006). In situ, N. caerulescens can concentrate
up to 2,890 µg Cd g−1 and 53,450 µg Zn g−1 in dry shoots
(Reeves et al., 2001); however, significant variations in metal
accumulation depend on the populations and edaphic type
(Gonneau et al., 2014; Sterckeman et al., 2017). Among all the
known populations, the calamine Ganges ecotype is the most
studied due to its high capacity to accumulate Cd and its tolerance
to Cd and Zn (Assunção et al., 2003; Gonneau et al., 2014).

Recent studies aimed to optimize the phytoextraction
efficiency of N. caerulescens by maximizing both the biomass
production and metal concentration in plants. According to
Escarré et al. (2013), shoot concentrations tend to be restricted to
a physiological maximum, limiting the possibility of improving
this factor. There is, however, high potential for improvement
in the biomass factor in the case of N. caerulescens (Sterckeman
et al., 2017). Various levers have been investigated to increase
biomass production, such as the selection of high-growth rate
cultivars (Sterckeman et al., 2017, 2019) and the development
of adequate cultural practices (Maxted et al., 2007; Jacobs
et al., 2018a,b; Rees et al., 2020), including the addition of
biological amendments. Indeed, we previously demonstrated
that several DSE strains isolated from poplar roots collected
from TE-contaminated sites were able to colonize the roots of
N. caerulescens, with plant responses ranging from neutral to
beneficial (Yung et al., 2021b). We also identified two promising
fungal strains for the fungal-assisted phytoextraction of Cd and
Zn with N. caerulescens. However, the diversity of the fungal
endophytome of Zn- and Cd-adapted N. caerulescens and the
effect of potentially plant-growth promoting (PGP) native fungal
strains on the phytoextraction potential of the plant have not yet
been investigated.

Over the last decade, the concept of microbial-
assisted phytoremediation (MAP) has developed. When
applied to phytoextraction, it consists of inoculating
metal-(hyper)accumulating plants with plant-associated
microorganisms to enhance metal recovery rates (Thijs et al.,
2016; Benizri et al., 2021). MAP is based on the ability of
PGP microorganisms such as PGP rhizobacteria (Hansda
et al., 2014), endophytic bacteria (Ma et al., 2016), arbuscular
mycorrhizal fungi (Ciadamidaro et al., 2017; Miransari, 2017;
Berthelot et al., 2018), ectomycorrhizal fungi (Ciadamidaro et al.,
2017; Phanthavongsa et al., 2017; Gil-Martínez et al., 2018),
and endophytic fungi (Lacercat-Didier et al., 2016; Berthelot
et al., 2017, 2018; Deng and Cao, 2017) to enhance plant
development, health, tolerance to abiotic stress and resistance
to phytopathogens (Kong and Glick, 2017; Thijs et al., 2016;
Otero-Blanca et al., 2018; Durand et al., 2021). Additionally,
root-associated microorganisms are able to increase the mobility
of TEs in the soil, suggesting that their presence is essential for
plants to reach their full phytoextraction potential (Lebeau et al.,
2008; Sessitsch et al., 2013). In this context, hyperaccumulating

plants and associated microorganisms could be considered
together as plant-microbiome superorganisms (Bosch and
McFall-Ngai, 2011), in which the microbial component acts
as a dynamic system, increasing the adaptability of the plant-
microbiome superorganism under environmental pressure
(Durand et al., 2021). Indeed, in the case of TE-enriched
soils, the host plant can promote metal-tolerant beneficial
microorganisms from the enormous and diverse pool of
microorganisms present in the bulk soil (Becerra-Castro et al.,
2012; Álvarez-López et al., 2016; Yung et al., 2021a). Detecting
and isolating these preferentially selected microorganisms
represents a preliminary step of MAP.

The diversity of potentially PGP fungi and bacteria associated
with N. caerulescens has been poorly investigated (Visioli et al.,
2015a). Bacterial endophytes of N. caerulescens were mainly
studied utilizing cultivation-dependent methods (Aboudrar et al.,
2007; Visioli et al., 2014). Recently, 16S DNA profiling has
been used to investigate root-associated bacterial communities
(Visioli et al., 2019) and endophytic bacterial communities
associated with seeds (Durand et al., 2021) of N. caerulescens.
Several promising strains of metal-resistant or PGP endophytic
bacteria have already been isolated (Visioli et al., 2014; Fones
et al., 2016; Burges et al., 2017), and their potential to improve
biomass production and metal accumulation has been tested
in planta (Visioli et al., 2015b; Burges et al., 2017). Like most
plants belonging to the Brassicaceae family, N. caerulescens is
a recognized non-mycorrhizal plant, suggesting that endophytic
fungi may be the dominant group of symbiotic fungi inhabiting
its roots. However, its fungal endophytome has been poorly
studied thus far. The first data about the cultivable fungal
diversity associated with the roots and leaves of N. caerulescens
grown on Ni-enriched soils were recently reported (Ważny et al.,
2021). Among the 13 taxa isolated, most of the strains showed
a positive effect on the production of plant biomass and on Ni
accumulation in roots and/or shoots. Additionally, Ważny et al.
(2021) reported that shoots accumulated more Ni when the plants
were inoculated with a strain of Phomopsis columnaris isolated
from N. caerulescens, highlighting the importance of selecting
indigenous strains. However, indigenous fungal strains have not
been tested for their effect on Cd/Zn phytoextraction.

By examining fungal endophytes isolated from calamine or
non-metalliferous populations of N. caerulescens, this study
therefore aimed to (i) characterize some of their PGP abilities
and their influence on the mobility of TE through in vitro
tests, (ii) assess their capacity to colonize the roots of the
hyperaccumulating plant N. caerulescens, (iii) study their effect
on plant growth, leaf pigment contents and mineral nutrient
status, and (iv) determine their impact on the accumulation and
phytoextraction of Cd and Zn.

MATERIALS AND METHODS

Fungal Endophyte Isolation and
Identification
Isolation of fungal endophytes from the roots and leaves of 58
individuals of N. caerulescens from seven populations (around
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eight plants per population) collected in two regions of France
(Grand Est and Occitanie) was performed, with plants from
each region corresponding to a genetic subunit (Gonneau et al.,
2017). The full description of the cultivable fungal endophytome
of N. caerulescens will be described elsewhere (unpublished
results). Once collected, plant parts were carefully washed with
tap water, surface-sterilized by immersion in 30% (v/v) H2O2
for 30 s and finally rinsed three times with sterile distilled
water. For each plant, 15 root segments of 1 cm and 15 leaf
fragments of 1 cm2 were placed on malt extract agar (MEA,
malt extract: 12 g/L and agar: 15 g/L, pH 5.5) at 24◦C in
the dark. Ampicillin and chloramphenicol (100 µg/ml) were
also added to the medium to avoid bacterial development.
After 15 days of growth, fungal mycelium growing out of
the plant tissues was isolated and subcultured in new MEA
plates for 3 weeks.

For this experiment, we considered seven strains that were
molecularly identified. Fungal DNA was first extracted (100 µL)
using a REDextract-N-AmpTM Plant PCR kit (Sigma-Aldrich,
Saint-Quentin Fallavier, France) according to the manufacturer’s
instructions. The internal transcribed spacer (ITS) region was
then amplified using ITS1 and ITS4 primers (White et al.,
1990). Twenty microliters of a mixture containing 0.1 µM
of each primer, 1 µL of the fungal extract, 8.2 µl of water
and 10 µl of REDExtract-N-Amp PCR ready mix was used.
The following PCR program was used: 3 min denaturation
at 94◦C, followed by 40 cycles of 94◦C for 30 s, 55◦C for
30 s and 72◦C for 75 s and 10 min final extension at 72◦C.
The DNA quality and quantity were assessed by agarose gel
electrophoresis using Molecular Imager R© Gel DocTM XR (Bio-
Rad, United States). Fungal amplicons were then sequenced
using the Sanger method (Eurofins, Germany). The obtained ITS
sequences were used to retrieve similar sequences from GenBank
using the NCBI BLASTn program.

Indole Acetic Acid Production
The quantities of indole acetic acid (IAA) produced by the seven
strains were determined by inoculating 40 mL of potato dextrose
broth (PDB, pH 5.2) supplemented or not with 0.2% (m/v)
tryptophan with six discs of mycelium of 5 mm in diameter
(n = 3). The fungal cultures were incubated at 24◦C for 10 days
with constant shaking at 150 rpm. They were subsequently
centrifuged at 10,000 g for 6 min to separate the supernatant
from the fungal biomass. The mycelium was dried at 60◦C
for 2 days and weighed using a precision balance (Mettler
AE 163 analytical). One hundred µL of the supernatant was
mixed with 400 µL of Salkowski’s reagent, which is a solution
comprising 0.5 M FeCl3 and 35% perchloric acid (Platt and
Thimann, 1956). The production of IAA was evidenced by
the development of a pink color after a 30 min incubation
in the dark. A semi-quantitative measure of the quantity of
produced IAA was obtained by measuring the absorbance of
the solutions supplemented with tryptophan at a wavelength
of 530 nm, subtracting the absorbance of the solution without
tryptophan and comparing it to a standard curve of IAA. The
semi-quantitative concentrations of IAA were expressed per
gram of mycelium (µg/g).

Zinc and Cadmium Mobilization From
the Soil
The ability of the seven fungal strains to mobilize Cd and Zn
from the soil was estimated using the fungal extracts from the
previous culture made in PDB without tryptophan (n = 3). The
supernatants were filtered at 0.2 µm, and the pH of the filtrates
was measured. Four milliliters of the filtrates were rotary shaken
for 2 h at room temperature with 0.8 g of sterilized and dried
Cd/Zn-contaminated soil used for the inoculation assay. Controls
consisted of 0.8 g aliquots of the same soil incubated with 4 ml of
fresh PDB with the pH adjusted to 3.4, 3.9, or 4.2 (pH range of the
fungal extracts) or without adjustment (pH 5.2, corresponding
to the original pH of the medium used for the fungal cultures).
After centrifugation (7,000 rpm, 5 min), filtration at 0.45 µm and
acidification at 5% with HNO3, the concentrations of Zn and Cd
in the filtrates were determined by inductively coupled plasma
optical emission spectrometry (ICP-OES, iCap 600, Thermo
Fischer Scientific, Pittsburgh, PA, United States). Cadmium and
Zn concentrations were expressed per g of mycelium. The ability
to mobilize Zn and Cd from contaminated soil was estimated by
measuring the difference in Cd and Zn concentrations (µg/g of
soil per g of mycelium) between soil mixed with fungal extract
and soil mixed with pH 5.2 PDB.

Phosphate and Zinc Solubilization
Activity
The ability of the seven fungal strains to solubilize phosphate
and Zn was determined by inoculating the strains onto solid
Pachlewski medium [2.3 g/L C4H12N2O6, 0.5 g/l KCl, 1 g/L
MgSO4, 7H2O, 5 g/L maltose, 20 g/L glucose, 10 µL/L
thiamine HCl (1 g/L) and 100 µL/L Kanieltra solution, pH 5.5]
supplemented with 12.5 g/L Ca3(PO4)2, 3 g/L ZnO, 5.5 g/L
ZnCO3 or 5.25 g/L Zn3(PO4)2 (n = 4). Agar plates were covered
with a sterile cellophane membrane and inoculated with 1 cm2

agar mycelial plugs. After 7 days of culture at 24◦C, the diameters
of both the colonies and the solubilization halos were measured.
Finally, the solubilization index was calculated as the “diameter
of the solubilization halo” over the “diameter of the colony” ratio.

Siderophore Production
The siderophore production of the seven fungal strains was tested
on chrome azurol S agar plates (n = 4). Fungal strains were grown
on plates half-filled with Fe-free M9 medium (3 g/L C4H12N2O6,

1 g/L NH4Cl, 6 g/L Na2HPO4, 0.5 g/L NaCl, and 4 g/L glucose).
After 12 days of growth at 24◦C, fungal colonies were removed
together with the cellophane membranes, and the plates were
filled with a CAS-blue agar overlay. The overlay medium (pH
6.8) was made of (per L) chrome azurol S (CAS) 60.5 mg,
hexadecyltrimetyl ammonium bromide (HDTMA) 72.9 mg,
piperazine-1,4-bis(2-ethanesulfonic acid) (PIPES) 30.24 g, 20 mL
of FeCl3 (10 mM) prepared in HCl (100 mM) and agarose
(0.9%, w/v) (Pérez-Miranda et al., 2007). A change in color
from blue to orange observed in the overlaid medium evidenced
the production of siderophores. The siderophore index was
calculated as the “diameter of the orange halo” over the “diameter
of the colony” ratio.
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Experimental Design of the Pot
Experiment
A pot experiment was conducted with sandy-loamy soil
taken from the top horizon of agricultural soil located at
Chenevières (Grand Est, France), which was previously spiked
with Cd, Pb, Cu, and Zn and used for the cultivation of
N. caerulescens as part of previous studies (Sterckeman et al.,
2017, 2019). At the beginning of the present study, the Cd
and Zn concentrations were 3.6 and 649 mg/kg, respectively.
Some physico-chemical parameters of the soil are provided in
Supplementary Table 1. The seeds of N. caerulescens originated
from a metallicolous population from a mining site located in
Ganges [Occitanie, France, Gonneau et al. (2014)]. The seeds
were sown in a sterilized mix (v/v) of compost (75%) and
sand (25%) and placed in a growth chamber. Seven weeks after
germination, plants of similar developmental stages were selected
for the pot experiment.

In the present study, we tested seven fungal endophytic
strains (DBF60, DBF79, DBF81, DBF107, DBF108, DBF129, and
DBF159) originating from the collection of strains isolated from
N. caerulescens. They were selected based on their potential as
PGP fungi, according to their description in the literature. The
production of inoculum and the soil inoculation procedure are
fully described in Yung et al. (2021b). As a control treatment
(CTRL), we mixed one aliquot of soil with perlite containing
fungus-free agar plugs. Five replicates were considered for each
fungal treatment, and four were considered for the mock-
inoculated treatment. Seedlings were transplanted into 40 plastic
pots (8 treatments × 5 replicates) of 500 mL volume (8.6 cm in
diameter) previously loaded with 400 g of the inoculated soils.
The pots were then placed in a growth chamber with 16 h of
light at 22◦C and 8 h of darkness at 18◦C, 70% relative humidity
and a photon flux density of 200 µmol photons m−2 s−1 in
the PAR range. Water was supplied every 2 or 3 days to 80% of
the field capacity.

Estimation of NBI and Pigment Indices
Chlorophyl, flavonoid and anthocyanin contents in leaves
of N. caerulescens and the nitrogen balance index (NBI)
were measured using a dual-excitation fluorimeter DUALEX R©

SCIENTIFIC+ (Force-A, Orsay, France). Full details about the
analytical method are available in Yung et al. (2021b). These
measurements were carried out on five mature leaves per plant
at the end of the experiment.

Plant Harvesting, Biomass
Determination and Analysis of Trace and
Major Elements
After 8 weeks of growth, roots and shoots were harvested and
separated. Shoots were thoroughly washed with tap water and
rinsed with deionized water. Soil was removed from the roots first
by washing them with tap water and then by immersing them in
37.6 mM tetrasodium diphosphate for 16 h. The plant samples
were then dried at 70◦C for 48 h and weighed. Dried samples
(0.5 g) were ground and digested according to the protocol
detailed in Yung et al. (2021b). Trace and major elements were

analyzed by ICP-OES. Control samples from N. caerulescens with
known compositions (according to internal analyses carried out
by INRA-USRAVE, Villenave d’Ornon, France), as well as a
certified solution (EU-H-2, SCP Science, Courtaboeuf, France),
were included in all analyses as quality controls.

Estimation of the Rate of Fungal
Colonization of Plant Roots
To estimate the colonization rate of plant roots by the inoculated
endophytes, root segments were labeled with 20 µg/mL WGA-
AF R©488 (Invitrogen, France) (Berthelot et al., 2016) and observed
by fluorescence microscopy. Labeled roots were cut into 10 mm
segments (20 per plant) that were assessed separately using a
microscope. The rate of root colonization (semi-quantitative)
by fungal strains was estimated by assessing the frequency of
microsclerotia and typical intracellular hyphae.

Statistical Analyses
Statistical analyses were performed with R software v.3.5.1
(R Development Core Team, 2015). All statistical tests were
considered significant at P ≤ 0.05. The mean values of the
variables obtained from the in vitro tests of the inoculated
strains were compared using Tukey’s HSD or the Kruskal–
Wallis post hoc test to classify the strains according to their
PGP abilities and their capacity to modify the mobility of Cd
and/or Zn in the soil.

A multiple-factor analysis (MFA, “FactomineR” package) was
used to evaluate the influence of the seven tested strains on
(i) plant shoot and root biomass production, (ii) leaf pigments
and NBI, and (iii) the concentrations of trace and major
elements in roots and shoots. The latter variables and the
amounts of extracted Cd and Zn (concentration of Cd/Zn in
leaves × biomass) were then analyzed by comparing the CTRL
treatment with the seven fungal treatments using an analysis of
variance (ANOVA) followed by a Dunnett test in the “multcomp”
package. The adequacy of the data from each measurement with
respect to the ANOVA models was verified by examining the
residuals for independence (Durbin-Watson test, “car” package),
normality (Shapiro test) and homogeneity (Levene test). If
the latter assumptions were not validated after “sqrt” or “log”
transformation of the data, a Wilcoxon pairwise test with a Holm
correction of the p-value was used.

RESULTS

Taxonomic and Functional Description of
the Fungal Isolates
Among the collection of endophytic strains isolated from the
parts of N. caerulescens, the seven strains studied in the
present study were isolated from populations originating from
two calamine stations (Ganges and Montdardier; Occitanie,
France) and two non-metallicolous stations located in Croix
des Moinats (Grand Est, France) and Baraquette (Occitanie,
France) (Gonneau, 2014). DBF79, DBF81 and DBF129 were
isolated from leaves, while DBF60, DBF107, DBF108 and DBF159
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were isolated from roots. The molecular identification enabled
assignment, with sequence identities of 99–100% (Table 1), of the
following affiliations. DBF60 (Metapochonia rubescens), DBF81
(Trichoderma harzianum) and DBF159 (Microdochium bolleyi)
belong to Sordariomycetes, DBF79 (Alternaria thlaspis), DBF107
(Cladosporium sp.), and DBF129 (Cladosporium cladosporioides)
belong to Dothideomycetes, and DBF108 (Phialophora mustea)
belongs to Eurotiomycetes.

The isolates were further characterized for their ability to
promote plant growth through in vitro tests. To determine the
ability of the isolates to assist Fe uptake by plants, siderophore
production using the CAS-blue agar assay was carried out. The
color change of agar from blue to orange was only observed in the
case of DBF60, indicating that this strain was the only one able to
produce siderophores (Table 2). The ability of the tested strains to
produce IAA was determined through a colorimetric assay. The
seven isolates had the ability to produce IAA with concentrations
ranging from 1.0 to 4.1 µg/g DW of mycelium (Table 2). DBF81
produced the lowest IAA quantities. Tricalcium phosphate and
various forms of Zn supplemented in Pachlewski medium were
used to test the ability of the isolates to solubilize insoluble
phosphate and Zn. All isolates had the ability to solubilize
tricalcium phosphate (Table 2). DBF60, DBF81, and DBF159
were also able to solubilize Zn3(PO4)2. Moreover, DBF60 and
DBF81 had the ability to solubilize ZnCO3 and ZnO (Table 2).

The ability of the isolates to mobilize metals was further tested
by measuring the concentrations of Zn and Cd mobilized from
contaminated soil by the filtrates of the fungal cultures. All strains
had the ability to increase the mobility of Zn and Cd from the
soil when compared to the control medium (pH 5.2; no fungus
cultivated; P < 0.05). DBF81, DBF107, and DBF129 had the
highest ability to mobilize both Zn and Cd (Table 3). Filtrates
obtained from the culture of DBF81, DBF107, and DBF129 had
pH values spanning from 3.3 to 3.6. The filtrates of the other
strains were less acidic (pH ≥ 3.9) (Supplementary Figure 1).
A highly significant negative correlation (r = −0.90; P < 0.001)
between the pH and Cd concentrations mobilized by the fungal
filtrates was found (Supplementary Figure 1). The same finding
was observed for Zn (r = 0.91; P < 0.001; Supplementary
Figure 1). However, according to the slopes of regression lines
drawn for fungal extracts and for control media (Supplementary
Figure 1), fungal extracts, particularly the DBF60, DBF81, and
DBF129 extracts, mobilized more Cd and Zn compared to the
control media adjusted to equivalent pH values.

Ability of the Endophytic Isolates to
Colonize the Roots of Noccaea
caerulescens
After inoculation with the seven DSE strains (DBF60, DBF79,
DBF81, DBF107, DBF108, DBF129, and DBF159), typical
structures of fungal endophytes in labeled roots were observed
and quantified. We detected thin extracellular hyphae located
on the root surface and within root tissues for all endophyte-
inoculated treatments. Notably, twisting septate hyphae located
within the cortical cells of roots were also found (Figure 1D). The
root surface of DBF60-inoculated plants was highly colonized

by fungal hyphae (Figure 1B), although intracellular hyphae
associated with conidiospores were also detected (Figure 1E). In
the case of DBF79 and DBF107, hyphae were often parallel to
the vascular tissues (Figure 1F). For most of the inoculated roots
and particularly for DBF79- and DBF129-inoculated plants, we
detected a high number of intracellular conidiospores (Figure
2C). Contracted hyphae forming intracellular structures such
as microsclerotia were observed in DBF108-inoculated roots
(Figure 1D). However, the success of root colonization by the
endophytes depended on the strain (Figure 1A). With a mean
colonization rate <5%, DBF81, DBF107, and DBF129 poorly
developed within the roots of N. caerulescens. DBF79- and
DBF60-inoculated plants had mean colonization rates of 9.3
and 17.0%, respectively, corresponding to intermediate values.
Conversely, DBF159 and DBF108 highly colonized the roots of
N. caerulescens, with mean colonization rates of 38.6 and 67.8%,
respectively.

Influence of Fungal Inoculation on the
Biomass of Noccaea caerulescens
As suggested by the MFA, the contribution of variables related
to growth parameters [dry shoot biomass (DSB) and dry root
biomass (DRB)] to the variability was quite high (Figure 2A).
At the end of cultivation, the mean biomass of mock-inoculated
N. caerulescens was 61 mg DW for roots and 206 mg DW for
shoots, while endophyte-inoculated treatments ranged from 87
to 124 mg DW for roots and from 215 to 385 mg DW for
shoots (Figure 3).

DBF79-inoculated plants showed a significant effect on
biomass production by increasing the mean root (P < 0.01) and
shoot biomass (P < 0.001) by 69 and 65%, respectively, compared
to those of the mock-inoculated plants (Figure 3). DBF60 also
increased the biomass production of N. caerulescens by 48% for
roots (not significant) and 47% for shoots (P < 0.05) compared
to the CTRL treatment. Plants inoculated with DBF107, DBF108,
DBF129, and DBF159 tended to produce more root and shoot
biomass; however, the substantial inter-sample variability did
not allow us to confirm this result statistically (Figure 3). This
tendency was not found for plants inoculated with DBF81.

Influence of Endophytes on the Leaf
Pigments and Mineral Nutrition of
Noccaea caerulescens
The chlorophyll content in the leaves of DBF60-inoculated
plants was significantly increased compared to that in the mock-
inoculated plants (P < 0.01), while the anthocyanin content was
reduced (P < 0.05) (Figure 4). The other endophytic strains had
no significant influence on the content of leaf pigments or NBI
(Figure 4). However, when compared to the CTRL treatment,
inoculation with the six other strains tended to slightly decrease
the anthocyanin index of leaves, while chlorophyll, flavonoid and
NBI indices did not show any particular trend (Figure 4).

All strains influenced the mineral nutrition of N. caerulescens
when inoculated, as they induced significant effects on the
elemental composition of roots and shoots, although the effects
were more pronounced in roots (Supplementary Table 2).
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TABLE 1 | Taxonomic identification of the fungal isolates and the origin of their host plant.

Isolate code Geographic origin Taxonomic affiliation GenBank accession
number

Closest accession number Sequence identity (%)

DBF107 Ganges (CAL) Cladosporium sp. MW750568 MH118272.1 100

DBF108 Ganges (CAL) Phialophora mustea MW750569 MT576440.1 100

DBF129 Baraquette (N.MET) Cladosporium cladosporioides MW750570 MK656446.1 99

DBF159 Montardier (CAL) Microdochium bolleyi MW750571 MH319854.1 100

DBF60 Croix des Moinats (N.MET) Metapochonia rubescens MW750565 AB709859.1 99

DBF79 Ganges (CAL) Alternaria thlaspis MW750566 JN383495.1 99

DBF81 Ganges (CAL) Trichoderma harzianum MW750567 MT584872.1 100

CAL, calamine soil; N.MET, non-metallicolous soil.

TABLE 2 | Plant growth promotion properties of the seven endophytic isolates.

Strain Ca3(PO4)2 Zn3(PO4)2 ZnCO3 ZnO Siderophore IAA

Solubilization1 Solubilization1 Solubilization1 Solubilization1 production2 production3 (µg/g DW mycelium)

DBF107 1.00 ± 0.04a 0c 0b 0b 0b 4.1 ± 0.5a

DBF108 0.87 ± 0.07abc 0c 0b 0b 0b 3.0 ± 1.7ab

DBF129 0.56 ± 0.68abc 0c 0b 0b 0b 1.7 ± 0.8ab

DBF159 0.55 ± 0.12abc 0.92 ± 0.42ab 0b 0b 0b 2.3 ± 0.9ab

DBF60 1.39 ± 0.70ab 1.10 ± 0.10a 0.32 ± 0.23a 0.44 ± 0.51ab 1.44 ± 0.66a 1.8 ± 0.4ab

DBF79 0.27 ± 0.19c 0c 0b 0b 0b 2.4 ± 0.4ab

DBF81 0.50 ± 0.12bc 0.54 ± 0.07b 0.38 ± 0.05a 0.70 ± 0.11a 0b 1.0 ± 0.8b

1Phosphate and zinc solubilization by the endophytic strains were recorded on agar plates after 2 weeks of growth. The solubilization index was calculated as the “diameter
of the solubilization halo” over the “diameter of the colony” ratio.
2Siderophore production by the endophytic strains was recorded on agar plates after 2 weeks of growth. The index was calculated as the “diameter of the orange halo
revealing the presence of Fe/siderophore complexes” over the “diameter of the colony” ratio.
3 IAA production (semi-quantitative) was measured in liquid growth medium after 2 weeks of culture in minimal medium supplemented with tryptophan.
Values are the means of three (IAA) or four (other tests) replicates ± SE. Significant differences (P < 0.05, Kruskal–Wallis post hoc test) between strains are indicated by
different letters.

TABLE 3 | Ability of the seven endophytic isolates to mobilize Zn and Cd from contaminated soil.

Fungal extract Cd mobilized from soil Zn mobilized from soil

µg/g soil/g biomass Increase (%) µg/g soil/g biomass Increase (%)

DBF107 0.42 ± 0.32ab
+417 67.1 ± 60.8ab

+500

DBF108 0.11 ± 0.15b
+690 18.0 ± 15.7b

+949

DBF129 0.55 ± 0.10ab
+680 92.8 ± 18.2ab

+984

DBF159 0.19 ± 0.13b
+431 25.9 ± 19.6b

+576

DBF60 0.24 ± 0.13b
+200 33.3 ± 17.8b

+269

DBF79 0.05 ± 0.1b
+160 8.3 ± 1.3b

+171

DBF81 0.80 ± 0.08a
+275 126.8 ± 9.6a

+309

The means ± SD (n = 3) of Cd and Zn concentrations in the soil extracts are presented in µg/g soil DW/g biomass DW.
Different letters represent significant differences between strains (Kruskal–Wallis post hoc test).
For each strain, the increase (%) in Cd and Zn concentrations extracted from the soil was calculated as follows: 100 × [TE]fungal medium/[TE]control medium at pH 5 .2.

According to the MFA, the groups of variables related to
the root nutrient and TE status and shoot pigment content
had the highest contributions to the variability for dimension
one. Dimension two was mostly explained by the groups of
variables related to the shoot nutrients and TE status and
biomass production (Figure 2A and Supplementary Figure 2).
The cluster corresponding to plants inoculated with DBF60,
DBF79, DBF81, and DBF107 differed from those of the other
treatments due to its different nutritional status (Figure 2B). The

inoculation of N. caerulescens with DBF60, DBF79, and DBF81
increased the root concentrations of Ca (+86,+149, and+199%,
respectively; P < 0.01), K (+401,+429, and+656%, respectively,
P < 0.01), Mg (+48, +69, and +102%, respectively, P < 0.05), P
(+302, +329, and +391%, respectively, P < 0.01) and S (+143,
+164, and +223%, respectively, P < 0.01) compared to the
CTRL (Figure 5). Among these three strains, only DBF60 had a
significant influence on the elemental composition of leaves by
increasing K concentrations by 32% and slightly decreasing Al,
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FIGURE 1 | Root colonization of N. caerulescens inoculated by the endophytic isolates. (A) Level of fungal colonization for each strain (n = 5) based on the
fluorescence microscopy observation of fungal structures within roots after labeling with WGA-AF488. Fungal structures were absent in mock-inoculated plants.
(B) Intracellular colonization of the entire roots by DBF60. (C) Intracellular hyphae associated with conidiospores in DBF107-inoculated plants. (D) Contracted
hyphae forming microsclerotia in DBF108-inoculated plants. (E) Intracellular hyphae associated with conidiospores in DBF60-inoculated plants. (F) Intracellular
hyphae parallel to the vascular tissues and following the wall of cortical cells. Scales bars = 50 µm.

FIGURE 2 | Multiple factor analysis included plant biomass [dry shoot biomass (DSB) and dry root biomass (DRB)], concentration of trace and major elements in
roots (“.R”) and shoots (“.S”), and pigment index [anthocyanin (“ANT”), chlorophyll (“CHL”) and flavonoid (“FLA”)] variables for N. caerulescens grown in
metal-contaminated soil and inoculated with seven endophytes. (A) Projections of element vectors on the two dimensions. (B) Projection of the groups [plants
inoculated with the fungal strains and mock-inoculated (CTRL)], with confidence ellipses.
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FIGURE 3 | Effect of endophyte inoculation on the root (left) and shoot (right) biomass production of N. caerulescens. Plants were grown for 2 months on
metal-contaminated soil and were either inoculated with a fungal strain (n = 5) or mock-inoculated (CTRL, n = 4). Significant differences (ANOVA, Dunnett test)
between the CTRL condition and the fungal treatments are represented with the following legend: ∗P < 0.05; ∗∗P < 0.01; ∗∗∗P < 0.001.

FIGURE 4 | Effect of endophyte inoculation on the leaf pigment contents and nitrogen balance index (NBI) of N. caerulescens. Plants were grown for 2 months on
metal-contaminated soil and were either inoculated with a fungal endophyte strain or mock-inoculated (CTRL). Data are the means ± SE (n = 5 for the fungal
treatments and n = 4 for the mock-inoculated treatment). Significant differences (ANOVA, Dunnett or Wilcoxon pairwise test) between the CTRL condition and the
fungal treatments are represented with the following legend: ∗P < 0.05; ∗∗P < 0.01.
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FIGURE 5 | Effect of fungal endophytes on the elemental composition of roots and leaves of N. caerulescens. Data represent the variations (%) of the concentrations
of macroelements in roots or leaves of endophyte-inoculated plants in comparison to those of the mock-inoculated plants. Asterisks denote significant differences
(ANOVA, Dunnett test) between a given fungal treatment and the control condition with the following legend: ∗∗P < 0.01; ∗P < 0.05.

FIGURE 6 | Effect of endophytes on Cd and Zn concentrations in the roots of N. caerulescens (A) and on the amount of Cd and Zn extracted by leaves of
N. caerulescens (B). Plants were grown for 2 months on metal-contaminated soil and were either inoculated with an endophytic strain or mock-inoculated (CTRL).
Data are the means ± SE (n = 5 for the fungal treatments and n = 4 for the mock-inoculated treatment). Significant differences (ANOVA, Dunnett test) between the
CTRL condition and the fungal treatments are represented with the following legend: ∗P < 0.05; ∗∗P < 0.01.
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Fe and Mn concentrations (P < 0.05) (Figure 5). DBF107 had
a significant influence on the root concentrations of K (+518%,
P < 0.05), Mg (+68%, P < 0.05), and P (+378%, P < 0.01) and
on the leaf concentrations of Ca (−25%, P < 0.01), Mg (−23%,
P < 0.05), and S (−55%, P < 0.05) (Figure 5). Inoculation
of N. caerulescens with DBF108, DBF129, and DBF159 had
only slight effects on the nutrient concentrations in leaves and
roots (Figure 5).

Influence of Fungal Strains on the
Phytoextraction Potential of Noccaea
caerulescens
Globally, the mean Cd concentrations in N. caerulescens were
22.3 mg/kg DW for roots and 23.3 mg/kg DW for leaves, which
corresponds to values sixfold higher than the concentrations
found in the soil. The mean Zn concentration of N. caerulescens
roots was approximately twofold lower than the mean soil
concentration, while leaves accumulated 1,662.7 mg Zn/kg DW,
corresponding to 2.6-fold the mean soil concentration.

As previously observed for macroelements, the group
comprising DBF107, DBF60, DBF79 and DBF81 tended to have
higher concentrations of Cd and Zn in roots of N. caerulescens
when inoculated, while DBF108, DBF129, and DBF159 showed
no effect (Figure 6A). The concentrations of Cd in roots
increased by 102% for DBF107-inoculated plants (P < 0.01),
by 38% for DBF60-inoculated plants (not significant) and by
57% for DBF79-inoculated plants (not significant) compared to
the mock-inoculated plants (Figure 6A). The latter endophytic
strains as well as DBF81 also tended to increase Zn concentrations
in roots from 43 to 56% compared with the CTRL treatment,
although not significantly (Figure 6A). None of the tested strains
significantly increased the TE concentrations in the leaves of
N. caerulescens (Supplementary Table 3).

However, when focusing on the amount of Zn extracted
from the soil by each plant (leaf biomass × Zn concentrations
in leaves), DBF60- and DBF79-inoculated plants extracted
+50 and +53% of Zn from the soil, respectively, compared
with the mock-inoculated plants (P < 0.05) (Figure 6B).
With the amount of Cd extracted by inoculated plants
ranging from 4.8 to 10.0 µg/plant vs. 6.8 µg/plant for mock-
inoculated plants, we did not detect any significant influence
of the strains on the potential of N. caerulescens for Cd
phytoextraction (Figure 6B).

DISCUSSION

Noccaea caerulescens Hosts Several
Taxa of Recognized PGP Fungal
Endophytes
Noccaea caerulescens has been recently shown to be a potential
candidate for fungal-assisted phytoextraction, as plant responses
are beneficial when associated with certain host (isolated from
the same species) (Ważny et al., 2021) and non-host (Yung
et al., 2021b) endophytic strains under TE exposure. In the
present study, we tested seven fungal endophytes isolated from

non-metallicolous and calamine populations of N. caerulescens
based on their taxonomy. Among the panel of isolated taxa, we
selected seven taxa that have previously demonstrated promising
direct PGP abilities (i.e., improvement of plant nutrition, growth,
and/or stress alleviation) or indirect positive impacts by acting
as biocontrol agents. We selected two strains belonging to
Cladosporium sp. (DBF107) and C. cladosporioides (DBF129).
Ważny et al. (2021) also isolated a strain of C. cladosporioides
from the root of N. caerulescens that significantly increased plant
biomass and stimulated the uptake and accumulation of Ni in
both roots and shoots compared to non-inoculated controls.
Phialophora mustea (DBF108) is a DSE with recognized PGP
abilities, including the improvement of metal tolerance for the
plant (Berthelot et al., 2017; Zhu et al., 2018). A strain of
P. mustea isolated from poplar roots has already been proposed as
a promising candidate to enhance the phytoextraction potential
of N. caerulescens (Yung et al., 2021b). Alternaria thlaspis
(syn: Embellisia thlaspis; DBF79) was described after isolation
from the roots of N. caerulescens growing in soil with high
levels of Zn and Pb (David et al., 2000). This species was
also recently isolated from roots and leaves of calamine and
serpentine N. caerulescens and tested for its PGP abilities on
N. caerulescens (Ważny et al., 2021). Microdochium bolleyi
(syn: Idriella bolleyi; DBF159) is a well-known species of DSE
that has been extensively isolated from roots and shoots of
several cereals and grasses (Gadd, 1981; David et al., 2016;
Rothen et al., 2018). Although, it is sometimes considered
as a pathogen, it is also considered non-pathogenic in some
cases (Kirk and Deacon, 1987), with potential implications
for organic matter mineralization, plant nutrition (Mandyam
et al., 2010), and biocontrol agents (Jadubansa et al., 1994).
Indeed, Shadmani et al. (2021) recently demonstrated that
M. Bolleyi could be exploited to improve the potential of barley
for the remediation of Cd-contaminated sites. Trichoderma
harzanium (DBF81) is a well-studied fungus used as a biocontrol
agent in agriculture against plant pathogens and nematodes
(Lorito et al., 2010). Some strains are able to induce plant
defenses (Yedidia et al., 1999) and stimulate plant growth
and development (Yedidia et al., 2001; Hermosa et al., 2012)
by establishing a molecular dialog with the roots (Mendoza-
Mendoza et al., 2018). These beneficial effects of T. harzanium
have been mainly demonstrated on horticultural plants. Recently,
Poveda et al. (2019) showed that T. harzianum favors the
access of arbuscular mycorrhizal fungi to non-host Brassicaceae
roots, providing new perspectives for agronomy. Metapochonia
rubescens was mainly studied for its application as a biocontrol
agent as a facultative parasite of major plant-parasitic nematodes
(Moosavi and Zare, 2020).

Fungal Endophytes Differentially
Colonized the Roots of Noccaea
caerulescens
While the method used for estimating the rate of fungal
colonization is semi-quantitative, it enabled to monitor the
success of the inoculations, by confirming the presence of
fungi associated with plant roots and providing an estimation
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of the extent to which the colonization occurred (Ayliffe
et al., 2013). Although all of the selected strains here were
indigenous and belonged to taxa that have been described as
potential auxiliary endophytic fungi in other contexts, under
metallic stress conditions, the success of their association (i.e.,
ability to colonize roots and positive host plant response)
with N. caerulescens was variable. Although DBF79, DBF81,
and DBF129 were isolated from the leaves of N. caerulescens
in the present study, these taxa are not strict phyllospheric
fungi. When reinoculated with N. caerulescens by mixing the
inocula with the soil, these strains indeed colonized the plant
roots, although with a low rate of colonization. According
to the literature, A. thlaspi (DBF79) and C. cladosporioides
(DBF129) have already been isolated from N. caerulescens
roots (David et al., 2000; Ważny et al., 2021), whereas
T. harzanium (DBF81) is a well-known soil-borne filamentous
fungus (Lorito et al., 2010), suggesting its probable presence in
the rhizosphere. Fungal structural characteristics of endophytic
fungi, including twisting hyphae, have also been observed for all
of the other strains.

Three Endophytic Strains Had a Neutral
Effect on Noccaea caerulescens
An endophytic relationship, which can vary from parasitism
to mutualism (Freeman and Rodriguez, 1993; Mandyam and
Jumpponen, 2005; Newsham, 2011; Mayerhofer et al., 2013), has
been demonstrated to be context-dependent, with determining
factors such as environmental conditions (Álvarez-Loayza
et al., 2011), the composition of the plant-associated microbial
community (Junker et al., 2012) and the plant genotype
(Wheeler et al., 2019). Long-term endophyte-host interactions
should be considered a basis for mutual interactions, with
both sides constantly shaping the organization and structure
of the other, resulting in a beneficial relation (Saikkonen
et al., 2004). This plant-microbiome superorganism, which
is also called a holobiont, is subjected to evolutionary
forces that may result in the coevolution of host symbiont
interactions (Rosenberg and Zilber-Rosenberg, 2018), where
microorganisms could be considered a genetic extension
of the host plant genome, favoring hologenome plasticity
and thus plant adaptability to its environment (Durand
et al., 2021). The success of inoculation could be mainly
dependent on the host-symbiont combination at the species
level (Fernando and Currah, 1996; Newsham, 2011; Mayerhofer
et al., 2013; Berthelot et al., 2016), but in some cases, the
plant population-fungal strain level appeared to be important
(Ważny et al., 2021).

In the present study, the effects of reinoculating
N. caerulescens with their associated endophytes were neutral
to beneficial, depending on the strain. The lack of effect of
DBF129 could be related to its low ability to colonize the roots of
inoculated plants. The fact that DBF159 and DBF108 were highly
abundant within the cortical cells of N. caerulescens roots and
that they have been identified as potential PGP taxa elsewhere
(Mandyam et al., 2010; Yung et al., 2021b), while having no effect
on plant growth and/or nutrition in the present study, confirms

the somewhat variable outcomes of host-endophyte interactions.
Interestingly, we showed in our previous study that the non-host
strain of P. mustea (Pr27, isolated from poplar roots) had a
positive effect on the mineral nutrition of N. caerulescens (Yung
et al., 2021b), while the indigenous strain DBF108 belonging
to the same species had no effect in the present study. These
results do not support assumptions in favor of the necessity
of long-term adaptation of the plant and fungal endophytes
resulting in mutualism.

Four Endophytic Strains Highly
Enhanced the Mineral Nutrition of
Noccaea caerulescens
The most pronounced effects of the isolates, particularly those
of DBF60, DBF79, DBF81, and DBF107, concerned the root
elemental concentrations of Ca, Mg, K, P, and S, with a fivefold
increase in some cases. Our study indicates a good potential
of the DBF60 and DBF81 strains to solubilize inorganically
bound phosphate, which is consistent with the improvement
of the P concentration in plant roots. T. harzanium (DBF81)
is known to be involved in mineral solubilization (Altomare
et al., 1999; Rawat and Tewari, 2011; Tallapragada and Gudimi,
2011; Bader et al., 2020) through various mechanisms, including
solubilization via acidification, redox reactions, chelation and
hydrolysis (Li et al., 2015). According to several authors, the main
mechanism by which fungal endophytes solubilize phosphate and
other minerals is the production of organic acids that lowers
the pH of the soil, consequently causing the solubilization of
insoluble minerals (Chhabra and Dowling, 2017; Adhikari and
Pandey, 2019; Mehta et al., 2019). All of the tested fungal
strains, except DBF79, reduced the pH of their media. Therefore,
improvement of the mineral nutrition of DBF79-inoculated
plants is unlikely due to the sole mechanism of acidification. The
rhizophagy, in which fungi can be the prey of roots and serve as
nourishing factors to improve plant nutrition and growth, would
be a possible hypothesis explaining the improvement of the
root elemental composition of DBF79-inoculated plants in the
absence of strain-mediated acidification (Paungfoo-Lonhienne
et al., 2010; White et al., 2018). However, we cannot rule out
an important acidification of DBF79 in the rhizosphere. To
examine this hypothesis, further experiments are needed to
locally measure the pH in the rhizosphere of both non-inoculated
and inoculated plants.

DBF60 and DBF79 Are Two Promising
Fungal Isolates for Improving the Zn
Phytoextraction Potential of Noccaea
caerulescens
In the case of DBF60- and DBF79-inoculated plants, the
improvement of mineral nutrition was concomitant with an
increase in plant biomass production of the same order of
magnitude as those detected for similar inoculation assays using
plants exposed to TE (Khan et al., 2017; Rozpądek et al., 2018;
Sharma et al., 2019; Ważny et al., 2021). According to the
literature, such tripartite relationships (i.e., fungal colonization
vs. nutrient content vs. plant biomass) have not been reported
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in many studies (Berthelot et al., 2019). Our results for A. thlaspis
(DBF79) confirmed that this species could promote the growth of
N. caerulescens, while this is the first report of direct PGP abilities
of M. rubescens (DBF60). The comparable ability of the seven
endophytes to produce IAA suggests that this phytohormone,
which is well known to improve root development and enhance
root exudation and mineral uptake (Fu et al., 2015), alone
cannot explain the higher increase in biomass for DBF60- and
DBF79-inoculated plants. However, the correlation between IAA
synthesis and growth promotion in soil-based systems is scarce
(Nieto-Jacobo et al., 2017) and deserves further attention in the
future. In addition to the improvement of plant mineral nutrition,
DBF60 also induced changes in the metabolism of N. caerulescens
by increasing chlorophyll and decreasing anthocyanin contents,
suggesting an enhancement of primary metabolism at the cost of
secondary metabolism. The promotion of secondary metabolism
through the production of anthocyanins is commonly observed
when plants face biotic or abiotic stressors (Landi et al., 2015).
In our context, the decrease in the anthocyanin concentration
in favor of chlorophyll indicates that DBF60 could help plants
alleviate metallic stress.

Due to their ability to increase the aboveground biomass of
N. caerulescens and their tendency to increase Zn concentrations
in leaves (statistically not significant), DBF60 and DBF79
enhanced the Zn phytoextraction potential (+ 50%) of
N. caerulescens. This improvement was slightly better than that
induced by the non-host Pr27 strain (amount of Zn extracted
increased by 30%) (Yung et al., 2021b).

The mechanism leading to the increase in TE in a plant
could be related to the capacity of endophytes to improve TE
bioavailability through the release of metal chelating agents (e.g.,
siderophores, biosurfactants or organic acids), acidification of
soils and redox activity (Deng and Cao, 2017; Domka et al.,
2019). The results from our assay revealed that the quantity
of Cd and Zn mobilized from the soil by the fungal extracts
of DBF60 and DBF79 was the lowest. These results suggest
that the ability of fungi to mobilize TE from the soil is not
representative of the mechanisms occurring in the case of plant-
fungus interactions. According to the results obtained from
in vitro tests, the enhancement of plant nutrition and Zn
phytoextraction mediated by DBF60 is partly associated with its
ability to (i) solubilize various forms of insoluble Zn and P, (ii)
acidify its environment, and (iii) produce siderophores. However,
the effect of DBF79 on plant nutrition and Zn phytoextraction
has not been corroborated by in vitro tests, confirming the
necessity to adopt in planta approaches to better understand the
solubilization level mediated by fungal endophytes.

The selected fungal endophytes were tested for their ability
to improve the TE phytoextraction of N. caerulescens in
sterilized soil, limiting competition with native microflora and
consequently mitigating the risk of inoculation failure. It would
be interesting to conduct a similar study comparing host and
non-host PGP strains within the same system using non-
sterilized soil to investigate the potential of these strains to
tolerate competition with indigenous microflora.

CONCLUSION

In conclusion, we demonstrated that N. caerulescens responses
to fungal inoculation using native strains ranged from neutral
to beneficial. Despite the seven tested strains had PGP abilities
according to the in vitro tests, only two of them exhibited
relevant effects to improve the phytoextraction potential of
N. caerulescens when reinoculated. The improvement in plant
elemental nutrition mediated by M. rubescens (DBF60) and
A. thlaspis (DBF79) was significant and led to an increase in plant
biomass and consequently to a higher amount of Zn extracted.
These fungal endophytes could represent potential candidates for
field applications using hyperaccumulating plants, with benefits
for microbial-assisted phytoextraction and agromining.
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